onnx2tf 1.29.12__py3-none-any.whl → 1.29.14__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
onnx2tf/__init__.py CHANGED
@@ -1,3 +1,3 @@
1
1
  from onnx2tf.onnx2tf import convert, main
2
2
 
3
- __version__ = '1.29.12'
3
+ __version__ = '1.29.14'
onnx2tf/onnx2tf.py CHANGED
@@ -62,6 +62,73 @@ from onnx2tf.utils.enums import (
62
62
  from onnx2tf.utils.logging import *
63
63
  from sng4onnx import generate as op_name_auto_generate
64
64
 
65
+ def apply_nonzero_passthrough(
66
+ *,
67
+ graph: gs.Graph,
68
+ onnx_tensor_infos: Optional[Dict[str, np.ndarray]],
69
+ onnx_input_datas_for_validation: Optional[Dict[str, np.ndarray]] = None,
70
+ update_graph_shape: bool = False,
71
+ ) -> None:
72
+ if onnx_tensor_infos is None:
73
+ return
74
+ for graph_node in graph.nodes:
75
+ if graph_node.op != 'NonZero':
76
+ continue
77
+ if len(graph_node.inputs) == 0 or len(graph_node.outputs) == 0:
78
+ continue
79
+ nonzero_input = graph_node.inputs[0]
80
+ nonzero_output = graph_node.outputs[0]
81
+ passthrough_tensor = None
82
+ input_name = nonzero_input.name
83
+
84
+ if input_name in onnx_tensor_infos:
85
+ passthrough_tensor = onnx_tensor_infos[input_name]
86
+ elif onnx_input_datas_for_validation and input_name in onnx_input_datas_for_validation:
87
+ passthrough_tensor = onnx_input_datas_for_validation[input_name]
88
+ elif hasattr(nonzero_input, 'values'):
89
+ passthrough_tensor = nonzero_input.values
90
+
91
+ if passthrough_tensor is not None:
92
+ onnx_tensor_infos[nonzero_output.name] = passthrough_tensor
93
+ if update_graph_shape and hasattr(passthrough_tensor, 'shape'):
94
+ nonzero_output.shape = list(passthrough_tensor.shape)
95
+
96
+ def apply_nonzero_passthrough_tf(
97
+ *,
98
+ graph: gs.Graph,
99
+ tf_layers_dict: Dict[str, Any],
100
+ tf_tensor_infos: Optional[Dict[str, np.ndarray]],
101
+ tf_input_datas_for_validation: Optional[Dict[str, np.ndarray]] = None,
102
+ ) -> None:
103
+ if tf_tensor_infos is None:
104
+ return
105
+ for graph_node in graph.nodes:
106
+ if graph_node.op != 'NonZero':
107
+ continue
108
+ if len(graph_node.inputs) == 0 or len(graph_node.outputs) == 0:
109
+ continue
110
+ input_name = graph_node.inputs[0].name
111
+ output_name = graph_node.outputs[0].name
112
+ input_info = tf_layers_dict.get(input_name)
113
+ output_info = tf_layers_dict.get(output_name)
114
+ if input_info is None or output_info is None:
115
+ continue
116
+ input_tf_node = input_info.get('tf_node')
117
+ output_tf_node = output_info.get('tf_node')
118
+ if input_tf_node is None or output_tf_node is None:
119
+ continue
120
+ input_tf_name = input_tf_node.name
121
+ output_tf_name = output_tf_node.name
122
+ passthrough_tensor = None
123
+
124
+ if input_tf_name in tf_tensor_infos:
125
+ passthrough_tensor = tf_tensor_infos[input_tf_name]
126
+ elif tf_input_datas_for_validation and input_tf_name in tf_input_datas_for_validation:
127
+ passthrough_tensor = tf_input_datas_for_validation[input_tf_name]
128
+
129
+ if passthrough_tensor is not None:
130
+ tf_tensor_infos[output_tf_name] = passthrough_tensor
131
+
65
132
  def convert(
66
133
  input_onnx_file_path: Optional[str] = '',
67
134
  onnx_graph: Optional[onnx.ModelProto] = None,
@@ -1113,6 +1180,7 @@ def convert(
1113
1180
  # Used to verify the output error of each OP in the TensorFlow model.
1114
1181
  full_ops_output_names = []
1115
1182
  onnx_tensor_infos_for_validation = None
1183
+ onnx_input_datas_for_validation = {}
1116
1184
  for graph_node in graph.nodes:
1117
1185
  full_ops_output_names_sub = []
1118
1186
  for graph_node_output in graph_node.outputs:
@@ -1132,6 +1200,7 @@ def convert(
1132
1200
  enable_ort_output_memmap=onnxruntime_output_memmap,
1133
1201
  ort_output_memmap_dir=onnxruntime_output_memmap_dir,
1134
1202
  shape_hints=shape_hints if (check_onnx_tf_outputs_elementwise_close or check_onnx_tf_outputs_elementwise_close_full) else None,
1203
+ input_datas_for_validation=onnx_input_datas_for_validation,
1135
1204
  )
1136
1205
  """
1137
1206
  onnx_tensor_infos_for_validation:
@@ -1148,12 +1217,20 @@ def convert(
1148
1217
  in zip(full_ops_output_names, onnx_outputs_for_validation)
1149
1218
  }
1150
1219
  del onnx_outputs_for_validation
1220
+
1221
+ apply_nonzero_passthrough(
1222
+ graph=graph,
1223
+ onnx_tensor_infos=onnx_tensor_infos_for_validation,
1224
+ onnx_input_datas_for_validation=onnx_input_datas_for_validation,
1225
+ update_graph_shape=True,
1226
+ )
1151
1227
  except Exception as ex:
1152
1228
  warn(
1153
1229
  f'The optimization process for shape estimation is skipped ' +
1154
1230
  f'because it contains OPs that cannot be inferred by the standard onnxruntime.'
1155
1231
  )
1156
1232
  warn(f'{ex}')
1233
+ onnx_input_datas_for_validation = None
1157
1234
  additional_parameters['onnx_tensor_infos_for_validation'] = onnx_tensor_infos_for_validation
1158
1235
  additional_parameters['test_data_nhwc'] = test_data_nhwc
1159
1236
  additional_parameters['custom_input_op_name_np_data_path'] = custom_input_op_name_np_data_path
@@ -2061,6 +2138,7 @@ def convert(
2061
2138
  dummy_onnx_outputs = None
2062
2139
  try:
2063
2140
  # ONNX dummy inference
2141
+ onnx_input_datas_for_validation = {}
2064
2142
  dummy_onnx_outputs: List[np.ndarray] = \
2065
2143
  dummy_onnx_inference(
2066
2144
  onnx_graph=onnx_graph,
@@ -2072,6 +2150,7 @@ def convert(
2072
2150
  enable_ort_output_memmap=onnxruntime_output_memmap,
2073
2151
  ort_output_memmap_dir=onnxruntime_output_memmap_dir,
2074
2152
  shape_hints=shape_hints,
2153
+ input_datas_for_validation=onnx_input_datas_for_validation,
2075
2154
  )
2076
2155
  except Exception as ex:
2077
2156
  warn(
@@ -2081,6 +2160,7 @@ def convert(
2081
2160
  warn(f'{ex}')
2082
2161
  else:
2083
2162
  # TF dummy inference
2163
+ tf_input_datas_for_validation = {}
2084
2164
  tf_tensor_infos: Dict[Any] = \
2085
2165
  dummy_tf_inference(
2086
2166
  model=model,
@@ -2088,6 +2168,7 @@ def convert(
2088
2168
  test_data_nhwc=test_data_nhwc,
2089
2169
  custom_input_op_name_np_data_path=custom_input_op_name_np_data_path,
2090
2170
  shape_hints=shape_hints,
2171
+ input_datas_for_validation=tf_input_datas_for_validation,
2091
2172
  keep_shape_absolutely_input_names=keep_shape_absolutely_input_names,
2092
2173
  keep_ncw_or_nchw_or_ncdhw_input_names=keep_ncw_or_nchw_or_ncdhw_input_names,
2093
2174
  keep_nwc_or_nhwc_or_ndhwc_input_names=keep_nwc_or_nhwc_or_ndhwc_input_names,
@@ -2097,6 +2178,17 @@ def convert(
2097
2178
  output_name: dummy_onnx_output \
2098
2179
  for output_name, dummy_onnx_output in zip(ops_output_names, dummy_onnx_outputs)
2099
2180
  }
2181
+ apply_nonzero_passthrough(
2182
+ graph=graph,
2183
+ onnx_tensor_infos=onnx_tensor_infos,
2184
+ onnx_input_datas_for_validation=onnx_input_datas_for_validation,
2185
+ )
2186
+ apply_nonzero_passthrough_tf(
2187
+ graph=graph,
2188
+ tf_layers_dict=tf_layers_dict,
2189
+ tf_tensor_infos=tf_tensor_infos,
2190
+ tf_input_datas_for_validation=tf_input_datas_for_validation,
2191
+ )
2100
2192
  """
2101
2193
  np.allclose(
2102
2194
  dummy_onnx_outputs,
@@ -2326,6 +2418,7 @@ def convert(
2326
2418
  # Initial accuracy check
2327
2419
  try:
2328
2420
  # ONNX dummy inference
2421
+ onnx_input_datas_for_validation = {}
2329
2422
  dummy_onnx_outputs: List[np.ndarray] = \
2330
2423
  dummy_onnx_inference(
2331
2424
  onnx_graph=onnx_graph,
@@ -2337,9 +2430,11 @@ def convert(
2337
2430
  enable_ort_output_memmap=onnxruntime_output_memmap,
2338
2431
  ort_output_memmap_dir=onnxruntime_output_memmap_dir,
2339
2432
  shape_hints=shape_hints,
2433
+ input_datas_for_validation=onnx_input_datas_for_validation,
2340
2434
  )
2341
2435
 
