onnxslim 0.1.81__py3-none-any.whl → 0.1.83__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (137) hide show
  1. onnxslim/core/optimization/dead_node_elimination.py +84 -3
  2. onnxslim/core/pattern/fusion/convadd.py +21 -1
  3. onnxslim/core/pattern/fusion/convbn.py +21 -4
  4. onnxslim/core/pattern/fusion/convmul.py +23 -5
  5. onnxslim/core/pattern/fusion/padconv.py +5 -0
  6. onnxslim/core/shape_inference/__init__.py +378 -0
  7. onnxslim/core/shape_inference/aten_ops/__init__.py +16 -0
  8. onnxslim/core/shape_inference/aten_ops/argmax.py +47 -0
  9. onnxslim/core/shape_inference/aten_ops/bitwise_or.py +28 -0
  10. onnxslim/core/shape_inference/aten_ops/diagonal.py +52 -0
  11. onnxslim/core/shape_inference/aten_ops/embedding.py +23 -0
  12. onnxslim/core/shape_inference/aten_ops/group_norm.py +41 -0
  13. onnxslim/core/shape_inference/aten_ops/min_max.py +64 -0
  14. onnxslim/core/shape_inference/aten_ops/multinomial.py +39 -0
  15. onnxslim/core/shape_inference/aten_ops/numpy_t.py +22 -0
  16. onnxslim/core/shape_inference/aten_ops/pool2d.py +40 -0
  17. onnxslim/core/shape_inference/aten_ops/unfold.py +44 -0
  18. onnxslim/core/shape_inference/aten_ops/upsample.py +44 -0
  19. onnxslim/core/shape_inference/base.py +111 -0
  20. onnxslim/core/shape_inference/context.py +645 -0
  21. onnxslim/core/shape_inference/contrib_ops/__init__.py +8 -0
  22. onnxslim/core/shape_inference/contrib_ops/attention/__init__.py +15 -0
  23. onnxslim/core/shape_inference/contrib_ops/attention/attention.py +61 -0
  24. onnxslim/core/shape_inference/contrib_ops/attention/decoder_masked_mha.py +37 -0
  25. onnxslim/core/shape_inference/contrib_ops/attention/gated_relative_position_bias.py +35 -0
  26. onnxslim/core/shape_inference/contrib_ops/attention/longformer_attention.py +21 -0
  27. onnxslim/core/shape_inference/contrib_ops/attention/multi_head_attention.py +82 -0
  28. onnxslim/core/shape_inference/contrib_ops/attention/multi_scale_deformable_attn.py +29 -0
  29. onnxslim/core/shape_inference/contrib_ops/attention/packed_attention.py +39 -0
  30. onnxslim/core/shape_inference/contrib_ops/attention/packed_multi_head_attention.py +33 -0
  31. onnxslim/core/shape_inference/contrib_ops/attention/remove_padding.py +41 -0
  32. onnxslim/core/shape_inference/contrib_ops/attention/restore_padding.py +29 -0
  33. onnxslim/core/shape_inference/contrib_ops/misc/__init__.py +15 -0
  34. onnxslim/core/shape_inference/contrib_ops/misc/bias_add.py +21 -0
  35. onnxslim/core/shape_inference/contrib_ops/misc/bias_gelu.py +21 -0
  36. onnxslim/core/shape_inference/contrib_ops/misc/bias_split_gelu.py +30 -0
  37. onnxslim/core/shape_inference/contrib_ops/misc/fast_gelu.py +21 -0
  38. onnxslim/core/shape_inference/contrib_ops/misc/gelu.py +21 -0
  39. onnxslim/core/shape_inference/contrib_ops/misc/gemm_fast_gelu.py +21 -0
  40. onnxslim/core/shape_inference/contrib_ops/misc/gemm_float8.py +21 -0
  41. onnxslim/core/shape_inference/contrib_ops/misc/python_op.py +67 -0
  42. onnxslim/core/shape_inference/contrib_ops/misc/quick_gelu.py +21 -0
  43. onnxslim/core/shape_inference/contrib_ops/misc/rotary_embedding.py +31 -0
  44. onnxslim/core/shape_inference/contrib_ops/normalization/__init__.py +12 -0
  45. onnxslim/core/shape_inference/contrib_ops/normalization/embed_layer_normalization.py +41 -0
  46. onnxslim/core/shape_inference/contrib_ops/normalization/group_norm.py +21 -0
  47. onnxslim/core/shape_inference/contrib_ops/normalization/layer_normalization.py +42 -0
  48. onnxslim/core/shape_inference/contrib_ops/normalization/simplified_layer_normalization.py +23 -0
  49. onnxslim/core/shape_inference/contrib_ops/normalization/skip_group_norm.py +23 -0
  50. onnxslim/core/shape_inference/contrib_ops/normalization/skip_layer_normalization.py +26 -0
  51. onnxslim/core/shape_inference/contrib_ops/normalization/skip_simplified_layer_normalization.py +23 -0
  52. onnxslim/core/shape_inference/registry.py +90 -0
  53. onnxslim/core/shape_inference/standard_ops/__init__.py +11 -0
  54. onnxslim/core/shape_inference/standard_ops/control_flow/__init__.py +8 -0
  55. onnxslim/core/shape_inference/standard_ops/control_flow/if_op.py +43 -0
  56. onnxslim/core/shape_inference/standard_ops/control_flow/loop.py +74 -0
  57. onnxslim/core/shape_inference/standard_ops/control_flow/scan.py +54 -0
  58. onnxslim/core/shape_inference/standard_ops/math/__init__.py +20 -0
  59. onnxslim/core/shape_inference/standard_ops/math/_symbolic_compute.py +34 -0
  60. onnxslim/core/shape_inference/standard_ops/math/add.py +10 -0
  61. onnxslim/core/shape_inference/standard_ops/math/div.py +10 -0
  62. onnxslim/core/shape_inference/standard_ops/math/einsum.py +119 -0
  63. onnxslim/core/shape_inference/standard_ops/math/equal.py +10 -0
  64. onnxslim/core/shape_inference/standard_ops/math/floor.py +10 -0
  65. onnxslim/core/shape_inference/standard_ops/math/matmul.py +21 -0
  66. onnxslim/core/shape_inference/standard_ops/math/matmul_integer.py +23 -0
  67. onnxslim/core/shape_inference/standard_ops/math/max.py +10 -0
  68. onnxslim/core/shape_inference/standard_ops/math/min.py +10 -0
  69. onnxslim/core/shape_inference/standard_ops/math/mul.py +10 -0
  70. onnxslim/core/shape_inference/standard_ops/math/neg.py +10 -0
  71. onnxslim/core/shape_inference/standard_ops/math/reduce_prod.py +27 -0
  72. onnxslim/core/shape_inference/standard_ops/math/reduce_sum.py +53 -0
  73. onnxslim/core/shape_inference/standard_ops/math/sub.py +10 -0
  74. onnxslim/core/shape_inference/standard_ops/math/where.py +10 -0
  75. onnxslim/core/shape_inference/standard_ops/misc/__init__.py +22 -0
  76. onnxslim/core/shape_inference/standard_ops/misc/array_feature_extractor.py +32 -0
  77. onnxslim/core/shape_inference/standard_ops/misc/cast.py +21 -0
  78. onnxslim/core/shape_inference/standard_ops/misc/category_mapper.py +30 -0
  79. onnxslim/core/shape_inference/standard_ops/misc/compress.py +39 -0
  80. onnxslim/core/shape_inference/standard_ops/misc/constant.py +27 -0
  81. onnxslim/core/shape_inference/standard_ops/misc/constant_of_shape.py +45 -0
  82. onnxslim/core/shape_inference/standard_ops/misc/dequantize_linear.py +26 -0
  83. onnxslim/core/shape_inference/standard_ops/misc/non_max_suppression.py +26 -0
  84. onnxslim/core/shape_inference/standard_ops/misc/non_zero.py +26 -0
  85. onnxslim/core/shape_inference/standard_ops/misc/one_hot.py +42 -0
