onnx2tf 1.27.0__py3-none-any.whl → 1.27.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- onnx2tf/__init__.py +1 -1
- onnx2tf/ops/Add.py +2 -2
- onnx2tf/ops/Cast.py +7 -1
- onnx2tf/ops/Div.py +2 -2
- onnx2tf/ops/MatMul.py +6 -0
- onnx2tf/ops/Mod.py +2 -2
- onnx2tf/ops/Mul.py +2 -2
- onnx2tf/ops/Split.py +42 -1
- onnx2tf/ops/Sub.py +2 -2
- {onnx2tf-1.27.0.dist-info → onnx2tf-1.27.2.dist-info}/METADATA +8 -7
- {onnx2tf-1.27.0.dist-info → onnx2tf-1.27.2.dist-info}/RECORD +16 -16
- {onnx2tf-1.27.0.dist-info → onnx2tf-1.27.2.dist-info}/WHEEL +1 -1
- {onnx2tf-1.27.0.dist-info → onnx2tf-1.27.2.dist-info}/entry_points.txt +0 -0
- {onnx2tf-1.27.0.dist-info → onnx2tf-1.27.2.dist-info/licenses}/LICENSE +0 -0
- {onnx2tf-1.27.0.dist-info → onnx2tf-1.27.2.dist-info/licenses}/LICENSE_onnx-tensorflow +0 -0
- {onnx2tf-1.27.0.dist-info → onnx2tf-1.27.2.dist-info}/top_level.txt +0 -0
onnx2tf/__init__.py
CHANGED
onnx2tf/ops/Add.py
CHANGED
|
@@ -130,9 +130,9 @@ def make_node(
|
|
|
130
130
|
)
|
|
131
131
|
|
|
132
132
|
# Workaround for ConvInteger
|
|
133
|
-
if input_tensor_1.dtype == tf.float32 and input_tensor_2.dtype in [tf.int32, tf.int64]:
|
|
133
|
+
if input_tensor_1.dtype == tf.float32 and input_tensor_2.dtype in [tf.int32, tf.int64, tf.float16]:
|
|
134
134
|
input_tensor_2 = tf.cast(input_tensor_2, dtype=tf.float32)
|
|
135
|
-
elif input_tensor_1.dtype in [tf.int32, tf.int64] and input_tensor_2.dtype == tf.float32:
|
|
135
|
+
elif input_tensor_1.dtype in [tf.int32, tf.int64, tf.float16] and input_tensor_2.dtype == tf.float32:
|
|
136
136
|
input_tensor_1 = tf.cast(input_tensor_1, dtype=tf.float32)
|
|
137
137
|
|
|
138
138
|
# Disable unnecessary Transpose
|
onnx2tf/ops/Cast.py
CHANGED
|
@@ -96,10 +96,16 @@ def make_node(
|
|
|
96
96
|
tf_layers_dict[graph_node_output.name].pop('nhwc')
|
|
97
97
|
|
|
98
98
|
# Suppression of FlexCast generation
|
|
99
|
-
#
|
|
99
|
+
# Float64 -> Float32
|
|
100
|
+
# Float16 -> Float32
|
|
100
101
|
if input_tensor.dtype == tf.float32 \
|
|
101
102
|
and to == tf.float64:
|
|
102
103
|
to = tf.float32
|
|
104
|
+
elif isinstance(graph_node.inputs[0], gs.Variable) \
|
|
105
|
+
and hasattr(graph_node.inputs[0], "dtype") \
|
|
106
|
+
and graph_node.inputs[0].dtype == np.float32 \
|
|
107
|
+
and to == tf.float16:
|
|
108
|
+
to = tf.float32
|
|
103
109
|
|
|
104
110
|
# Generation of TF OP
|
|
105
111
|
tf_layers_dict[graph_node_output.name]['tf_node'] = \
|
onnx2tf/ops/Div.py
CHANGED
|
@@ -116,9 +116,9 @@ def make_node(
|
|
|
116
116
|
)
|
|
117
117
|
|
|
118
118
|
# Workaround for ConvInteger
|
|
119
|
-
if input_tensor_1.dtype == tf.float32 and input_tensor_2.dtype in [tf.int32, tf.int64]:
|
|
119
|
+
if input_tensor_1.dtype == tf.float32 and input_tensor_2.dtype in [tf.int32, tf.int64, tf.float16]:
|
|
120
120
|
input_tensor_2 = tf.cast(input_tensor_2, dtype=tf.float32)
|
|
121
|