2342
2436
  # TF dummy inference
2437
+ tf_input_datas_for_validation = {}
2343
2438
  tf_tensor_infos: Dict[Any] = \
2344
2439
  dummy_tf_inference(
2345
2440
  model=validation_model,
@@ -2347,6 +2442,7 @@ def convert(
2347
2442
  test_data_nhwc=test_data_nhwc,
2348
2443
  custom_input_op_name_np_data_path=custom_input_op_name_np_data_path,
2349
2444
  shape_hints=shape_hints,
2445
+ input_datas_for_validation=tf_input_datas_for_validation,
2350
2446
  keep_shape_absolutely_input_names=keep_shape_absolutely_input_names,
2351
2447
  keep_ncw_or_nchw_or_ncdhw_input_names=keep_ncw_or_nchw_or_ncdhw_input_names,
2352
2448
  keep_nwc_or_nhwc_or_ndhwc_input_names=keep_nwc_or_nhwc_or_ndhwc_input_names,
@@ -2357,6 +2453,17 @@ def convert(
2357
2453
  output_name: dummy_onnx_output \
2358
2454
  for output_name, dummy_onnx_output in zip(ops_output_names, dummy_onnx_outputs)
2359
2455
  }
2456
+ apply_nonzero_passthrough(
2457
+ graph=graph,
2458
+ onnx_tensor_infos=onnx_tensor_infos,
2459
+ onnx_input_datas_for_validation=onnx_input_datas_for_validation,
2460
+ )
2461
+ apply_nonzero_passthrough_tf(
2462
+ graph=graph,
2463
+ tf_layers_dict=tf_layers_dict,
2464
+ tf_tensor_infos=tf_tensor_infos,
2465
+ tf_input_datas_for_validation=tf_input_datas_for_validation,
2466
+ )
2360
2467
 
2361
2468
  input_names = [k.name for k in inputs]
2362
2469
  for k, v in tf_layers_dict.items():
@@ -370,6 +370,12 @@ def make_node(
370
370
  paddings=tf_pads,
371
371
  mode='CONSTANT',
372
372
  )
373
+ if input_tensor_shape is not None and len(input_tensor_shape) == spatial_size + 2:
374
+ # Preserve known batch/channel dims since dynamic paddings erase shape info.
375
+ padded_tensor = tf.ensure_shape(
376
+ padded_tensor,
377
+ [input_tensor_shape[0]] + [None] * spatial_size + [input_tensor_shape[-1]],
378
+ )
373
379
  else:
374
380
  if auto_pad == 'SAME_LOWER':
375
381
  # switch the order of pads
@@ -468,6 +474,49 @@ def make_node(
468
474
  print(error_msg)
469
475
  raise AssertionError(error_msg)
470
476
 