  86. onnxslim/core/shape_inference/standard_ops/misc/quantize_linear.py +29 -0
  87. onnxslim/core/shape_inference/standard_ops/misc/range.py +41 -0
  88. onnxslim/core/shape_inference/standard_ops/misc/relative_position_bias.py +31 -0
  89. onnxslim/core/shape_inference/standard_ops/misc/resize.py +74 -0
  90. onnxslim/core/shape_inference/standard_ops/misc/scatter_elements.py +31 -0
  91. onnxslim/core/shape_inference/standard_ops/misc/softmax_cross_entropy_loss.py +44 -0
  92. onnxslim/core/shape_inference/standard_ops/misc/top_k.py +44 -0
  93. onnxslim/core/shape_inference/standard_ops/nn/__init__.py +18 -0
  94. onnxslim/core/shape_inference/standard_ops/nn/all_reduce.py +9 -0
  95. onnxslim/core/shape_inference/standard_ops/nn/average_pool.py +40 -0
  96. onnxslim/core/shape_inference/standard_ops/nn/batch_normalization.py +26 -0
  97. onnxslim/core/shape_inference/standard_ops/nn/conv.py +33 -0
  98. onnxslim/core/shape_inference/standard_ops/nn/cum_sum.py +9 -0
  99. onnxslim/core/shape_inference/standard_ops/nn/identity.py +9 -0
  100. onnxslim/core/shape_inference/standard_ops/nn/max_pool.py +9 -0
  101. onnxslim/core/shape_inference/standard_ops/nn/memcpy_from_host.py +9 -0
  102. onnxslim/core/shape_inference/standard_ops/nn/memcpy_to_host.py +9 -0
  103. onnxslim/core/shape_inference/standard_ops/nn/moe.py +9 -0
  104. onnxslim/core/shape_inference/standard_ops/nn/nhwc_conv.py +33 -0
  105. onnxslim/core/shape_inference/standard_ops/nn/reciprocal.py +9 -0
  106. onnxslim/core/shape_inference/standard_ops/nn/round.py +9 -0
  107. onnxslim/core/shape_inference/standard_ops/sequence/__init__.py +10 -0
  108. onnxslim/core/shape_inference/standard_ops/sequence/concat_from_sequence.py +40 -0
  109. onnxslim/core/shape_inference/standard_ops/sequence/sequence_at.py +31 -0
  110. onnxslim/core/shape_inference/standard_ops/sequence/sequence_insert.py +26 -0
  111. onnxslim/core/shape_inference/standard_ops/sequence/split_to_sequence.py +24 -0
  112. onnxslim/core/shape_inference/standard_ops/sequence/zip_map.py +36 -0
  113. onnxslim/core/shape_inference/standard_ops/tensor/__init__.py +20 -0
  114. onnxslim/core/shape_inference/standard_ops/tensor/concat.py +62 -0
  115. onnxslim/core/shape_inference/standard_ops/tensor/expand.py +36 -0
  116. onnxslim/core/shape_inference/standard_ops/tensor/gather.py +48 -0
  117. onnxslim/core/shape_inference/standard_ops/tensor/gather_elements.py +31 -0
  118. onnxslim/core/shape_inference/standard_ops/tensor/gather_nd.py +42 -0
  119. onnxslim/core/shape_inference/standard_ops/tensor/pad.py +41 -0
  120. onnxslim/core/shape_inference/standard_ops/tensor/reshape.py +72 -0
  121. onnxslim/core/shape_inference/standard_ops/tensor/shape.py +38 -0
  122. onnxslim/core/shape_inference/standard_ops/tensor/size.py +29 -0
  123. onnxslim/core/shape_inference/standard_ops/tensor/slice.py +183 -0
  124. onnxslim/core/shape_inference/standard_ops/tensor/split.py +57 -0
  125. onnxslim/core/shape_inference/standard_ops/tensor/squeeze.py +69 -0
  126. onnxslim/core/shape_inference/standard_ops/tensor/tile.py +41 -0
  127. onnxslim/core/shape_inference/standard_ops/tensor/transpose.py +30 -0
  128. onnxslim/core/shape_inference/standard_ops/tensor/unsqueeze.py +54 -0
  129. onnxslim/core/shape_inference/utils.py +244 -0
  130. onnxslim/third_party/symbolic_shape_infer.py +73 -3156
  131. onnxslim/utils.py +4 -2
  132. {onnxslim-0.1.81.dist-info → onnxslim-0.1.83.dist-info}/METADATA +21 -11
  133. onnxslim-0.1.83.dist-info/RECORD +187 -0
  134. onnxslim-0.1.81.dist-info/RECORD +0 -63
  135. {onnxslim-0.1.81.dist-info → onnxslim-0.1.83.dist-info}/WHEEL +0 -0
  136. {onnxslim-0.1.81.dist-info → onnxslim-0.1.83.dist-info}/entry_points.txt +0 -0
  137. {onnxslim-0.1.81.dist-info → onnxslim-0.1.83.dist-info}/licenses/LICENSE +0 -0
onnxslim/utils.py CHANGED
@@ -117,8 +117,11 @@ def gen_onnxruntime_input_data(
117
117
  ) -> dict[str, np.ndarray]:
118
118
  """Generate random input data for an ONNX model considering potential specific input shapes and types."""
119
119
  input_info = {}
120
+ initializer_names = {init.name for init in model.graph.initializer}
120
121
  for input_tensor in model.graph.input:
121
122
  name = input_tensor.name
123
+ if name in initializer_names:
124
+ continue
122
125
  shape = []
123
126
  for dim in input_tensor.type.tensor_type.shape.dim:
124
127
  if dim.HasField("dim_param"):
@@ -158,8 +161,7 @@ def gen_onnxruntime_input_data(
158
161
  shapes = [shape if (shape != -1 and not isinstance(shape, str)) else 1 for shape in info["shape"]]
159
162
  shapes = shapes or [1]
160
163
  dtype = info["dtype"]
161
-
162
- if dtype in {np.int32, np.int64}:
164
+ if dtype in [np.int32, np.int64]:
163
165
  random_data = np.random.randint(10, size=shapes).astype(dtype)
164
166
  else:
165
167
  random_data = np.random.rand(*shapes).astype(dtype)
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: onnxslim
3
- Version: 0.1.81
3
+ Version: 0.1.83
4
4
  Summary: OnnxSlim: A Toolkit to Help Optimize Onnx Model
5
5
  Project-URL: homepage, https://github.com/inisis/OnnxSlim
6
6
  Project-URL: issues, https://github.com/inisis/OnnxSlim/issues
@@ -20,17 +20,14 @@ Requires-Dist: sympy>=1.13.1
20
20
  Description-Content-Type: text/markdown
21
21
 
22
22
  <p align="center">
23
- <img src="assets/logo/onnxslim-banner-light.svg#gh-light-mode-only" alt="OnnxSlim Logo" width="640"/>
24
- <img src="assets/logo/onnxslim-banner.svg#gh-dark-mode-only" alt="OnnxSlim Logo" width="640"/>
23
+ <img src="https://raw.githubusercontent.com/inisis/OnnxSlim/main/assets/logo/onnxslim-banner-light.svg#gh-light-mode-only" alt="OnnxSlim Logo" width="640"/>
24
+ <img src="https://raw.githubusercontent.com/inisis/OnnxSlim/main/assets/logo/onnxslim-banner.svg#gh-dark-mode-only" alt="OnnxSlim Logo" width="640"/>
25
25
  </p>
26
26
 
27
27
  <p align="center">
28
28
  <a href="https://pypi.org/project/onnxslim">
29
29
  <img src="https://img.shields.io/pypi/v/onnxslim?color=blue" />
30
30
  </a>
31
- <a href="https://pypi.org/project/onnxslim">
32
- <img src="https://static.pepy.tech/badge/onnxslim/week" />
33
- </a>
34
31
  <a href="https://pypi.org/project/onnxslim">
35
32
  <img src="https://static.pepy.tech/badge/onnxslim/month" />
36
33
  </a>
@@ -51,6 +48,7 @@ Description-Content-Type: text/markdown
51
48
 
52
49
  OnnxSlim can help you slim your onnx model, with less operators, but same accuracy, better inference speed.