-
elif input_tensor_1.dtype in [tf.int32, tf.int64] and input_tensor_2.dtype == tf.float32:
|
|
121
|
+
elif input_tensor_1.dtype in [tf.int32, tf.int64, tf.float16] and input_tensor_2.dtype == tf.float32:
|
|
122
122
|
input_tensor_1 = tf.cast(input_tensor_1, dtype=tf.float32)
|
|
123
123
|
|
|
124
124
|
# Disable unnecessary Transpose
|
onnx2tf/ops/MatMul.py
CHANGED
|
@@ -128,6 +128,12 @@ def make_node(
|
|
|
128
128
|
output_dtype = NUMPY_DTYPES_TO_TF_DTYPES[dtype] \
|
|
129
129
|
if isinstance(dtype, np.dtype) else dtype
|
|
130
130
|
|
|
131
|
+
# Workaround for Float16
|
|
132
|
+
if input_tensor_1.dtype == tf.float32 and output_dtype in [tf.int32, tf.int64, tf.float16]:
|
|
133
|
+
output_dtype = tf.float32
|
|
134
|
+
elif output_dtype and input_tensor_2.dtype == tf.float32:
|
|
135
|
+
output_dtype = tf.float32
|
|
136
|
+
|
|
131
137
|
# Shape Unmatch Error Mitigation Measures
|
|
132
138
|
# Search for and transpose shapes that do not cause shape unmatch errors
|
|
133
139
|
min_abs_err = sys.maxsize
|
onnx2tf/ops/Mod.py
CHANGED
|
@@ -115,9 +115,9 @@ def make_node(
|
|
|
115
115
|
)
|
|
116
116
|
|
|
117
117
|
# Workaround for ConvInteger
|
|
118
|
-
if input_tensor_1.dtype == tf.float32 and input_tensor_2.dtype in [tf.int32, tf.int64]:
|
|
118
|
+
if input_tensor_1.dtype == tf.float32 and input_tensor_2.dtype in [tf.int32, tf.int64, tf.float16]:
|
|
119
119
|
input_tensor_2 = tf.cast(input_tensor_2, dtype=tf.float32)
|
|
120
|
-
elif input_tensor_1.dtype in [tf.int32, tf.int64] and input_tensor_2.dtype == tf.float32:
|
|
120
|
+
elif input_tensor_1.dtype in [tf.int32, tf.int64, tf.float16] and input_tensor_2.dtype == tf.float32:
|
|
121
121
|
input_tensor_1 = tf.cast(input_tensor_1, dtype=tf.float32)
|
|
122
122
|
|
|
123
123
|
# Disable unnecessary Transpose
|
onnx2tf/ops/Mul.py
CHANGED
|
@@ -120,9 +120,9 @@ def make_node(
|
|
|
120
120
|
)
|
|
121
121
|
|
|
122
122
|
# Workaround for ConvInteger
|
|
123
|
-
if input_tensor_1.dtype == tf.float32 and input_tensor_2.dtype in [tf.int32, tf.int64]:
|
|
123
|
+
if input_tensor_1.dtype == tf.float32 and input_tensor_2.dtype in [tf.int32, tf.int64, tf.float16]:
|
|
124
124
|
input_tensor_2 = tf.cast(input_tensor_2, dtype=tf.float32)
|
|
125
|
-
elif input_tensor_1.dtype in [tf.int32, tf.int64] and input_tensor_2.dtype == tf.float32:
|
|
125
|
+
elif input_tensor_1.dtype in [tf.int32, tf.int64, tf.float16] and input_tensor_2.dtype == tf.float32:
|
|
126
126
|
input_tensor_1 = tf.cast(input_tensor_1, dtype=tf.float32)
|
|
127
127
|
|
|
128
128
|
# Disable unnecessary Transpose
|
onnx2tf/ops/Split.py
CHANGED
|
@@ -158,15 +158,56 @@ def make_node(
|
|
|
158
158
|
if idx == axis:
|
|
159
159
|
end_.append(split_idx + 1)
|
|
160
160
|
elif input_tensor_shape[idx] is None:
|
|
161
|
-
end_.append(
|
|
161
|
+
end_.append(0)
|
|
162
162
|
else:
|
|
163
163
|