477
+ # Dynamic shape compensation for count_include_pad=False with explicit padding.
478
+ # Use pooled mask to compute valid element counts per window.
479
+ if not is_known_shape and is_explicit_padding and not count_include_pad:
480
+ mask = tf.ones_like(input_tensor, dtype=pooled_tensor.dtype)
481
+ if tf_pads is not None:
482
+ if tf.is_tensor(tf_pads):
483
+ mask = tf.pad(
484
+ tensor=mask,
485
+ paddings=tf_pads,
486
+ mode='CONSTANT',
487
+ )
488
+ elif tf_pads != [0] * spatial_size * 2:
489
+ mask = tf.pad(
490
+ tensor=mask,
491
+ paddings=tf_pads,
492
+ mode='CONSTANT',
493
+ )
494
+ if len(kernel_shape) == 1:
495
+ mask_pooled = AveragePooling1D(
496
+ pool_size=kernel_shape,
497
+ strides=strides,
498
+ padding=tf_pad_mode.upper(),
499
+ )(mask)
500
+ elif len(kernel_shape) == 2:
501
+ mask_pooled = AveragePooling2D(
502
+ pool_size=kernel_shape,
503
+ strides=strides,
504
+ padding=tf_pad_mode.upper(),
505
+ )(mask)
506
+ else:
507
+ mask_pooled = AveragePooling3D(
508
+ pool_size=kernel_shape,
509
+ strides=strides,
510
+ padding=tf_pad_mode.upper(),
511
+ )(mask)
512
+ kernel_volume = float(np.prod(kernel_shape))
513
+ count_valid = mask_pooled * tf.cast(kernel_volume, dtype=mask_pooled.dtype)
514
+ multiplier = tf.math.divide_no_nan(
515
+ tf.cast(kernel_volume, dtype=mask_pooled.dtype),
516
+ count_valid,
517
+ )
518
+ pooled_tensor = pooled_tensor * multiplier
519
+
471
520
  # tensorflow average pooling needs extra process to get same output with onnx
472
521
  # https://github.com/PINTO0309/onnx2tf/issues/124
473
522
  if average_multiplier is not None:
onnx2tf/ops/Expand.py CHANGED
@@ -48,6 +48,7 @@ def make_node(
48
48
  tf_layers_dict.get(graph_node.inputs[0].name, {}).get('before_op_output_shape_trans', True)
49
49
  before_op_output_shape_trans_2 = \
50
50
  tf_layers_dict.get(graph_node.inputs[1].name, {}).get('before_op_output_shape_trans', True)
51
+ # Data layout follows input[0]; shape vector (input[1]) should align to it.
51
52
  before_op_output_shape_trans = \
52
53
  before_op_output_shape_trans_1 \
53
54
  and before_op_output_shape_trans_2
@@ -58,7 +59,7 @@ def make_node(
58
59
  )
59
60
  graph_node_input_2 = get_constant_or_variable(
60
61
  graph_node.inputs[1],
61
- before_op_output_shape_trans,
62
+ before_op_output_shape_trans_1,
62
63
  )
63
64
  graph_node_output: gs.Variable = graph_node.outputs[0]
64
65
  shape = graph_node_output.shape
@@ -106,6 +107,16 @@ def make_node(
106
107
  **kwargs,
107
108
  )
108
109
 
110
+ # If shape is dynamic (Tensor) and input was transposed to NHWC/NWC/NDHWC,
111
+ # align the shape vector order to TensorFlow's layout.
112
+ if before_op_output_shape_trans_1 \
113
+ and tf.is_tensor(input_tensor_shape) \
114
+ and input_tensor_rank > 2:
115
+ shape_rank = input_tensor_shape.shape.rank
116
+ if shape_rank == 1 or shape_rank is None:
117
+ perm = [0] + list(range(2, input_tensor_rank)) + [1]
118
+ input_tensor_shape = tf.gather(input_tensor_shape, perm)
119
+
109
120
  tf_type = None
110
121
  if \
111
122
  (
onnx2tf/ops/Flatten.py CHANGED
@@ -1,6 +1,7 @@
1
1
  import random
2
2
  random.seed(0)
3
3
  import numpy as np
4
+ import itertools
4
5
  np.random.seed(0)
5
6
  import tensorflow as tf
6
7
  import tf_keras
@@ -13,6 +14,8 @@ from onnx2tf.utils.common_functions import (
13
14
  print_node_info,
14
15
  inverted_operation_enable_disable,
15
16
  make_tf_node_info,
17
+ dummy_tf_inference,
18
+ get_tf_model_inputs,
16
19
  pre_process_transpose,
17
20
  post_process_transpose,
18
21
  transpose_with_flexing_deterrence,
@@ -84,6 +87,109 @@ def make_node(
84
87
  **kwargs,
85
88
  )
86
89
 