53
50
 
51
+ - 🚀 2026/01/04: Achieved 5M downloads
54
52
  - 🚀 2025/11/29: Top 1% on PyPI
55
53
  - 🚀 2025/11/27: OnnxSlim is merged into [NVIDIA TensorRT-Model-Optimizer](https://github.com/NVIDIA/TensorRT-Model-Optimizer) 🤗🤗🤗
56
54
  - 🚀 2025/05/17: OnnxSlim is merged into [HuggingFace optimum](https://github.com/huggingface/optimum) 🤗🤗🤗
@@ -61,10 +59,6 @@ OnnxSlim can help you slim your onnx model, with less operators, but same accura
61
59
  - 🚀 2024/04/30: Rank 1st in the [AICAS 2024 LLM inference optimization challenge](https://tianchi.aliyun.com/competition/entrance/532170/customize440) held by Arm and T-head
62
60
  - 🚀 2024/01/25: OnnxSlim is merged to [mnn-llm](https://github.com/wangzhaode/mnn-llm), performance increased by 5%
63
61
 
64
- # Benchmark
65
-
66
- ![Image](https://github.com/user-attachments/assets/fefc79f1-5d8d-486b-935a-a088846b3900)
67
-
68
62
  # Installation
69
63
 
70
64
  ## Using Prebuilt
@@ -104,7 +98,9 @@ import onnxslim
104
98
 
105
99
  model = onnx.load("model.onnx")
106
100
  slimmed_model = onnxslim.slim(model)
107
- onnx.save(slimmed_model, "slimmed_model.onnx")
101
+
102
+ if slimmed_model:
103
+ onnx.save(slimmed_model, "slimmed_model.onnx")
108
104
  ```
109
105
 
110
106
  For more usage, see onnxslim -h or refer to our [examples](./examples)
@@ -182,6 +178,14 @@ For more usage, see onnxslim -h or refer to our [examples](./examples)
182
178
  <a href="https://github.com/deepghs/imgutils" target="_blank">deepghs/imgutils</a>
183
179
  </td>
184
180
  </tr>
181
+ <tr>
182
+ <td style="vertical-align:middle;">
183
+ <img src="https://avatars.githubusercontent.com/u/430818?s=48&v=4" width="22" height="22" style="vertical-align:middle; margin-right:8px;"/>
184
+ <a href="https://github.com/amd/Quark" target="_blank">amd/Quark</a>
185
+ </td>
186
+ <td style="vertical-align:middle;">
187
+ </td>
188
+ </tr>
185
189
  </table>
186
190
 
187
191
  # References
@@ -192,6 +196,12 @@ For more usage, see onnxslim -h or refer to our [examples](./examples)
192
196
  > - [tabulate](https://github.com/astanin/python-tabulate)
193
197
  > - [onnxruntime](https://github.com/microsoft/onnxruntime)
194
198
 
199
+ # Contributors
200
+
201
+ <a href="https://github.com/inisis/onnxslim/graphs/contributors">
202
+ <img src="https://contrib.rocks/image?repo=inisis/onnxslim" />
203
+ </a>
204
+
195
205
  # Contact
196
206
 
197
207
  Discord: https://discord.gg/nRw2Fd3VUS QQ Group: `873569894`
@@ -0,0 +1,187 @@
1
+ onnxslim/__init__.py,sha256=ECHGdxzg4b-4SZaPhxM_KulBi-xDbVcVUbpJc8i6a60,571
2
+ onnxslim/__main__.py,sha256=FgDcl6xX8kV_52rB-jPVsmGqidlVhkpe_YhXK75-nFU,75
3
+ onnxslim/argparser.py,sha256=pFv3nEZH2BiHO9ejS4Iq5ZuZ3GrpdyRQJypAyR0xF7w,8942
4
+ onnxslim/utils.py,sha256=x54qY-UaQPoIYVFq1T2T6hR9xWHrtv-UKkn5tlC1Xdc,29039
5
+ onnxslim/version.py,sha256=6_EhMra7UU7XSDG6tfWQrxITEFhtUFdFuQyCRcBAScQ,74
6
+ onnxslim/cli/__init__.py,sha256=kxK27cDgWotBOWRs86rbRQf_dtmniKr1GZJeasxfESE,42
7
+ onnxslim/cli/_main.py,sha256=jEKv9q7y_y9g0GsrfXcnk_wyMVej6jhe9QNPChE7yTs,5550
8
+ onnxslim/core/__init__.py,sha256=uDg-Eu29Ezb3txwZf5mN0zQRVuqF-K9BvktE8WBYS4E,8825
9
+ onnxslim/core/optimization/__init__.py,sha256=6w7VEhsfd7MhCSLmpAMLfxaEq9pf4YYHhNndggNLZCg,5034
10
+ onnxslim/core/optimization/dead_node_elimination.py,sha256=m3OBAu8S6H_V73MDv2-m4tQCOtXe0rELwRzJIXyyHTs,10279
11
+ onnxslim/core/optimization/subexpression_elimination.py,sha256=wauPADo0msVifYGgJ_fiNmPSe7LrJ7A-D3ur5z1wif8,2838
12
+ onnxslim/core/optimization/weight_tying.py,sha256=uAz_2AJa-s-budTcDXIr6ZcME1hXPdm54CzR-u850X4,2347
13
+ onnxslim/core/pattern/__init__.py,sha256=az4HayGp9WybHMiijr-VfbhzPIfRc-51JK8J1_Q-5Yo,9953
14
+ onnxslim/core/pattern/registry.py,sha256=dMW5fisu_traJ3sYPoy_NU83S1xfGjqxV2GbB0OSYNg,874
15
+ onnxslim/core/pattern/elimination/__init__.py,sha256=C9EwJj7DQmaXVvGx6wxvqvCdQGEAAYVQu1zWQ3PCB5E,117
16
+ onnxslim/core/pattern/elimination/concat.py,sha256=RmN3B0qtVixE_7QfgxsJHj2MUPOEdp8oxrcFN2oSR5Q,2261
17
+ onnxslim/core/pattern/elimination/reshape.py,sha256=XwvuPAZnXCCEwJb2n1guigstnsl3wlxGygytH3GZXN8,3109
18
+ onnxslim/core/pattern/elimination/reshape_as.py,sha256=FI3LYR0pzbp2pDmaX13duHrQ4uqwaKNu4bG78en-7wY,2034
19
+ onnxslim/core/pattern/elimination/slice.py,sha256=moZibU-TbtdwtmGIUwyjnjf3oRCeCBcQq0M1gY5ZWDk,5033
20
+ onnxslim/core/pattern/elimination/unsqueeze.py,sha256=v7Rin3qB6F49ETrxXWEQQxUgtlF18nvHb6JFarf0kwQ,3855
21
+ onnxslim/core/pattern/fusion/__init__.py,sha256=3ajHvRurL7WHL4tfNsBoLQh6Sq2fyiqH-VsPuftYMGg,183
22
+ onnxslim/core/pattern/fusion/concat_reshape.py,sha256=LvknixTAsSUqUkGSuoEA1QpC-TmBrsx6AHZoeT0gTbI,1615
23
+ onnxslim/core/pattern/fusion/convadd.py,sha256=ONORwlZbQ1kYJVAnCyGY6KLIicOOELmKm7-l2vbe078,3245
24
+ onnxslim/core/pattern/fusion/convbn.py,sha256=ZsVDuAxe41f_eN9rt2psJLKQyzGMjO2RCcX9FKRNM1Y,4118
25
+ onnxslim/core/pattern/fusion/convmul.py,sha256=aqq2fMtnMt7cXgQxdwu2hIk2kl-SI7FwpyCxtt9lT1w,3380
26
+ onnxslim/core/pattern/fusion/gelu.py,sha256=uR67AJ_tL1gboY6VsTdqajHxW3Pbu656UMhCe1mQZDY,1469
27
+ onnxslim/core/pattern/fusion/gemm.py,sha256=Ti9yZAfEprFRvW1FiAD0zvewELOJbRjposIk3yjjXfQ,12928
28