end_.append(input_tensor_shape[idx])
|
|
164
164
|
|
|
165
|
+
begin_mask_ = np.sum([2**idx if idx != axis else 0 for idx in range(input_tensor_rank)])
|
|
166
|
+
end_mask_ = np.sum([2**idx if idx != axis else 0 for idx in range(input_tensor_rank)])
|
|
167
|
+
|
|
165
168
|
splited_tensors.append(
|
|
166
169
|
tf.strided_slice(
|
|
167
170
|
input_=input_tensor,
|
|
168
171
|
begin=begin_,
|
|
169
172
|
end=end_,
|
|
173
|
+
begin_mask=begin_mask_,
|
|
174
|
+
end_mask=end_mask_,
|
|
175
|
+
)
|
|
176
|
+
)
|
|
177
|
+
elif isinstance(split, np.ndarray) \
|
|
178
|
+
and len(list(split)) > 1 \
|
|
179
|
+
and np.prod(split) != 1 \
|
|
180
|
+
and np.all(split == split[0]) \
|
|
181
|
+
and isinstance(input_tensor_shape[axis], int) \
|
|
182
|
+
and input_tensor_shape[axis] == np.sum(split):
|
|
183
|
+
# strided_slice - Slice everything in same size
|
|
184
|
+
# Suppression of FlexSplitV generation
|
|
185
|
+
# https://github.com/PINTO0309/onnx2tf/issues/751
|
|
186
|
+
splited_tensors = []
|
|
187
|
+
split_size = split[0]
|
|
188
|
+
for split_idx in range(len(list(split))):
|
|
189
|
+
begin_ = [
|
|
190
|
+
split_size * split_idx if idx == axis else 0 for idx in range(input_tensor_rank)
|
|
191
|
+
]
|
|
192
|
+
end_ = []
|
|
193
|
+
for idx in range(input_tensor_rank):
|
|
194
|
+
if idx == axis:
|
|
195
|
+
end_.append(split_size * split_idx + split_size)
|
|
196
|
+
elif input_tensor_shape[idx] is None:
|
|
197
|
+
end_.append(0)
|
|
198
|
+
else:
|
|
199
|
+
end_.append(input_tensor_shape[idx])
|
|
200
|
+
|
|
201
|
+
begin_mask_ = np.sum([2**idx if idx != axis else 0 for idx in range(input_tensor_rank)])
|
|
202
|
+
end_mask_ = np.sum([2**idx if idx != axis else 0 for idx in range(input_tensor_rank)])
|
|
203
|
+
|
|
204
|
+
splited_tensors.append(
|
|
205
|
+
tf.strided_slice(
|
|
206
|
+
input_=input_tensor,
|
|
207
|
+
begin=begin_,
|
|
208
|
+
end=end_,
|
|
209
|
+
begin_mask=begin_mask_,
|
|
210
|
+
end_mask=end_mask_,
|
|
170
211
|
)
|
|
171
212
|
)
|
|
172
213
|
elif isinstance(split, np.ndarray) \
|
onnx2tf/ops/Sub.py
CHANGED
|
@@ -114,9 +114,9 @@ def make_node(
|
|
|
114
114
|
)
|
|
115
115
|
|
|
116
116
|
# Workaround for ConvInteger
|
|
117
|
-
if input_tensor_1.dtype == tf.float32 and input_tensor_2.dtype in [tf.int32, tf.int64]:
|
|
117
|
+
if input_tensor_1.dtype == tf.float32 and input_tensor_2.dtype in [tf.int32, tf.int64, tf.float16]:
|
|
118
118
|
input_tensor_2 = tf.cast(input_tensor_2, dtype=tf.float32)
|
|
119
|
-
elif input_tensor_1.dtype in [tf.int32, tf.int64] and input_tensor_2.dtype == tf.float32:
|
|
119
|
+
elif input_tensor_1.dtype in [tf.int32, tf.int64, tf.float16] and input_tensor_2.dtype == tf.float32:
|
|
120
120
|
input_tensor_1 = tf.cast(input_tensor_1, dtype=tf.float32)
|
|
121
121
|
|
|
122
122
|
# Disable unnecessary Transpose
|
|
@@ -1,6 +1,6 @@
|
|
|
1
|
-
Metadata-Version: 2.