90
+ # Param replacement
91
+ input_tensor = replace_parameter(
92
+ value_before_replacement=input_tensor,
93
+ param_target='inputs',
94
+ param_name=graph_node.inputs[0].name,
95
+ **kwargs,
96
+ )
97
+
98
+ # Pre-process transpose
99
+ input_tensor = pre_process_transpose(
100
+ value_before_transpose=input_tensor,
101
+ param_target='inputs',
102
+ param_name=graph_node.inputs[0].name,
103
+ **kwargs,
104
+ )
105
+
106
+ perm = [
107
+ convert_axis(
108
+ axis=idx,
109
+ tensor_rank=input_tensor_rank,
110
+ before_op_output_shape_trans=before_op_output_shape_trans,
111
+ ) for idx in range(input_tensor_rank)
112
+ ]
113
+
114
+ # Brute-force transpose to match ONNX dummy inference outputs when available.
115
+ onnx_tensor_infos_for_validation = kwargs.get('onnx_tensor_infos_for_validation', None)
116
+ test_data_nhwc: np.ndarray = kwargs.get('test_data_nhwc', None)
117
+ custom_input_op_name_np_data_path: str = kwargs.get('custom_input_op_name_np_data_path', None)
118
+ disable_strict_mode: bool = kwargs.get('disable_strict_mode', False)
119
+ if not disable_strict_mode \
120
+ and onnx_tensor_infos_for_validation is not None \
121
+ and onnx_tensor_infos_for_validation.get(graph_node_output.name, None) is not None:
122
+ validation_input = None
123
+ if isinstance(input_tensor, np.ndarray):
124
+ validation_input = input_tensor
125
+ elif hasattr(input_tensor, 'numpy'):
126
+ try:
127
+ validation_input = input_tensor.numpy()
128
+ except Exception:
129
+ validation_input = None
130
+ else:
131
+ try:
132
+ tf_model_inputs = get_tf_model_inputs(tf_layers_dict=tf_layers_dict)
133
+ val_model = tf_keras.Model(
134
+ inputs=tf_model_inputs,
135
+ outputs=[input_tensor],
136
+ )
137
+ tf_pre_tensor_infos = dummy_tf_inference(
138
+ model=val_model,
139
+ inputs=tf_model_inputs,
140
+ test_data_nhwc=test_data_nhwc,
141
+ custom_input_op_name_np_data_path=custom_input_op_name_np_data_path,
142
+ )
143
+ if len(tf_pre_tensor_infos) >= 1:
144
+ validation_input = list(tf_pre_tensor_infos.values())[0]
145
+ del val_model
146
+ except Exception:
147
+ validation_input = None
148
+ if validation_input is None:
149
+ onnx_input_name = graph_node.inputs[0].name
150
+ if onnx_tensor_infos_for_validation.get(onnx_input_name, None) is not None:
151
+ validation_input = onnx_tensor_infos_for_validation[onnx_input_name]
152
+
153
+ onnx_output = onnx_tensor_infos_for_validation.get(graph_node_output.name, None)
154
+ if validation_input is not None and onnx_output is not None:
155
+ rank = len(validation_input.shape)
156
+ if rank <= 6:
157
+ perm_candidates = itertools.permutations(range(rank))
158
+ else:
159
+ perm_candidates = [perm]
160
+
161
+ def _flatten_np(arr, axis):
162
+ if axis == 0:
163
+ return arr.reshape(1, -1)
164
+ if axis >= arr.ndim:
165
+ return arr.reshape(-1, 1)
166
+ return arr.reshape(
167
+ int(np.prod(arr.shape[:axis])),
168
+ int(np.prod(arr.shape[axis:])),
169
+ )
170
+
171
+ matched_perm = None
172
+ matched_axis = None
173
+ for cand in perm_candidates:
174
+ try:
175
+ cand_arr = np.transpose(validation_input, cand)
176
+ for axis_candidate in range(0, rank + 1):
177
+ cand_flat = _flatten_np(cand_arr, axis_candidate)
178
+ if cand_flat.shape != onnx_output.shape:
179
+ continue
180
+ if np.allclose(cand_flat, onnx_output, rtol=0.0, atol=0.0, equal_nan=True):
181
+ matched_perm = list(cand)
182
+ matched_axis = axis_candidate
183
+ break
184
+ if matched_perm is not None:
185
+ break
186
+ except Exception:
187
+ continue
188
+ if matched_perm is not None:
189
+ perm = matched_perm
190
+ if matched_axis is not None:
191
+ axis = matched_axis
192
+
87
193
  # Generation of TF OP
88
194
  cal_shape = None
89
195
  if axis == 0:
@@ -134,30 +240,6 @@ def make_node(
134
240
  has_str_outputshape = True in [True for dim in output_shape if isinstance(dim, str)]
135
241
  has_undefined_outputshape = has_none_outputshape or has_str_outputshape
136
242
  cal_shape = cal_shape if has_undefined_outputshape else output_shape
137
-
138
- # Param replacement
139
- input_tensor = replace_parameter(
140
- value_before_replacement=input_tensor,
141
- param_target='inputs',
142
- param_name=graph_node.inputs[0].name,
143
- **kwargs,
144
- )
145
-
146
- # Pre-process transpose
147
- input_tensor = pre_process_transpose(
148
- value_before_transpose=input_tensor,
149
- param_target='inputs',
150
- param_name=graph_node.inputs[0].name,
151
- **kwargs,
152
- )
153
-
154
- perm = [
155
- convert_axis(
156
- axis=idx,
157
- tensor_rank=input_tensor_rank,
158
- before_op_output_shape_trans=before_op_output_shape_trans,
159
- ) for idx in range(input_tensor_rank)
160
- ]
161
243
  input_tensor = transpose_with_flexing_deterrence(
162
244
  input_tensor=input_tensor,
163
245
  perm=list(perm) if perm is not None else None,
onnx2tf/ops/Slice.py CHANGED
@@ -434,7 +434,23 @@ def make_node(
434
434
  dtype=tf.int32,
435
435
  )
436
436
  if hasattr(begin_mask_, '_inferred_value') and begin_mask_._inferred_value == [None]:
437
- begin_mask_ = 0
437
+ axes_list = None
438
+ if axes is not None:
439
+ if isinstance(axes, (list, tuple)):
440
+ axes_list = list(axes)
441
+ elif isinstance(axes, np.ndarray):
442
+ axes_list = axes.tolist() if axes.ndim > 0 else [int(axes)]
443
+ elif tf.is_tensor(axes):
444
+ if hasattr(axes, 'numpy'):
445
+ axes_list = axes.numpy().tolist()
446
+ elif hasattr(axes, '_inferred_value') and axes._inferred_value not in (None, [None]):
447
+ axes_list = list(axes._inferred_value)
448
+ if axes_list is not None:
449
+ begin_mask_ = sum(
450
+ 1 << axis for axis in range(input_tensor_rank) if axis not in axes_list
451
+ )
452
+ else:
453
+ begin_mask_ = 0
438
454
 
439
455
  ##### end_mask
440
456
  end_bit_mask = tf.constant([2**idx for idx in range(input_tensor_rank)], dtype=tf.int32)
@@ -446,7 +462,23 @@ def make_node(
446
462
  dtype=tf.int32,
447
463
  )
448
464
  if hasattr(end_mask_, '_inferred_value') and end_mask_._inferred_value == [None]:
449
- end_mask_ = 0
465
+ axes_list = None
466
+ if axes is not None:
467
+ if isinstance(axes, (list, tuple)):
468
+ axes_list = list(axes)
469
+ elif isinstance(axes, np.ndarray):
470
+ axes_list = axes.tolist() if axes.ndim > 0 else [int(axes)]
471
+ elif tf.is_tensor(axes):
472
+ if hasattr(axes, 'numpy'):
473
+ axes_list = axes.numpy().tolist()
474
+ elif hasattr(axes, '_inferred_value') and axes._inferred_value not in (None, [None]):
475
+ axes_list = list(axes._inferred_value)
476
+ if axes_list is not None:
477
+ end_mask_ = sum(
478
+ 1 << axis for axis in range(input_tensor_rank) if axis not in axes_list
479
+ )
480
+ else:
481
+ end_mask_ = 0
450
482
 
451
483
  # strided_slice
452
484
  tf_layers_dict[graph_node_output.name]['tf_node'] = \
@@ -896,6 +896,19 @@ def explicit_broadcast(
896
896
  const_or_var_2: Any
897
897
  gs.Variable or np.ndarray
898
898
  """
899
+ def _tf_broadcastable(shape_a, shape_b):
900
+ if shape_a is None or shape_b is None:
901
+ return False
902
+ if len(shape_a) != len(shape_b):
903
+ return False
904
+ for dim_a, dim_b in zip(shape_a, shape_b):
905
+ if dim_a is None or dim_b is None:
906
+ continue
907
+ if dim_a == dim_b or dim_a == 1 or dim_b == 1:
908
+ continue
909
+ return False
910
+ return True
911
+
899
912
  graph_node_input_name1 = None
900
913
  graph_node_input_name2 = None
901
914
  graph_node_input_shape1 = []
@@ -928,6 +941,29 @@ def explicit_broadcast(
928
941
  if graph_node_input_shape1 is None or graph_node_input_shape2 is None:
929
942
  return const_or_var_1, const_or_var_2
930
943
 