+ onnxslim/core/pattern/fusion/padconv.py,sha256=oF-Z4tlyu-AAWJMQDoszNITNgd2mb0vAg2gi0RwQuMo,3838
29
+ onnxslim/core/pattern/fusion/reduce.py,sha256=dMC7CPlFglrJxugsJWjcc-jQCIa_GIbW1y9K2FRvvcE,2755
30
+ onnxslim/core/shape_inference/__init__.py,sha256=iMAX6y6LsR8S3DOpeshPaMQLS3Plj4zYBdSaLGRYIts,16833
31
+ onnxslim/core/shape_inference/base.py,sha256=Njn1T5okyOGwmVER17JRuB3ZJwTPaaOInPAK8vpy2NY,3565
32
+ onnxslim/core/shape_inference/context.py,sha256=a2muPpFWtjRPFOfvVO8bocdZIHRZ5JI61_-16LamfyE,25902
33
+ onnxslim/core/shape_inference/registry.py,sha256=ei1Jc7ZpsoqytIJ7xDp3KhfWAX2f_qW5ilrLcRJ5MK0,2255
34
+ onnxslim/core/shape_inference/utils.py,sha256=gPLX-Qziuptu_xCTjr_ClNpXAA1PRZ_SXMUrY7groRA,6143
35
+ onnxslim/core/shape_inference/aten_ops/__init__.py,sha256=5M-sxxTu16vgwsERxduwQcf04RJtfKWEaHeDbcWI_1A,393
36
+ onnxslim/core/shape_inference/aten_ops/argmax.py,sha256=DLxuwqSQSukcFIpakq0ynUr9Cj8amhWmPYFTZMOQ0Dk,1659
37
+ onnxslim/core/shape_inference/aten_ops/bitwise_or.py,sha256=SfLxYsMyEfQxWEGaK93h3mWRQVxK1_7iq9jeO8LzOP0,839
38
+ onnxslim/core/shape_inference/aten_ops/diagonal.py,sha256=G3fmcMd0lRADxuvV2OFcnteqXn3aMTIXH_mcmRzvC98,1703
39
+ onnxslim/core/shape_inference/aten_ops/embedding.py,sha256=Sem6vumVEhMPjoVVdhg6kO5nOxWE32rgVNQyGUPlOug,654
40
+ onnxslim/core/shape_inference/aten_ops/group_norm.py,sha256=odf4aUvcSVIcxC8fOqHK1WWjRQ_Sgw_c3qrZmtm1rl0,1446
41
+ onnxslim/core/shape_inference/aten_ops/min_max.py,sha256=iZ52ODjlkaeKEFRpn1xzHe0-oIZox3ThrVYSiG2uZlQ,2169
42
+ onnxslim/core/shape_inference/aten_ops/multinomial.py,sha256=g8ZeWWkgYQnmXnbUot4GcOiZfkbld-ePpZa4ieC307k,1157
43
+ onnxslim/core/shape_inference/aten_ops/numpy_t.py,sha256=Nr4CFX5dWHJHEU58a0UQiJAN9KN-2YbtE0j-HPh_3tg,604
44
+ onnxslim/core/shape_inference/aten_ops/pool2d.py,sha256=X2Tay06K4zD03WgZX88dlzJO8l-H-mvz4q5xvEuLf3M,1433
45
+ onnxslim/core/shape_inference/aten_ops/unfold.py,sha256=jJJzOW_1Zu_UyrUf7VQKoqJiRcj2TfoNpS7hk2siiSc,1474
46
+ onnxslim/core/shape_inference/aten_ops/upsample.py,sha256=jbrhNws6XXty1clVKkEodZ1Feemg85bQlXasKFOdatw,1632
47
+ onnxslim/core/shape_inference/contrib_ops/__init__.py,sha256=tAV2PVgfjX0Oe4Zy0S5a3irh59XSCsmD9b64TF1B6wI,218
48
+ onnxslim/core/shape_inference/contrib_ops/attention/__init__.py,sha256=p0cwB0vsL3X30d0W00zuMlrvl6YM01tjszJF5-zl76I,497
49
+ onnxslim/core/shape_inference/contrib_ops/attention/attention.py,sha256=eFmho8YErvZkT_OQkdysyxDX7HktJl_4JmRvjYOfvRQ,2800
50
+ onnxslim/core/shape_inference/contrib_ops/attention/decoder_masked_mha.py,sha256=wnrocL7nyPRhdVYU-U2_reBwgqvejUbm9j49sWoFBQY,1475
51
+ onnxslim/core/shape_inference/contrib_ops/attention/gated_relative_position_bias.py,sha256=N0P5WC4DHMJoPmBuc0By1YQg-LB9ejvC8igh8Nov3gI,1339
52
+ onnxslim/core/shape_inference/contrib_ops/attention/longformer_attention.py,sha256=BVX02U7y_-MHG4AmUVA7YOpMLrIwMoMqpGQTLQlboQg,559
53
+ onnxslim/core/shape_inference/contrib_ops/attention/multi_head_attention.py,sha256=AsQwqnGUJS0XTWA2MrDUUdeysscK0JGk8NoknbNKDQk,3519
54
+ onnxslim/core/shape_inference/contrib_ops/attention/multi_scale_deformable_attn.py,sha256=kBZTj0TsssvNd9iNKYgu4MHq7h3rw_Cj39RcbmuED-8,986
55
+ onnxslim/core/shape_inference/contrib_ops/attention/packed_attention.py,sha256=VlEekU9ICwCoI8cjmEBM2wolpslYt87lN4T0t-4vIyk,1466
56
+ onnxslim/core/shape_inference/contrib_ops/attention/packed_multi_head_attention.py,sha256=sB4DI_T-FsG6sEWOPfb9Z_uMdKR9PFDpnbQ6XdbX98o,1143
57
+ onnxslim/core/shape_inference/contrib_ops/attention/remove_padding.py,sha256=-kPKzG9RxRlVj7Ft2IbwzTEt7oXpmQ7EkopoicLgMSQ,1464
58
+ onnxslim/core/shape_inference/contrib_ops/attention/restore_padding.py,sha256=jTYerCYpW-tCNkYAm5q8djL_ARkV51eQkPhjImeUOqM,1038
59
+ onnxslim/core/shape_inference/contrib_ops/misc/__init__.py,sha256=FJAz0v7kN0kVRWUvyY9CKIz8nExk_YWykjx08O4GWbA,404
60
+ onnxslim/core/shape_inference/contrib_ops/misc/bias_add.py,sha256=s7yhNkELxuD5eaZERX8Og62SsUsI9DNPQVdAuuP9I28,499
61
+ onnxslim/core/shape_inference/contrib_ops/misc/bias_gelu.py,sha256=5M69pjOpC2tWUAuJe6anA-ooVSfLt_zv1m2jJim_TDE,504
62
+ onnxslim/core/shape_inference/contrib_ops/misc/bias_split_gelu.py,sha256=0Z2UOUdJ7BJmwa-C2VGh6TYitx3-KRkp8UXGcdrG6hI,988
63
+ onnxslim/core/shape_inference/contrib_ops/misc/fast_gelu.py,sha256=KHFX7rdPlwYAWYuNJgp-WQhIBPpSrqHbw5WxDUUVPK8,504
64
+ onnxslim/core/shape_inference/contrib_ops/misc/gelu.py,sha256=_VgKJY1Pp6BLZa6IWJxNQ0SCM6hZlDWWv6xuCZmDcCY,484
65
+ onnxslim/core/shape_inference/contrib_ops/misc/gemm_fast_gelu.py,sha256=Rw9zDCe_LuAzsncv31AcE1olR-GlamTFtoYNiGfG74U,520
66
+ onnxslim/core/shape_inference/contrib_ops/misc/gemm_float8.py,sha256=kUv26E7Swym-E9DqXn-CiHqFIr4xlRRnmIjDuXXqryM,510
67
+ onnxslim/core/shape_inference/contrib_ops/misc/python_op.py,sha256=cdp3RFmABpqzY1HS36Ig-4YmVOVOD9EMCyNcFfT6PVw,2959
68
+ onnxslim/core/shape_inference/contrib_ops/misc/quick_gelu.py,sha256=hAe_3p9lXRvyzclD3GAr6W8EvfacCvMuOfcYB2QsyfA,509
69
+ onnxslim/core/shape_inference/contrib_ops/misc/rotary_embedding.py,sha256=65uQrzb-IMkDHsNJk6DZgwv9N-8WQ0RgtyXQg2hWeuc,1275
70
+ onnxslim/core/shape_inference/contrib_ops/normalization/__init__.py,sha256=CSk1ZrCiFLBiG-RZRtobeJ_-1Ax5kbGyqJK8m2DmLYA,420
71