|
|
1
|
+
Metadata-Version: 2.4
|
|
2
2
|
Name: onnx2tf
|
|
3
|
-
Version: 1.27.
|
|
3
|
+
Version: 1.27.2
|
|
4
4
|
Summary: Self-Created Tools to convert ONNX files (NCHW) to TensorFlow/TFLite/Keras format (NHWC). The purpose of this tool is to solve the massive Transpose extrapolation problem in onnx-tensorflow (onnx-tf).
|
|
5
5
|
Home-page: https://github.com/PINTO0309/onnx2tf
|
|
6
6
|
Author: Katsuya Hyodo
|
|
@@ -18,6 +18,7 @@ Dynamic: description
|
|
|
18
18
|
Dynamic: description-content-type
|
|
19
19
|
Dynamic: home-page
|
|
20
20
|
Dynamic: license
|
|
21
|
+
Dynamic: license-file
|
|
21
22
|
Dynamic: platform
|
|
22
23
|
Dynamic: requires-python
|
|
23
24
|
Dynamic: summary
|
|
@@ -280,7 +281,7 @@ Video speed is adjusted approximately 50 times slower than actual speed.
|
|
|
280
281
|
|
|
281
282
|
## Environment
|
|
282
283
|
- Linux / Windows
|
|
283
|
-
- onnx==1.
|
|
284
|
+
- onnx==1.17.0
|
|
284
285
|
- onnxruntime==1.18.1
|
|
285
286
|
- onnx-simplifier==0.4.33 or 0.4.30 `(onnx.onnx_cpp2py_export.shape_inference.InferenceError: [ShapeInferenceError] (op_type:Slice, node name: /xxxx/Slice): [ShapeInferenceError] Inferred shape and existing shape differ in rank: (x) vs (y))`
|
|
286
287
|
- onnx_graphsurgeon
|
|
@@ -333,7 +334,7 @@ Video speed is adjusted approximately 50 times slower than actual speed.
|
|
|
333
334
|
docker run --rm -it \
|
|
334
335
|
-v `pwd`:/workdir \
|
|
335
336
|
-w /workdir \
|
|
336
|
-
ghcr.io/pinto0309/onnx2tf:1.27.
|
|
337
|
+
ghcr.io/pinto0309/onnx2tf:1.27.2
|
|
337
338
|
|
|
338
339
|
or
|
|
339
340
|
|
|
@@ -341,7 +342,7 @@ Video speed is adjusted approximately 50 times slower than actual speed.
|
|
|
341
342
|
docker run --rm -it \
|
|
342
343
|
-v `pwd`:/workdir \
|
|
343
344
|
-w /workdir \
|
|
344
|
-
docker.io/pinto0309/onnx2tf:1.27.
|
|
345
|
+
docker.io/pinto0309/onnx2tf:1.27.2
|
|
345
346
|
|
|
346
347
|
or
|
|
347
348
|
|
|
@@ -1512,7 +1513,7 @@ See: https://github.com/tensorflow/tfjs/tree/master/tfjs-converter
|
|
|
1512
1513
|
When converting to CoreML, process as follows. The `-k` option is for conversion while maintaining the input channel order in ONNX's NCHW format.
|
|
1513
1514
|
|
|
1514
1515
|
```bash
|
|
1515
|
-
pip install coremltools
|
|
1516
|
+
pip install coremltools==8.2
|
|
1516
1517
|
|
|
1517
1518
|
onnx2tf -i mobilenetv2-12.onnx -k input -ois input:1,3,224,224 -osd
|
|
1518
1519
|
```
|
|
@@ -1525,7 +1526,7 @@ model = ct.convert(
|
|
|
1525
1526
|
model=FOLDER_PATH,
|
|
1526
1527
|
source='tensorflow',
|
|
1527
1528
|
)
|
|
1528
|
-
model.save(f'{FOLDER_PATH}/model.