944
+ # If one operand is 1D and matches the last dimension of the other operand,
945
+ # align it to the last axis to avoid unintended transpose.
946
+ if len(const_or_var_1.shape) == 1 and len(const_or_var_2.shape) > 1:
947
+ dim_1 = const_or_var_1.shape[0]
948
+ dim_2_last = const_or_var_2.shape[-1]
949
+ if isinstance(dim_1, int) and isinstance(dim_2_last, int) and dim_1 == dim_2_last:
950
+ target_shape = [1] * (len(const_or_var_2.shape) - 1) + [dim_1]
951
+ if isinstance(const_or_var_1, np.ndarray):
952
+ const_or_var_1 = const_or_var_1.reshape(target_shape)
953
+ else:
954
+ const_or_var_1 = tf.reshape(const_or_var_1, target_shape)
955
+ return const_or_var_1, const_or_var_2
956
+ if len(const_or_var_2.shape) == 1 and len(const_or_var_1.shape) > 1:
957
+ dim_2 = const_or_var_2.shape[0]
958
+ dim_1_last = const_or_var_1.shape[-1]
959
+ if isinstance(dim_2, int) and isinstance(dim_1_last, int) and dim_2 == dim_1_last:
960
+ target_shape = [1] * (len(const_or_var_1.shape) - 1) + [dim_2]
961
+ if isinstance(const_or_var_2, np.ndarray):
962
+ const_or_var_2 = const_or_var_2.reshape(target_shape)
963
+ else:
964
+ const_or_var_2 = tf.reshape(const_or_var_2, target_shape)
965
+ return const_or_var_1, const_or_var_2
966
+
931
967
  # If either operand have shape of all 1's, do not broadcast and return as is
932
968
  shape_for_judging_skip_processing_1 = [
933
969
  i if i is not None else INF_INDEX_VALUE for i in const_or_var_1.shape
@@ -2403,6 +2439,179 @@ def shape_unmatched_special_avoidance_workaround(
2403
2439
  return input_tensor_1, input_tensor_2
2404
2440
  except:
2405
2441
  pass
2442
+
2443
+ def _normalize_shape(shape):
2444
+ if shape is None:
2445
+ return None
2446
+ return [dim if isinstance(dim, int) else None for dim in shape]
2447
+
2448
+ def _broadcastable(shape_a, shape_b):
2449
+ if shape_a is None or shape_b is None:
2450
+ return False
2451
+ if len(shape_a) != len(shape_b):
2452
+ return False
2453
+ for dim_a, dim_b in zip(shape_a[::-1], shape_b[::-1]):
2454
+ if dim_a is None or dim_b is None:
2455
+ continue
2456
+ if dim_a != dim_b and dim_a != 1 and dim_b != 1:
2457
+ return False
2458
+ return True
2459
+
2460
+ def _match_score(shape_a, shape_b):
2461
+ score = 0
2462
+ for dim_a, dim_b in zip(shape_a, shape_b):
2463
+ if dim_a is None or dim_b is None:
2464
+ continue
2465
+ if dim_a == dim_b:
2466
+ score += 1
2467
+ return score
2468
+
2469
+ def _shape_matches(shape_a, shape_b):
2470
+ if shape_a is None or shape_b is None:
2471
+ return False
2472
+ if len(shape_a) != len(shape_b):
2473
+ return False
2474
+ for dim_a, dim_b in zip(shape_a, shape_b):
2475
+ if dim_a is None or dim_b is None:
2476
+ continue
2477
+ if dim_a != dim_b:
2478
+ return False
2479
+ return True
2480
+
2481
+ # Generic layout-alignment for channel-first/last in 3D/4D/5D.
2482
+ # Try a small set of canonical perms and apply the best one if it makes broadcasting possible.
2483
+ try:
2484
+ if hasattr(input_tensor_1, "shape") and hasattr(input_tensor_2, "shape"):
2485
+ input_shape_1 = _normalize_shape(input_tensor_1.shape)
2486
+ input_shape_2 = _normalize_shape(input_tensor_2.shape)
2487
+ if input_shape_1 is not None and input_shape_2 is not None \
2488
+ and len(input_shape_1) == len(input_shape_2) \
2489
+ and len(input_shape_1) in (3, 4, 5):
2490
+ if not _broadcastable(input_shape_1, input_shape_2):
2491
+ rank = len(input_shape_1)
2492
+ perm_cf2cl = [0] + list(range(2, rank)) + [1]
2493
+ perm_cl2cf = [0, rank - 1] + list(range(1, rank - 1))
2494
+ perms = []
2495
+ if perm_cf2cl != list(range(rank)):
2496
+ perms.append(perm_cf2cl)
2497
+ if perm_cl2cf != list(range(rank)) and perm_cl2cf != perm_cf2cl:
2498
+ perms.append(perm_cl2cf)
2499
+
2500
+ onnx_shape_1 = _normalize_shape(
2501
+ graph_node_input_1.shape if hasattr(graph_node_input_1, "shape") else None
2502
+ )
2503
+ onnx_shape_2 = _normalize_shape(
2504
+ graph_node_input_2.shape if hasattr(graph_node_input_2, "shape") else None
2505
+ )
2506
+
2507
+ candidates = []
2508
+ for idx, (shape, other_shape) in enumerate(
2509
+ [(input_shape_1, input_shape_2), (input_shape_2, input_shape_1)]
2510
+ ):
2511
+ for perm in perms:
2512
+ permuted = [shape[p] for p in perm]
2513
+ if _broadcastable(permuted, other_shape):
2514
+ score = _match_score(permuted, other_shape)
2515
+ # Prefer transposing the input whose ONNX shape matches current layout.
2516
+ if idx == 0 and _shape_matches(onnx_shape_1, shape):