+ onnxslim/core/shape_inference/contrib_ops/normalization/embed_layer_normalization.py,sha256=81pRlng_JlGaKLm8zZ8j7YuIpNFWmFllXTsmQaOo784,1578
72
+ onnxslim/core/shape_inference/contrib_ops/normalization/group_norm.py,sha256=k3V6W1LoJT1kvH8cOfqf65W6MfepkTwg8qG5CGa-VVg,509
73
+ onnxslim/core/shape_inference/contrib_ops/normalization/layer_normalization.py,sha256=4BerlpCQyy9UAO4tYOip1Mppy2gWlDbZ4K4_b9VoXcA,1612
74
+ onnxslim/core/shape_inference/contrib_ops/normalization/simplified_layer_normalization.py,sha256=svgcN0G38PGa9FLIlQiMBx_sLiiUjrgzB3RmUkLTviI,722
75
+ onnxslim/core/shape_inference/contrib_ops/normalization/skip_group_norm.py,sha256=3pfdQM0_4OBzseJgnUDoFk6W7Uib_aoSr9Qb4WPGe-Y,621
76
+ onnxslim/core/shape_inference/contrib_ops/normalization/skip_layer_normalization.py,sha256=HYJ8vJ_-qtcGqblHdJX5PEfA199JoXFWo2KwzzhWNLg,796
77
+ onnxslim/core/shape_inference/contrib_ops/normalization/skip_simplified_layer_normalization.py,sha256=O8liHUbEhqEiXZ4lVCWm_GKFOMLkWrXxCGeFEVU-EII,759
78
+ onnxslim/core/shape_inference/standard_ops/__init__.py,sha256=AiL276vHHGA7yhj2q4qGtKRuXSXvHTZqdilA-zr3Y2Q,267
79
+ onnxslim/core/shape_inference/standard_ops/control_flow/__init__.py,sha256=ZyT13rXxlcG6zpBC9N-ACHwAAkLJsSuunFM5Ch8Ox1w,198
80
+ onnxslim/core/shape_inference/standard_ops/control_flow/if_op.py,sha256=bOeRqQ1CBLtOYaPloUpHTACBdK6EYeld9FgqFivhWws,1477
81
+ onnxslim/core/shape_inference/standard_ops/control_flow/loop.py,sha256=9vGtaqlgeClaI-oAib7fJsV7hr6_QlrIX2EaZwJ8FRU,2874
82
+ onnxslim/core/shape_inference/standard_ops/control_flow/scan.py,sha256=MAcL5NmJT-Jd5ZKXSPYbKEBrwBBG0hn1uabChTmN4CU,2338
83
+ onnxslim/core/shape_inference/standard_ops/math/__init__.py,sha256=FEP0IA3ZbD7O_bxZK7uL3B03QlEbIjyTsQ8tONs7bo4,448
84
+ onnxslim/core/shape_inference/standard_ops/math/_symbolic_compute.py,sha256=vZI89dki5viUcR_YjM9i6nQZlV2wb7V6TBA3iWkIiEA,1329
85
+ onnxslim/core/shape_inference/standard_ops/math/add.py,sha256=Q9Hy35_3UCZiWnERcUk1aaL0btmSkUqQEfOJ8SvBkfw,349
86
+ onnxslim/core/shape_inference/standard_ops/math/div.py,sha256=s7ZWxzINSSXHpOqz4pwY10ELMJmlSesyF2ZqcVYLecM,349
87
+ onnxslim/core/shape_inference/standard_ops/math/einsum.py,sha256=ZyK8-2k1fdFGKifimdvqYW9ag5rusCqFIXYCY4aR34w,4327
88
+ onnxslim/core/shape_inference/standard_ops/math/equal.py,sha256=JCn1fB2OI6wFIgmSnD2Ulp4Sci5ng14EtKGjMkgixMQ,353
89
+ onnxslim/core/shape_inference/standard_ops/math/floor.py,sha256=BB3WGmqb78H374btEvcfUh5_4IW5JTlda-_Hp_iXWEY,353
90
+ onnxslim/core/shape_inference/standard_ops/math/matmul.py,sha256=gi6VosuDhp0j68b1gbCAkOBPsz_LVd2QsPnqhn4ITX4,490
91
+ onnxslim/core/shape_inference/standard_ops/math/matmul_integer.py,sha256=r7YRpcbe_yHNkfkddl7LQSv9DVUu3KtjEr0bLhtNovI,568
92
+ onnxslim/core/shape_inference/standard_ops/math/max.py,sha256=gs2SIKEFp7i0f3eX-u7ab_LzdGsE2_Ilkw-06N0HBKc,349
93
+ onnxslim/core/shape_inference/standard_ops/math/min.py,sha256=HlDyqZAMUEzG0XS6zttRPI_JIRCTR1QB-oTa2ZstaT8,349
94
+ onnxslim/core/shape_inference/standard_ops/math/mul.py,sha256=BZ-AgmSKu--O2259e8doiP-F08eJVv1kqgzPnQkVgaw,349
95
+ onnxslim/core/shape_inference/standard_ops/math/neg.py,sha256=kU2fgBnm-ENo7crWuLM3q23xh4y9rmv-iBdfmGhWTiQ,349
96
+ onnxslim/core/shape_inference/standard_ops/math/reduce_prod.py,sha256=fChGOpUu1A22OGY5WCqP4t_n54paN_owul5p4_imGUo,835
97
+ onnxslim/core/shape_inference/standard_ops/math/reduce_sum.py,sha256=-uz_a3aozrfPoibRq77heZZp0HhsxVgzmI1FCGpCD6w,1909
98
+ onnxslim/core/shape_inference/standard_ops/math/sub.py,sha256=iQbREK17-7UBR_WH8vkBHcWiKWkl_G7aClzxMqBz7mw,349
99
+ onnxslim/core/shape_inference/standard_ops/math/where.py,sha256=BIj-5SRdUefeC34Tagkt8eA4EIUiMOWd9QU1so_hL_w,353
100
+ onnxslim/core/shape_inference/standard_ops/misc/__init__.py,sha256=p1QYVFM3NjA4as1VkGyDwVws0QIYCrIxy7Qoc0CtCu4,617
101
+ onnxslim/core/shape_inference/standard_ops/misc/array_feature_extractor.py,sha256=ki_cXzYlueTvZ0vKfCZaDA7ZL6Wpn_hy5R6Dka0tk_A,927
102
+ onnxslim/core/shape_inference/standard_ops/misc/cast.py,sha256=88QXrGBssvuF5GxE44WkQR-p3CqyERJMq_rhdN7qOlc,478
103
+ onnxslim/core/shape_inference/standard_ops/misc/category_mapper.py,sha256=4KaPvU3JtGS6WEkDI-7Tz2Hmy26HSTV9cjsKwe3F2bU,915
104
+ onnxslim/core/shape_inference/standard_ops/misc/compress.py,sha256=e7UnBo6VjfGDYwuDC-1QBnLaGXFepQUxtoxyhiBIydk,1170
105
+ onnxslim/core/shape_inference/standard_ops/misc/constant.py,sha256=cSGqjnMHtDZaS2gyhpZp8xDc7yIMxcfL8Sqyx6iiXTQ,713
106
+ onnxslim/core/shape_inference/standard_ops/misc/constant_of_shape.py,sha256=BLJk36fnHLvUU2e8pEEJLj9iOg37C_yifrC9OGWmIyU,1552
107
+ onnxslim/core/shape_inference/standard_ops/misc/dequantize_linear.py,sha256=G9iBqmXZ_dd1Lc0GHGmJOlKmnnlVz5cR6b6QPfXmiHo,789
108
+ onnxslim/core/shape_inference/standard_ops/misc/non_max_suppression.py,sha256=uWGIvPU-OUKB4ar25nljC566udhFY5UvLNQcMw2b9LI,755
109
+ onnxslim/core/shape_inference/standard_ops/misc/non_zero.py,sha256=e_Xtq1bbfgQow7kanmLtO8XcpKJISm7tQkZDbawV8Jo,760
110
+ onnxslim/core/shape_inference/standard_ops/misc/one_hot.py,sha256=Cv0smkKygbzKlGC6kPt30bm-iv5IqBEhSKyP__wgcWQ,1289
111
+ onnxslim/core/shape_inference/standard_ops/misc/quantize_linear.py,sha256=BGMVN5p2UBiAxW5EOafFQzed6xJnXPf3mB1WihO8rU0,891