|
|
1529
|
+
model.save(f'{FOLDER_PATH}/model.mlpackage')
|
|
1529
1530
|
```
|
|
1530
1531
|
|
|
1531
1532
|
See: https://github.com/apple/coremltools
|
|
@@ -1,10 +1,10 @@
|
|
|
1
|
-
onnx2tf/__init__.py,sha256=
|
|
1
|
+
onnx2tf/__init__.py,sha256=hu7TZkPbwUCwf8zZcrp1NGR2aMUiIbLW_oqR1se7KzI,66
|
|
2
2
|
onnx2tf/__main__.py,sha256=2RSCQ7d4lc6CwD-rlGn9UicPFg-P5du7ZD_yh-kuBEU,57
|
|
3
3
|
onnx2tf/onnx2tf.py,sha256=IEnfIs3Dy8Y5F3iJ4HY7bWkn3QuB6lq_gHa1q5E3tMI,124745
|
|
4
4
|
onnx2tf/ops/Abs.py,sha256=V7btmCG_ZvK_qJovUsguq0ZMJ349mhNQ4FHSgzP_Yuo,4029
|
|
5
5
|
onnx2tf/ops/Acos.py,sha256=Fo8YkFKuWq8Fi2xUrBdKcAH1yJ8r5pjSD0wgLttTNdk,4003
|
|
6
6
|
onnx2tf/ops/Acosh.py,sha256=ATQj2cT5JS_mTfXi0kXqJ1yzSZu5J0zHA5VjV3j7uKY,3588
|
|
7
|
-
onnx2tf/ops/Add.py,sha256=
|
|
7
|
+
onnx2tf/ops/Add.py,sha256=pgJTnV1wZZk3mRaVxxezVkArfmlqlk74DCMZDm6VRJc,12295
|
|
8
8
|
onnx2tf/ops/And.py,sha256=_ubtWa0r8-60x__pS7MEMil1DfBqxiUsk66yRCYS4KY,4591
|
|
9
9
|
onnx2tf/ops/ArgMax.py,sha256=F3PV4EchYQgH1GATJybVGnmY9sGvZkgxCHbNCue9Qns,7278
|
|
10
10
|
onnx2tf/ops/ArgMin.py,sha256=32r7I8AYLQOKTPOOPX1AZwiPnQfkrFB0Le16vdJ1yBs,4225
|
|
@@ -16,7 +16,7 @@ onnx2tf/ops/AveragePool.py,sha256=p9R4k87FO1yKZMQ699FIftXGUNKxb5yu0vYfzPlpsMA,14
|
|
|
16
16
|
onnx2tf/ops/BatchNormalization.py,sha256=_hlf2-5-j3MCJHEoE2oMNQ8YhCm7ad9h2fwPpTo3i7g,26624
|
|
17
17
|
onnx2tf/ops/Bernoulli.py,sha256=PM0xS0n1q4bnT_9PnbcKW8_Qj8dJYYBQR8kb2X-wIp4,3670
|
|
18
18
|
onnx2tf/ops/BitShift.py,sha256=a28_E9hwA8yfjvtsrSKCZCeeMPB5RBQbjB3cmaNGN6k,3861
|
|
19
|
-
onnx2tf/ops/Cast.py,sha256=
|
|
19
|
+
onnx2tf/ops/Cast.py,sha256=M0LRClHPgZ_8NubwME6ipKrAqcY9aKC5ihQXCkTkNkM,4601
|
|
20
20
|
onnx2tf/ops/Ceil.py,sha256=0-jaueltpQSwpOIDUmy9DdTy98qN-XimYu5cHVPnUIs,3586
|
|
21
21
|
onnx2tf/ops/Celu.py,sha256=9g7WNKo4G_jMtUXcoOfpNdLYqEsuyXLPkkyQZxDuL4U,3853
|
|
22
22
|
onnx2tf/ops/Clip.py,sha256=K3Pgt9BXl5_rzg6s-kPFmwElL5COsvolRY1BUTo7UWw,8753
|
|
@@ -35,7 +35,7 @@ onnx2tf/ops/CumSum.py,sha256=SYKmD5r9Cm9gsCkJPNFoHigvvBO1PmRYRrVmn1HE78o,3954
|
|
|
35
35
|
onnx2tf/ops/DepthToSpace.py,sha256=BiyBZ88dmXQAkZ5Jc-Ddo-5Kn8dRYCnoik_XnOFzqXc,14449
|
|
36
36
|