2517
+ score += 2
2518
+ if idx == 1 and _shape_matches(onnx_shape_2, shape):
2519
+ score += 2
2520
+ candidates.append((score, idx, perm))
2521
+
2522
+ if candidates:
2523
+ candidates.sort(reverse=True)
2524
+ best_score, best_idx, best_perm = candidates[0]
2525
+ # Avoid ambiguous ties.
2526
+ if len(candidates) == 1 or best_score > candidates[1][0]:
2527
+ if best_idx == 0:
2528
+ input_tensor_1 = \
2529
+ transpose_with_flexing_deterrence(
2530
+ input_tensor=input_tensor_1,
2531
+ perm=best_perm,
2532
+ **kwargs,
2533
+ )
2534
+ else:
2535
+ input_tensor_2 = \
2536
+ transpose_with_flexing_deterrence(
2537
+ input_tensor=input_tensor_2,
2538
+ perm=best_perm,
2539
+ **kwargs,
2540
+ )
2541
+ except Exception:
2542
+ pass
2543
+
2544
+ # Heuristic for 3D tensors where one input is (N,1,C) and the other is (N,C,W).
2545
+ # Align by transposing the (N,C,W) tensor to (N,W,C).
2546
+ try:
2547
+ if hasattr(input_tensor_1, "shape") and hasattr(input_tensor_2, "shape"):
2548
+ s1 = list(input_tensor_1.shape)
2549
+ s2 = list(input_tensor_2.shape)
2550
+ if len(s1) == len(s2) == 3:
2551
+ # Normalize unknown dims to None
2552
+ s1 = [dim if isinstance(dim, int) else None for dim in s1]
2553
+ s2 = [dim if isinstance(dim, int) else None for dim in s2]
2554
+ if s1[1] == 1 and s1[2] is not None and s2[1] == s1[2]:
2555
+ input_tensor_2 = \
2556
+ transpose_with_flexing_deterrence(
2557
+ input_tensor=input_tensor_2,
2558
+ perm=[0, 2, 1],
2559
+ **kwargs,
2560
+ )
2561
+ elif s2[1] == 1 and s2[2] is not None and s1[1] == s2[2]:
2562
+ input_tensor_1 = \
2563
+ transpose_with_flexing_deterrence(
2564
+ input_tensor=input_tensor_1,
2565
+ perm=[0, 2, 1],
2566
+ **kwargs,
2567
+ )
2568
+ except Exception:
2569
+ pass
2570
+
2571
+ # Layout mismatch mitigation based on ONNX shapes:
2572
+ # If one input matches ONNX layout and the other matches the transposed layout,
2573
+ # transpose the ONNX-layout input to align with the transposed one.
2574
+ try:
2575
+ if hasattr(input_tensor_1, "shape") and hasattr(input_tensor_2, "shape"):
2576
+ input_shape_1 = list(input_tensor_1.shape)
2577
+ input_shape_2 = list(input_tensor_2.shape)
2578
+ if len(input_shape_1) == len(input_shape_2) and len(input_shape_1) in (3, 4, 5):
2579
+ onnx_shape_1 = None
2580
+ onnx_shape_2 = None
2581
+ if hasattr(graph_node_input_1, "shape") and graph_node_input_1.shape is not None:
2582
+ onnx_shape_1 = [
2583
+ dim if not isinstance(dim, str) else None for dim in graph_node_input_1.shape
2584
+ ]
2585
+ if hasattr(graph_node_input_2, "shape") and graph_node_input_2.shape is not None:
2586
+ onnx_shape_2 = [
2587
+ dim if not isinstance(dim, str) else None for dim in graph_node_input_2.shape
2588
+ ]
2589
+ if onnx_shape_1 is not None and onnx_shape_2 is not None:
2590
+ perm = [0] + list(range(2, len(input_shape_1))) + [1]
2591
+ permuted_onnx_shape_1 = [onnx_shape_1[p] for p in perm]
2592
+ permuted_onnx_shape_2 = [onnx_shape_2[p] for p in perm]
2593
+
2594
+ in1_matches_onnx = _shape_matches(input_shape_1, onnx_shape_1)
2595
+ in1_matches_perm = _shape_matches(input_shape_1, permuted_onnx_shape_1)
2596
+ in2_matches_onnx = _shape_matches(input_shape_2, onnx_shape_2)
2597
+ in2_matches_perm = _shape_matches(input_shape_2, permuted_onnx_shape_2)
2598
+
2599
+ if in1_matches_perm and in2_matches_onnx and not in2_matches_perm:
2600
+ input_tensor_2 = \
2601
+ transpose_with_flexing_deterrence(
2602
+ input_tensor=input_tensor_2,
2603
+ perm=perm,
2604
+ **kwargs,
2605
+ )
2606
+ elif in2_matches_perm and in1_matches_onnx and not in1_matches_perm:
2607
+ input_tensor_1 = \
2608
+ transpose_with_flexing_deterrence(
2609
+ input_tensor=input_tensor_1,
2610
+ perm=perm,
2611
+ **kwargs,
2612
+ )
2613
+ except Exception:
2614
+ pass
2406
2615
  # At least one True value for same_input_shape_as_onnx
2407
2616
  # At least one True value in nhwc_flags
2408
2617
  # same_input_shape_as_onnx == True and nhwc_flags == False and 3D or 4D or 5D tensor is NHWC transposed
@@ -3642,6 +3851,7 @@ def dummy_onnx_inference(
3642
3851
  enable_ort_output_memmap: bool = False,
3643
3852
  ort_output_memmap_dir: Optional[str] = None,
3644
3853
  shape_hints: Optional[List[str]] = None,
3854
+ input_datas_for_validation: Optional[Dict[str, np.ndarray]] = None,
3645
3855
  ) -> List[np.ndarray]:
3646
3856
  """Perform inference on ONNX subgraphs with an all-1 dummy tensor.
3647
3857
 