112
+ onnxslim/core/shape_inference/standard_ops/misc/range.py,sha256=n-LAFRhUqDPL7U6DTLiIRxoByQM_AH5PdudDIM1ZNGw,1301
113
+ onnxslim/core/shape_inference/standard_ops/misc/relative_position_bias.py,sha256=aKQFbHV7jkKRtYr1K_XLP3u5FS8bEK9XIMJUKowWTNQ,1046
114
+ onnxslim/core/shape_inference/standard_ops/misc/resize.py,sha256=iq-GHboGa4YoxZ_hao4RiiYId9GW_anDHiblTeINXPc,2876
115
+ onnxslim/core/shape_inference/standard_ops/misc/scatter_elements.py,sha256=gz_xsVNW0NbzCHRB3_dfqBDUmkoNWMNKqh3Cs_QIvjk,829
116
+ onnxslim/core/shape_inference/standard_ops/misc/softmax_cross_entropy_loss.py,sha256=U74pCBzfkWhjI5wQz1Eg2DzwaTEdUd-Abkmib-OT-F4,1561
117
+ onnxslim/core/shape_inference/standard_ops/misc/top_k.py,sha256=CBVC8IvgBkzmzxQ88hOVmNYg_KjWmCSuBW266jTCR9Q,1474
118
+ onnxslim/core/shape_inference/standard_ops/nn/__init__.py,sha256=UZPy6CQtIH3L4vx2VWNe6ai56vTT-DHzQtXjKEuKO_4,462
119
+ onnxslim/core/shape_inference/standard_ops/nn/all_reduce.py,sha256=zJr2S5zlzoj4kSlkyuy53lAEIuxezwr7ggKUsIhRVYU,283
120
+ onnxslim/core/shape_inference/standard_ops/nn/average_pool.py,sha256=c0j4oNuKG1gzaOg0aR_NDUtlSa0ZmTGVyK-YHQ3Z7Rs,1123
121
+ onnxslim/core/shape_inference/standard_ops/nn/batch_normalization.py,sha256=XJbfFQxkU-oYRmQPDikU6Z4wnSweEnnKRJoVRM79cf0,816
122
+ onnxslim/core/shape_inference/standard_ops/nn/conv.py,sha256=S05xT1Tjj3vEfKLCCeLQvpMIk2OY0hwn0oYGeMte5_Q,883
123
+ onnxslim/core/shape_inference/standard_ops/nn/cum_sum.py,sha256=9-sVeWjcULW74zSN31WBtKrRRhHsXKWiV1_8k9pVRnk,277
124
+ onnxslim/core/shape_inference/standard_ops/nn/identity.py,sha256=Nk2essLF8p9RM0IUp80lEwDv8k2ffiU6kQndbero5cs,281
125
+ onnxslim/core/shape_inference/standard_ops/nn/max_pool.py,sha256=58ZXN0It1Hb38_pYG9qnUF_XDw6RkoCQP5HX-zkHjH4,271
126
+ onnxslim/core/shape_inference/standard_ops/nn/memcpy_from_host.py,sha256=m4kumEIovhaFmZpcCYqg5G0v6QngWRa0CXeOi0P9XMY,293
127
+ onnxslim/core/shape_inference/standard_ops/nn/memcpy_to_host.py,sha256=OOUPXDdVwodiYTs1GTsIQVkyxX1Hoo7rKRxAPvJVGKI,289
128
+ onnxslim/core/shape_inference/standard_ops/nn/moe.py,sha256=gXOb1P51fDPGA3MhbI-ybMJ2u4-v6rf5ldh6cJVa1mg,271
129
+ onnxslim/core/shape_inference/standard_ops/nn/nhwc_conv.py,sha256=yEVh66ieEkKgYmMuXMigKnIKaMHW2nUqLGDRAssfMNQ,972
130
+ onnxslim/core/shape_inference/standard_ops/nn/reciprocal.py,sha256=82JQQZPBYBF3MtIJAs0NzJ2tEq4a4KtJfDokwGMmCC4,285
131
+ onnxslim/core/shape_inference/standard_ops/nn/round.py,sha256=ijGmWtx56Oqm5iMLq7TKhiOOXRpHmsuy_Jw-W1dZ_Wc,275
132
+ onnxslim/core/shape_inference/standard_ops/sequence/__init__.py,sha256=D78_2wTIaUG8N2WAoa2nDRPoo-wLdOcLE7RaB1VBXRM,281
133
+ onnxslim/core/shape_inference/standard_ops/sequence/concat_from_sequence.py,sha256=2wroAPGFbz2ceW2DSchldr8LK1zsFN4jgvA9OmzB8e8,1333
134
+ onnxslim/core/shape_inference/standard_ops/sequence/sequence_at.py,sha256=4XZM7Ftpcl-xjZ2q2-oAxpFqQofKFF6IW7Vr4A9f3v8,933
135
+ onnxslim/core/shape_inference/standard_ops/sequence/sequence_insert.py,sha256=qV79vCm_j9wIxNLfxJY5ElHKWnySObFWVdULfAzonS4,785
136
+ onnxslim/core/shape_inference/standard_ops/sequence/split_to_sequence.py,sha256=7OYV3ItLNBC0WObwLK-s5QFuVPjJLQ9NEYIrDhx5JTU,638
137
+ onnxslim/core/shape_inference/standard_ops/sequence/zip_map.py,sha256=0lGhI4DeidbXg5aFB6pE7qBX5pyV1rtzS9Ekcc8cu_I,1139
138
+ onnxslim/core/shape_inference/standard_ops/tensor/__init__.py,sha256=EDJwJyiIIjP9s7olV-79SueDU8uNc2Dsp9lVC3Adobk,472
139
+ onnxslim/core/shape_inference/standard_ops/tensor/concat.py,sha256=l7_BZ0WAMechvdIFtGdfIVnZcTiKaqndKzc_mW7V4J8,2396
140
+ onnxslim/core/shape_inference/standard_ops/tensor/expand.py,sha256=XcQe6sTxwjZBnDcXebH3xSv6mTAV6dO2Ryq_8Ns2Y48,1140
141
+ onnxslim/core/shape_inference/standard_ops/tensor/gather.py,sha256=fsFhat60FlcgM7KgQL0llzYzfj5u0Px-YvU8CcZZjLI,1746
142
+ onnxslim/core/shape_inference/standard_ops/tensor/gather_elements.py,sha256=Tvh_MTREr-PzW1kuRmA7_SP9QAKBL1TKpYU-O3GjQ8w,830
143
+ onnxslim/core/shape_inference/standard_ops/tensor/gather_nd.py,sha256=GUJjH9vkibXx-PjXETSGJXlC4mWzRI5l4Scb2I7XKug,1295
144
+ onnxslim/core/shape_inference/standard_ops/tensor/pad.py,sha256=QWluP0FApIctYDevtMoxNw6K-nEyo9vcpg8ncTHT1X0,1338
145
+ onnxslim/core/shape_inference/standard_ops/tensor/reshape.py,sha256=2EQElWMXdDUlnXEKpS0iFhJX91xY0INzpFW0SKjtVeE,2429
146
+ onnxslim/core/shape_inference/standard_ops/tensor/shape.py,sha256=JiA3w00xiAnjoNrwOMgHtOwI5LashmfVOEttyVs3EvA,1088
147
+ onnxslim/core/shape_inference/standard_ops/tensor/size.py,sha256=Twp7-tS-ZfF3jm6vvgUi2ZHL91EXrSr_Ob3-8LaGX3M,791
148
+ onnxslim/core/shape_inference/standard_ops/tensor/slice.py,sha256=gVXyD37Hvha6_pYQ8BtTkHFwy7ZaJypcBUyPyA2Qlkk,7131
149
+ onnxslim/core/shape_inference/standard_ops/tensor/split.py,sha256=4_BwQPsRoEXHxp5HBW3KZE_qaGXfoByAi1hyAMopFkg,1830
150
+ onnxslim/core/shape_inference/standard_ops/tensor/squeeze.py,sha256=GlDK1rD7HCZy3qESnxDOrKLVrY69mq3l-SJrKnKOpcA,2467
151
+ onnxslim/core/shape_inference/standard_ops/tensor/tile.py,sha256=YzLRWjw-JViYR33crn7E1KDnCYpEyX9i8kgJaCSg8Hk,1269
152
+ onnxslim/core/shape_inference/standard_ops/tensor/transpose.py,sha256=7obEytptS1Irr8bmr1lKl6G6lr0sZJEQybDqwbrCVQ0,928
153