onnx2tf/ops/DequantizeLinear.py,sha256=cNbGw4ITg_BsrXYkSb7fD05XEkQgz7v__-StQtvIvB4,5220
|
|
37
37
|
onnx2tf/ops/Det.py,sha256=kxuHkpv_KNHkof0uBv2RLtr3G1uA76MFHyCiCYCBXkw,3590
|
|
38
|
-
onnx2tf/ops/Div.py,sha256=
|
|
38
|
+
onnx2tf/ops/Div.py,sha256=NyAsvCxI41hyBX_kiCEILHY6QQkas_o4wRY8zkDUiwk,16248
|
|
39
39
|
onnx2tf/ops/Dropout.py,sha256=KZKVqlnbq875awsNvJaQRvkO3XgqxeAmjbikXymRCtA,5860
|
|
40
40
|
onnx2tf/ops/DynamicQuantizeLinear.py,sha256=UGmN2nXBBQHXcNlorEQfnKDnnoOadt4TNzXox-Xki2U,4759
|
|
41
41
|
onnx2tf/ops/Einsum.py,sha256=YBw0JmSglOVVje80RqmqIjgsc7V5SnYS6s1Ysa2NUPA,12369
|
|
@@ -82,7 +82,7 @@ onnx2tf/ops/LessOrEqual.py,sha256=9Lc8qaYUPVC6yZoQluNqcdHnvpUbfWBOI4Ow38RRAJo,45
|
|
|
82
82
|
onnx2tf/ops/Log.py,sha256=UZebF3SGq85BnoPgYyN2j-zzFRp67fJnYPNyu33W55o,3582
|
|
83
83
|
onnx2tf/ops/LogSoftmax.py,sha256=j2nhYY7__8ViLFJVLA5tS98QEvGS1gTIW0QCdnZWUPQ,3923
|
|
84
84
|
onnx2tf/ops/LpNormalization.py,sha256=Uu15HgxFNXb6gNMgdTJyf0SLPaLbcbkOYqY_4hMBxNA,3153
|
|
85
|
-
onnx2tf/ops/MatMul.py,sha256=
|
|
85
|
+
onnx2tf/ops/MatMul.py,sha256=95HrWr3Dt6BLqx_zqm3WXBw_WzrWLObYVgz4K1yrhqE,19060
|
|
86
86
|
onnx2tf/ops/MatMulInteger.py,sha256=qHqzdJNI9SeJDbW8pR90baYCdGN6FdOez4hi9EzwXoc,6538
|
|
87
87
|
onnx2tf/ops/Max.py,sha256=w5nMciO_6ApYUobHuwMGuS3xhuza7eSvKDRhvMPgAuo,3256
|
|
88
88
|
onnx2tf/ops/MaxPool.py,sha256=_JC4eqBTh-qLkZCMG8RZhthRZ8D2d821zaFMWeGMEWc,15775
|
|
@@ -92,8 +92,8 @@ onnx2tf/ops/MeanVarianceNormalization.py,sha256=Ne53jlDgAJZ9yhzKOWR-0LnjDdM-fg7D
|
|
|
92
92
|
onnx2tf/ops/MelWeightMatrix.py,sha256=MyYFUTxz2wFVqNx3Dhlro0ktg9kxtEq8sGFmHICDZsI,5453
|
|
93
93
|
onnx2tf/ops/Min.py,sha256=dK3i115xYh6NusQtGfswEGYBg9MBc_g-edafLgvq4TQ,3356
|
|
94
94
|
onnx2tf/ops/Mish.py,sha256=LEg5MXBLLIzwxmsudC1zTA_yq7drVY_DMCB8lHBCA-8,3546
|
|
95
|
-
onnx2tf/ops/Mod.py,sha256=
|
|
96
|
-
onnx2tf/ops/Mul.py,sha256=
|
|
95
|
+
onnx2tf/ops/Mod.py,sha256=Y7kqCEOLqof4zVszJslQayt6COyU-MS5qKLHAYOyxmc,10023
|
|
96
|
+
onnx2tf/ops/Mul.py,sha256=0hOf2O8ktRpIi4eOMfLGdwKl-yACFyGO3nU_s_XXUIE,15986
|
|
97
97
|
onnx2tf/ops/Multinomial.py,sha256=0HQC76IA3AvRsUx9RS0S__nIfEmPuvIaDfSt8bns4FU,3158
|
|
98
98
|