@@ -3678,6 +3888,9 @@ def dummy_onnx_inference(
3678
3888
  Directory to store memmap files. If not specified, a temporary
3679
3889
  directory is created and removed on exit.
3680
3890
 
3891
+ input_datas_for_validation: Optional[Dict[str, np.ndarray]]
3892
+ Optional dict to be filled with the input tensors used for inference.
3893
+
3681
3894
  Returns
3682
3895
  ----------
3683
3896
  outputs: List[np.ndarray]
@@ -3873,6 +4086,9 @@ def dummy_onnx_inference(
3873
4086
  perm=[0,3,1,2],
3874
4087
  ).numpy().astype(input_dtype)
3875
4088
 
4089
+ if input_datas_for_validation is not None:
4090
+ input_datas_for_validation.update(input_datas)
4091
+
3876
4092
  dtype_sizes = {
3877
4093
  np.dtype('float16'): 2,
3878
4094
  np.dtype('float32'): 4,
@@ -4014,6 +4230,7 @@ def dummy_tf_inference(
4014
4230
  verification_datas: Optional[List[np.ndarray]] = None,
4015
4231
  custom_input_op_name_np_data_path: Optional[str] = None,
4016
4232
  shape_hints: Optional[List[str]] = None,
4233
+ input_datas_for_validation: Optional[Dict[str, np.ndarray]] = None,
4017
4234
  keep_shape_absolutely_input_names: Optional[List[str]] = None,
4018
4235
  keep_ncw_or_nchw_or_ncdhw_input_names: Optional[List[str]] = None,
4019
4236
  keep_nwc_or_nhwc_or_ndhwc_input_names: Optional[List[str]] = None,
@@ -4036,6 +4253,8 @@ def dummy_tf_inference(
4036
4253
 
4037
4254
  custom_input_op_name_np_data_path
4038
4255
  Path to Numpy file for custom data used for dummy inference
4256
+ input_datas_for_validation: Optional[Dict[str, np.ndarray]]
4257
+ Optional dict to be filled with the input tensors used for inference.
4039
4258
 
4040
4259
  Returns
4041
4260
  ----------
@@ -4174,6 +4393,10 @@ def dummy_tf_inference(
4174
4393
  input_size,
4175
4394
  dtype=TF_DTYPES_TO_NUMPY_DTYPES[input_dtype],
4176
4395
  )
4396
+
4397
+ if input_datas_for_validation is not None:
4398
+ input_datas_for_validation.update(input_datas)
4399
+
4177
4400
  outputs = model(
4178
4401
  inputs={
4179
4402
  input.name: input_datas[input.name] for input in inputs
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: onnx2tf
3
- Version: 1.29.12
3
+ Version: 1.29.14
4
4
  Summary: Self-Created Tools to convert ONNX files (NCHW) to TensorFlow/TFLite/Keras format (NHWC). The purpose of this tool is to solve the massive Transpose extrapolation problem in onnx-tensorflow (onnx-tf).
5
5
  Keywords: onnx,tensorflow,tflite,keras,deep-learning,machine-learning
6
6
  Author: Katsuya Hyodo
@@ -13,6 +13,7 @@ Classifier: License :: OSI Approved :: MIT License
13
13
  Classifier: Operating System :: POSIX :: Linux
14
14
  Classifier: Operating System :: Unix
15
15
  Classifier: Programming Language :: Python :: 3
16
+ Classifier: Programming Language :: Python :: 3.10
16
17
  Classifier: Programming Language :: Python :: 3.11
17
18
  Classifier: Topic :: Scientific/Engineering :: Artificial Intelligence
18
19
  Requires-Dist: requests==2.32.5
@@ -363,7 +364,7 @@ Video speed is adjusted approximately 50 times slower than actual speed.
363
364
  docker run --rm -it \
364
365
  -v `pwd`:/workdir \
365
366
  -w /workdir \
366
- ghcr.io/pinto0309/onnx2tf:1.29.12
367
+ ghcr.io/pinto0309/onnx2tf:1.29.14
367
368
 
368
369
  or
369
370
 
@@ -371,7 +372,7 @@ Video speed is adjusted approximately 50 times slower than actual speed.
371
372
  docker run --rm -it \
372
373
  -v `pwd`:/workdir \
373
374
  -w /workdir \
374
- docker.io/pinto0309/onnx2tf:1.29.12
375
+ docker.io/pinto0309/onnx2tf:1.29.14
375
376
 