+ onnxslim/core/shape_inference/standard_ops/tensor/unsqueeze.py,sha256=Dzvzk7NW8lJjHnTZnv_2viwjGTbdptB9Y1M5JHWgxxs,1572
154
+ onnxslim/misc/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
155
+ onnxslim/misc/tabulate.py,sha256=Pg5uU0UP18HbwG-c8LlA82LbIb_5JWQeuIB1AnturbM,99695
156
+ onnxslim/third_party/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
157
+ onnxslim/third_party/symbolic_shape_infer.py,sha256=iLvDbg24rt1ZRM_LJDavZ72n4ig5XpoxTGTr8mSLxhM,5882
158
+ onnxslim/third_party/_sympy/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
159
+ onnxslim/third_party/_sympy/functions.py,sha256=s3pKzyjYCKnvlddLFR_H8UmbbcdMB51PRxqhe9zGI9E,8876
160
+ onnxslim/third_party/_sympy/numbers.py,sha256=WOCwRg5JiIfUQCXKAUUuWis8rxdc7LLthUf3Ax1jG8I,11535
161
+ onnxslim/third_party/_sympy/printers.py,sha256=Kv2vpR-YgjCsNxIBKkcHyvEnj_H-gmJqG03Hwh4rWdk,20429
162
+ onnxslim/third_party/_sympy/solve.py,sha256=gcqmluQbAKzIQTTtzsgALguhK8ViRGlVP-CRDcbwP6A,6465
163
+ onnxslim/third_party/_sympy/symbol.py,sha256=aAh52bmsGzRzG3PqS8MNcs3rjTil7Mqt4x3dev6fnKc,3718
164
+ onnxslim/third_party/onnx_graphsurgeon/__init__.py,sha256=hgX680FHJKYEqlgCexdbdM8LfffxDD_GYFEnI7jnE1I,695
165
+ onnxslim/third_party/onnx_graphsurgeon/exporters/__init__.py,sha256=coVGPk31uciLYrpJmsDPypTAXqN7V1GgyNCXPp59KiQ,88
166
+ onnxslim/third_party/onnx_graphsurgeon/exporters/base_exporter.py,sha256=I2dKwwj4m0lsEhR0ngH-huBvsLcL9jh7o2RQGwMz2ik,1150
167
+ onnxslim/third_party/onnx_graphsurgeon/exporters/onnx_exporter.py,sha256=JBbY7bl1b39Hk9j9w2FzC5WZ3NKH6BJR3PyXGT-HTdQ,17551
168
+ onnxslim/third_party/onnx_graphsurgeon/graph_pattern/__init__.py,sha256=4r6nr2YY9eJrJG18Ae-kdW_hSOuNSMFBSYygmS9GT9U,121
169
+ onnxslim/third_party/onnx_graphsurgeon/graph_pattern/graph_pattern.py,sha256=Nn5lkO4JKFRhaF4EPj3xuG15fSt8zvLfRI3w_7XmL_g,20053
170
+ onnxslim/third_party/onnx_graphsurgeon/importers/__init__.py,sha256=ON_tO_sODloL39hhGjE19sz_Cj7KeGnsqPh-JlOPc4k,88
171
+ onnxslim/third_party/onnx_graphsurgeon/importers/base_importer.py,sha256=ESIul1po3LWkNz8D22Ti_KFMpBe7FQF3iKsh32yABXg,1170
172
+ onnxslim/third_party/onnx_graphsurgeon/importers/onnx_importer.py,sha256=qa86Ne8yWCmpoAPBWV2lV1hlCvnQ6UPe-M1JXSfnMqM,23097
173
+ onnxslim/third_party/onnx_graphsurgeon/ir/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
174
+ onnxslim/third_party/onnx_graphsurgeon/ir/function.py,sha256=X1Rd1ZQlHhK6crg788a-LCmQSzv446LGfw376_Cz8Co,11820
175
+ onnxslim/third_party/onnx_graphsurgeon/ir/graph.py,sha256=RU1luTR5sGMbPbRXtKGsYtBIv5BlXZOo7gU6bv0L5FY,70494
176
+ onnxslim/third_party/onnx_graphsurgeon/ir/node.py,sha256=lHrJCNRhtPRZrE7vuvQkG_wfEsJzDW7Wf-T_kr4OJHI,9996
177
+ onnxslim/third_party/onnx_graphsurgeon/ir/tensor.py,sha256=bypjlsVp1qByPhJRbTSjSrPpoatmMykjnJ9_cnnmz9Y,19265
178
+ onnxslim/third_party/onnx_graphsurgeon/logger/__init__.py,sha256=b6lAvvrKZKNtCZOgcvz2Aj9lUO5mw5JM8UFP5BqBOnQ,83
179
+ onnxslim/third_party/onnx_graphsurgeon/logger/logger.py,sha256=L12rrwn33RHH-2WLvRwN77CyHezK1DM7AE4RQ2v_3-Y,10350
180
+ onnxslim/third_party/onnx_graphsurgeon/util/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
181
+ onnxslim/third_party/onnx_graphsurgeon/util/exception.py,sha256=KrsHbKEQ4237UbjlODsUzvkXoAY72LZi23ApBeFANWg,786
182
+ onnxslim/third_party/onnx_graphsurgeon/util/misc.py,sha256=kyxInD2SCRLU4wHMeiDEYEHB3871fGks6kQTuF9uATY,8960
183
+ onnxslim-0.1.83.dist-info/METADATA,sha256=Npm1SQ2CnsjAh0NF6Z5twoqjiu9IJLfrLRh4KkvEALo,10651
184
+ onnxslim-0.1.83.dist-info/WHEEL,sha256=WLgqFyCfm_KASv4WHyYy0P3pM_m7J5L9k2skdKLirC8,87
185
+ onnxslim-0.1.83.dist-info/entry_points.txt,sha256=O2QgceCVeGeRhnxRSDRcGiFd0ZNfElwrTiRo1W2V7KA,47
186
+ onnxslim-0.1.83.dist-info/licenses/LICENSE,sha256=oHZXw-yrBwdNVGu4JtlZhMgmQHKIZ7BJJlJdhu1HKvI,1062
187
+ onnxslim-0.1.83.dist-info/RECORD,,
@@ -1,63 +0,0 @@
1
- onnxslim/__init__.py,sha256=ECHGdxzg4b-4SZaPhxM_KulBi-xDbVcVUbpJc8i6a60,571
2
- onnxslim/__main__.py,sha256=FgDcl6xX8kV_52rB-jPVsmGqidlVhkpe_YhXK75-nFU,75
3
- onnxslim/argparser.py,sha256=pFv3nEZH2BiHO9ejS4Iq5ZuZ3GrpdyRQJypAyR0xF7w,8942
4
- onnxslim/utils.py,sha256=-ZWE2TnovvNMW2UlASgWtD44u_VbMCjRSXNGx8HgTAQ,28909
5
- onnxslim/version.py,sha256=6_EhMra7UU7XSDG6tfWQrxITEFhtUFdFuQyCRcBAScQ,74
6
- onnxslim/cli/__init__.py,sha256=kxK27cDgWotBOWRs86rbRQf_dtmniKr1GZJeasxfESE,42
7
- onnxslim/cli/_main.py,sha256=jEKv9q7y_y9g0GsrfXcnk_wyMVej6jhe9QNPChE7yTs,5550
8
- onnxslim/core/__init__.py,sha256=uDg-Eu29Ezb3txwZf5mN0zQRVuqF-K9BvktE8WBYS4E,8825
9
- onnxslim/core/optimization/__init__.py,sha256=6w7VEhsfd7MhCSLmpAMLfxaEq9pf4YYHhNndggNLZCg,5034
10
- onnxslim/core/optimization/dead_node_elimination.py,sha256=B5hpxwLrdWD5uFt_r87uOgSX-Ul81-sNJlYowa4jU_Y,7801
11
- onnxslim/core/optimization/subexpression_elimination.py,sha256=wauPADo0msVifYGgJ_fiNmPSe7LrJ7A-D3ur5z1wif8,2838
12
- onnxslim/core/optimization/weight_tying.py,sha256=uAz_2AJa-s-budTcDXIr6ZcME1hXPdm54CzR-u850X4,2347
13
- onnxslim/core/pattern/__init__.py,sha256=az4HayGp9WybHMiijr-VfbhzPIfRc-51JK8J1_Q-5Yo,9953
14
- onnxslim/core/pattern/registry.py,sha256=dMW5fisu_traJ3sYPoy_NU83S1xfGjqxV2GbB0OSYNg,874
15
- onnxslim/core/pattern/elimination/__init__.py,sha256=C9EwJj7DQmaXVvGx6wxvqvCdQGEAAYVQu1zWQ3PCB5E,117
16
- onnxslim/core/pattern/elimination/concat.py,sha256=RmN3B0qtVixE_7QfgxsJHj2MUPOEdp8oxrcFN2oSR5Q,2261
17
- onnxslim/core/pattern/elimination/reshape.py,sha256=XwvuPAZnXCCEwJb2n1guigstnsl3wlxGygytH3GZXN8,3109
18
- onnxslim/core/pattern/elimination/reshape_as.py,sha256=FI3LYR0pzbp2pDmaX13duHrQ4uqwaKNu4bG78en-7wY,2034
19
- onnxslim/core/pattern/elimination/slice.py,sha256=moZibU-TbtdwtmGIUwyjnjf3oRCeCBcQq0M1gY5ZWDk,5033
20
- onnxslim/core/pattern/elimination/unsqueeze.py,sha256=v7Rin3qB6F49ETrxXWEQQxUgtlF18nvHb6JFarf0kwQ,3855
21
- onnxslim/core/pattern/fusion/__init__.py,sha256=3ajHvRurL7WHL4tfNsBoLQh6Sq2fyiqH-VsPuftYMGg,183
22
- onnxslim/core/pattern/fusion/concat_reshape.py,sha256=LvknixTAsSUqUkGSuoEA1QpC-TmBrsx6AHZoeT0gTbI,1615
23
- onnxslim/core/pattern/fusion/convadd.py,sha256=P1GI7hJAHgDBO17aDDghNxMEhWkFIcqGLIfnpTMGhWk,2432
24
- onnxslim/core/pattern/fusion/convbn.py,sha256=696Ev3X9-G2eQbnSqpqkQQeWG8Lrb-3elpQiOQ6MAXE,3333
25
- onnxslim/core/pattern/fusion/convmul.py,sha256=W2C6H3kWSDUg0he0jfR4tXI5GMi7gsyylQR4aSh-rik,2581
26
- onnxslim/core/pattern/fusion/gelu.py,sha256=uR67AJ_tL1gboY6VsTdqajHxW3Pbu656UMhCe1mQZDY,1469
27
- onnxslim/core/pattern/fusion/gemm.py,sha256=Ti9yZAfEprFRvW1FiAD0zvewELOJbRjposIk3yjjXfQ,12928
28
- onnxslim/core/pattern/fusion/padconv.py,sha256=eOutev5rOrHuyyw-BRIFzMjcvu9MxXj73kY215GaeG8,3652
29
- onnxslim/core/pattern/fusion/reduce.py,sha256=dMC7CPlFglrJxugsJWjcc-jQCIa_GIbW1y9K2FRvvcE,2755
30
- onnxslim/misc/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
31
- onnxslim/misc/tabulate.py,sha256=Pg5uU0UP18HbwG-c8LlA82LbIb_5JWQeuIB1AnturbM,99695
32
- onnxslim/third_party/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
33
- onnxslim/third_party/symbolic_shape_infer.py,sha256=lBNcfgNUVG24VrgP_VzIi0K_5RAhF3vatuETv09Wv5Y,152738
34
- onnxslim/third_party/_sympy/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
35
- onnxslim/third_party/_sympy/functions.py,sha256=s3pKzyjYCKnvlddLFR_H8UmbbcdMB51PRxqhe9zGI9E,8876
36
- onnxslim/third_party/_sympy/numbers.py,sha256=WOCwRg5JiIfUQCXKAUUuWis8rxdc7LLthUf3Ax1jG8I,11535
37
- onnxslim/third_party/_sympy/printers.py,sha256=Kv2vpR-YgjCsNxIBKkcHyvEnj_H-gmJqG03Hwh4rWdk,20429
38
- onnxslim/third_party/_sympy/solve.py,sha256=gcqmluQbAKzIQTTtzsgALguhK8ViRGlVP-CRDcbwP6A,6465
39
- onnxslim/third_party/_sympy/symbol.py,sha256=aAh52bmsGzRzG3PqS8MNcs3rjTil7Mqt4x3dev6fnKc,3718
40
- onnxslim/third_party/onnx_graphsurgeon/__init__.py,sha256=hgX680FHJKYEqlgCexdbdM8LfffxDD_GYFEnI7jnE1I,695
41
- onnxslim/third_party/onnx_graphsurgeon/exporters/__init__.py,sha256=coVGPk31uciLYrpJmsDPypTAXqN7V1GgyNCXPp59KiQ,88
42
- onnxslim/third_party/onnx_graphsurgeon/exporters/base_exporter.py,sha256=I2dKwwj4m0lsEhR0ngH-huBvsLcL9jh7o2RQGwMz2ik,1150
43
- onnxslim/third_party/onnx_graphsurgeon/exporters/onnx_exporter.py,sha256=JBbY7bl1b39Hk9j9w2FzC5WZ3NKH6BJR3PyXGT-HTdQ,17551
44
- onnxslim/third_party/onnx_graphsurgeon/graph_pattern/__init__.py,sha256=4r6nr2YY9eJrJG18Ae-kdW_hSOuNSMFBSYygmS9GT9U,121
45
- onnxslim/third_party/onnx_graphsurgeon/graph_pattern/graph_pattern.py,sha256=Nn5lkO4JKFRhaF4EPj3xuG15fSt8zvLfRI3w_7XmL_g,20053
46
- onnxslim/third_party/onnx_graphsurgeon/importers/__init__.py,sha256=ON_tO_sODloL39hhGjE19sz_Cj7KeGnsqPh-JlOPc4k,88
47
- onnxslim/third_party/onnx_graphsurgeon/importers/base_importer.py,sha256=ESIul1po3LWkNz8D22Ti_KFMpBe7FQF3iKsh32yABXg,1170
48
- onnxslim/third_party/onnx_graphsurgeon/importers/onnx_importer.py,sha256=qa86Ne8yWCmpoAPBWV2lV1hlCvnQ6UPe-M1JXSfnMqM,23097
49
- onnxslim/third_party/onnx_graphsurgeon/ir/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
50
- onnxslim/third_party/onnx_graphsurgeon/ir/function.py,sha256=X1Rd1ZQlHhK6crg788a-LCmQSzv446LGfw376_Cz8Co,11820
51
- onnxslim/third_party/onnx_graphsurgeon/ir/graph.py,sha256=RU1luTR5sGMbPbRXtKGsYtBIv5BlXZOo7gU6bv0L5FY,70494
52
- onnxslim/third_party/onnx_graphsurgeon/ir/node.py,sha256=lHrJCNRhtPRZrE7vuvQkG_wfEsJzDW7Wf-T_kr4OJHI,9996
53
- onnxslim/third_party/onnx_graphsurgeon/ir/tensor.py,sha256=bypjlsVp1qByPhJRbTSjSrPpoatmMykjnJ9_cnnmz9Y,19265
54
- onnxslim/third_party/onnx_graphsurgeon/logger/__init__.py,sha256=b6lAvvrKZKNtCZOgcvz2Aj9lUO5mw5JM8UFP5BqBOnQ,83
55
- onnxslim/third_party/onnx_graphsurgeon/logger/logger.py,sha256=L12rrwn33RHH-2WLvRwN77CyHezK1DM7AE4RQ2v_3-Y,10350
56
- onnxslim/third_party/onnx_graphsurgeon/util/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
57
- onnxslim/third_party/onnx_graphsurgeon/util/exception.py,sha256=KrsHbKEQ4237UbjlODsUzvkXoAY72LZi23ApBeFANWg,786
58
- onnxslim/third_party/onnx_graphsurgeon/util/misc.py,sha256=kyxInD2SCRLU4wHMeiDEYEHB3871fGks6kQTuF9uATY,8960
59
- onnxslim-0.1.81.dist-info/METADATA,sha256=zE4GD0vim78Jk_LYDhUxmjX4t3U9m4eewdZUCyQR76c,10216
60
- onnxslim-0.1.81.dist-info/WHEEL,sha256=WLgqFyCfm_KASv4WHyYy0P3pM_m7J5L9k2skdKLirC8,87
61
- onnxslim-0.1.81.dist-info/entry_points.txt,sha256=O2QgceCVeGeRhnxRSDRcGiFd0ZNfElwrTiRo1W2V7KA,47
62
- onnxslim-0.1.81.dist-info/licenses/LICENSE,sha256=oHZXw-yrBwdNVGu4JtlZhMgmQHKIZ7BJJlJdhu1HKvI,1062
63
- onnxslim-0.1.81.dist-info/RECORD,,