376
377
  or
377
378
 
@@ -1,6 +1,6 @@
1
- onnx2tf/__init__.py,sha256=89EgFjqomm_s1GTO1Is-NN_4IBNeGFXu31Zcmotmbes,67
1
+ onnx2tf/__init__.py,sha256=8dbSscURHL1ncvasA8yz2hU36oshMnPpVm9IcPYu_Vc,67
2
2
  onnx2tf/__main__.py,sha256=2RSCQ7d4lc6CwD-rlGn9UicPFg-P5du7ZD_yh-kuBEU,57
3
- onnx2tf/onnx2tf.py,sha256=yR8aKaEn01Q8dEeYDqHIsuZuG6l5TGQniHDlPiUROx4,152238
3
+ onnx2tf/onnx2tf.py,sha256=O3B_ME8omswggw4xtjxxnC8_uaPHH3Ly8dwSv7w75no,157060
4
4
  onnx2tf/ops/Abs.py,sha256=V7btmCG_ZvK_qJovUsguq0ZMJ349mhNQ4FHSgzP_Yuo,4029
5
5
  onnx2tf/ops/Acos.py,sha256=Fo8YkFKuWq8Fi2xUrBdKcAH1yJ8r5pjSD0wgLttTNdk,4003
6
6
  onnx2tf/ops/Acosh.py,sha256=ATQj2cT5JS_mTfXi0kXqJ1yzSZu5J0zHA5VjV3j7uKY,3588
@@ -14,7 +14,7 @@ onnx2tf/ops/Asinh.py,sha256=74ZzTEkpxZY4CGfJT2JJU-SHXYL5KZeUkWY2v7hsMMw,3588
14
14
  onnx2tf/ops/Atan.py,sha256=D24XDMxEwXFtJheQAr3V3IWOUOc6Q5M0-b_83bmGGMM,3981
15
15
  onnx2tf/ops/Atanh.py,sha256=VsUYopBWWPoo4gta1_aqvUL6NrVXuVkGid4SqDqYJ9Q,3588
16
16
  onnx2tf/ops/Attention.py,sha256=7TMOdPztVLtNKSzeozvaRxhUFVhACci8wvhn7ONKWrQ,21006
17
- onnx2tf/ops/AveragePool.py,sha256=kifQJZplqC2Px209BotbjXCPpRBQQsB8DlJYJTvJD78,20065
17
+ onnx2tf/ops/AveragePool.py,sha256=3pf-DKS76aU1BR8jafOBbfpzkNWop9cHQSZVQjbecdY,22144
18
18
  onnx2tf/ops/BatchNormalization.py,sha256=_hlf2-5-j3MCJHEoE2oMNQ8YhCm7ad9h2fwPpTo3i7g,26624
19
19
  onnx2tf/ops/Bernoulli.py,sha256=PM0xS0n1q4bnT_9PnbcKW8_Qj8dJYYBQR8kb2X-wIp4,3670
20
20
  onnx2tf/ops/BitShift.py,sha256=a28_E9hwA8yfjvtsrSKCZCeeMPB5RBQbjB3cmaNGN6k,3861
@@ -51,9 +51,9 @@ onnx2tf/ops/Elu.py,sha256=VDd5cKc1h-8nd0bVwWR_CkgfomrBl4NMbjRtAvkoNks,4025
51
51
  onnx2tf/ops/Equal.py,sha256=ni0gf7nJex8S-oG61bnHc_xn8LuMits3gM6IzGNT65w,4579
52
52
  onnx2tf/ops/Erf.py,sha256=ayvSp8Pr9h-VYuIiMorwOC0r9aQ4i4S1Uvaho9R6PYo,4962
53
53
  onnx2tf/ops/Exp.py,sha256=MM_Osse7UbJgld2u0fGMcjniJCs40uDztuOodVUqWMU,3583
54
- onnx2tf/ops/Expand.py,sha256=MGsby7IhTqKv1K-1INQPHcI5l3Wx-jjJ1FnulpCZsag,14761
54
+ onnx2tf/ops/Expand.py,sha256=u_LrCaWqb-Pdz2F8yWJUFx-E_SNE888pPmHP4-HGx2M,15339
55
55
  onnx2tf/ops/EyeLike.py,sha256=VHRlr_WpIGVpZSqfjN7zWQF6XT2KjNVJnjVccxB4P6U,5877
56
- onnx2tf/ops/Flatten.py,sha256=q5mhKynr3-HVEVih-vcFiFj26Whqi0WSSNn6ckdr0Ac,6556
56
+ onnx2tf/ops/Flatten.py,sha256=RZZJF8RnZaUf_jCEdTgLppPa6FoeM7BLxHrIkHv1t5c,10292
57
57
  onnx2tf/ops/Floor.py,sha256=8izJrNmw8wNmjF_YabIpLs4jm82J-gKcyAQbwV7Yqpc,3589
58
58
  onnx2tf/ops/FusedConv.py,sha256=gslI50V3yvt4l0mmodnyHFAu0cORx1J_ZL5cE0rZ8qs,4523
59
59
  onnx2tf/ops/GRU.py,sha256=kBHiZlhlPIV2DQCoFYFHxCTwOATeguJy1MSfj2kxqDM,30732
@@ -168,7 +168,7 @@ onnx2tf/ops/Sign.py,sha256=rJNyo_YTLO5x4yoF_Z_wpaIX4dSOL-vdmKH0SbVDwJc,3585
168
168
  onnx2tf/ops/Sin.py,sha256=jrv76uQPIfB7UdLGf42MOlRUPM6fQ3GR6BvSybpptFo,3608
169
169
  onnx2tf/ops/Sinh.py,sha256=9zXIQWcZiZmu3RnQuQpW-PEgBLOKY51SY0OBu1B5eh8,3706
170
170
  onnx2tf/ops/Size.py,sha256=vFD5eae9Jko3tHbBtydj2d3T3tbb4r0xua7OIH40p9M,2665
171
- onnx2tf/ops/Slice.py,sha256=6V1r1Dugra5qhrByHH6aDf_0KfrPSpwJYkxTGO7H44M,25046
171
+ onnx2tf/ops/Slice.py,sha256=ChqpC_l-c32aZzI7o2GP7SyRz142Gwo0ctc75nkXFvE,26788
172
172
  onnx2tf/ops/Softmax.py,sha256=CEnHcSm25v1QC4QVDg4fz1NooYY1v-Uq4GORd8dnnr8,14773
173
173
  onnx2tf/ops/Softplus.py,sha256=R44YMo8G2Ig15jBO6T2VOI6RhpUmjD70qvSCXFylU-Q,3605
174
174
  onnx2tf/ops/Softsign.py,sha256=2ZdKH3KVHZXDzyO7S8f-O_aqRugurbRxd1i2g_fwCos,3600
@@ -194,12 +194,12 @@ onnx2tf/ops/Where.py,sha256=MaCcY9g4mKZQqCgh4xtoylicP-xVu9f4boKiu_q9Ow8,7711
194
194
  onnx2tf/ops/Xor.py,sha256=2ceqxHSI1Wtez_CIh8gFfvcu45Xboqfyp1iy3v2vuIs,4590
195
195
  onnx2tf/ops/__init__.py,sha256=jnmUWWa-3dHzBZV9bmPzXu6eoz2dumJTzO7i8JdcgSM,25
196
196
  onnx2tf/utils/__init__.py,sha256=E9FM9He68VIASDnYp-OrxvHFVn55GzWqw2OEkCqn1zg,27
197
- onnx2tf/utils/common_functions.py,sha256=TWb_e6i2MjB7C4eh1FWHTIDVlr6-7NgSNcCKwKGhGg8,249765
197
+ onnx2tf/utils/common_functions.py,sha256=j8bRC3RK5NlNAV9vwxj38DwDaaCLR2iprRdDjBgv_RA,260619
198
198
  onnx2tf/utils/enums.py,sha256=7c5TqetqB07VjyHoxJHfLgtqBqk9ZRyUF33fPOJR1IM,1649
199
199
  onnx2tf/utils/iterative_json_optimizer.py,sha256=qqeIxWGxrhcCYk8-ebWnblnOkzDCwi-nseipHzHR_bk,10436
200
200
  onnx2tf/utils/json_auto_generator.py,sha256=OC-SfKtUg7zUxaXTAg6kT0ShzIc3ByjDa3FNp173DtA,60302
201
201
  onnx2tf/utils/logging.py,sha256=yUCmPuJ_XiUItM3sZMcaMO24JErkQy7zZwVTYWAuiKg,1982
202
- onnx2tf-1.29.12.dist-info/WHEEL,sha256=e_m4S054HL0hyR3CpOk-b7Q7fDX6BuFkgL5OjAExXas,80
203
- onnx2tf-1.29.12.dist-info/entry_points.txt,sha256=GuhvLu7ZlYECumbmoiFlKX0mFPtFi_Ti9L-E5yuQqKs,42
204
- onnx2tf-1.29.12.dist-info/METADATA,sha256=Ddf7-_nYlEjEOlH3taykx6G5ULbARSgF7cuFlj7HD_0,154193
205
- onnx2tf-1.29.12.dist-info/RECORD,,
202
+ onnx2tf-1.29.14.dist-info/WHEEL,sha256=e_m4S054HL0hyR3CpOk-b7Q7fDX6BuFkgL5OjAExXas,80
203
+ onnx2tf-1.29.14.dist-info/entry_points.txt,sha256=GuhvLu7ZlYECumbmoiFlKX0mFPtFi_Ti9L-E5yuQqKs,42
204
+ onnx2tf-1.29.14.dist-info/METADATA,sha256=TT-jjFuqKAE7Tyt9Crx-og515ebykFCODKhYQ-8T-x0,154244
205
+ onnx2tf-1.29.14.dist-info/RECORD,,