onnx2tf/ops/Neg.py,sha256=vu2ExVXyGpggAM_DNPeZj9QFeUyqhn5XmJnDlPJFsQU,4219
|
|
99
99
|
onnx2tf/ops/NonMaxSuppression.py,sha256=nHeiX5eMGQAq_51KoljNZGlZddJ89Oe7Yfe33xLhl6M,15763
|
|
@@ -162,12 +162,12 @@ onnx2tf/ops/Softmax.py,sha256=CEnHcSm25v1QC4QVDg4fz1NooYY1v-Uq4GORd8dnnr8,14773
|
|
|
162
162
|
onnx2tf/ops/Softplus.py,sha256=R44YMo8G2Ig15jBO6T2VOI6RhpUmjD70qvSCXFylU-Q,3605
|
|
163
163
|
onnx2tf/ops/Softsign.py,sha256=2ZdKH3KVHZXDzyO7S8f-O_aqRugurbRxd1i2g_fwCos,3600
|
|
164
164
|
onnx2tf/ops/SpaceToDepth.py,sha256=rWtPQNm2rErYs20gQyz-tFYsImAIUBGtdvfMVkJg5bo,2809
|
|
165
|
-
onnx2tf/ops/Split.py,sha256=
|
|
165
|
+
onnx2tf/ops/Split.py,sha256=ukm7QZmSwYwUwGLbVGsOiCEB3YfrFMl0cozn1kwgCv0,10728
|
|
166
166
|
onnx2tf/ops/SplitToSequence.py,sha256=BS_JEd7DC7vuPfs5oRRW774mtlK--kqf9DJUalv-Agk,5062
|
|
167
167
|
onnx2tf/ops/Sqrt.py,sha256=-xE8Tk_6unSR56k9g3R46lML4Nht5kQwqJT0JYkn5ko,3585
|
|
168
168
|
onnx2tf/ops/Squeeze.py,sha256=FLIt2qjWh1IJyti1c4YHuepH2Fkxt40rnEKszzmwsnE,7980
|
|
169
169
|
onnx2tf/ops/StringNormalizer.py,sha256=lyjUfhvZiIUZhLptI0rW_xwpFBJ6XuhDCyvCKNh-ogA,5214
|
|
170
|
-
onnx2tf/ops/Sub.py,sha256=
|
|
170
|
+
onnx2tf/ops/Sub.py,sha256=JCUWNmRLrwJEB8_0MPRTzmZ4KAV_HLXNivUd_jNqPQI,11012
|
|
171
171
|
onnx2tf/ops/Sum.py,sha256=wtI0SbGuNFxkLskBk68ZhOAg3XyrIx-9xGYy1GZCVSo,3073
|
|
172
172
|
onnx2tf/ops/Tan.py,sha256=Ncig8clGvY7GWshqxRDRdcxjcbf_HTKGdpDw5ValrKI,3582
|
|
173
173
|
onnx2tf/ops/Tanh.py,sha256=PIQUvxS_AIDufblC2vc573nse2UCRA9z5yWd7kB-51s,3585
|
|
@@ -188,10 +188,10 @@ onnx2tf/utils/__init__.py,sha256=E9FM9He68VIASDnYp-OrxvHFVn55GzWqw2OEkCqn1zg,27
|
|
|
188
188
|
onnx2tf/utils/common_functions.py,sha256=HTDca3DGXB3xvc1S50RNscgB57TCiq4yC5Nrafs6ka4,241430
|
|
189
189
|
onnx2tf/utils/enums.py,sha256=7c5TqetqB07VjyHoxJHfLgtqBqk9ZRyUF33fPOJR1IM,1649
|
|
190
190
|
onnx2tf/utils/logging.py,sha256=yUCmPuJ_XiUItM3sZMcaMO24JErkQy7zZwVTYWAuiKg,1982
|
|
191
|
-
onnx2tf-1.27.
|
|
192
|
-
onnx2tf-1.27.
|
|
193
|
-
onnx2tf-1.27.
|
|
194
|
-
onnx2tf-1.27.
|
|
195
|
-
onnx2tf-1.27.
|
|
196
|
-
onnx2tf-1.27.
|
|
197
|
-
onnx2tf-1.27.
|
|
191
|
+
onnx2tf-1.27.2.dist-info/licenses/LICENSE,sha256=5v_Kxihy8i6mzHVl349ikSREaIdsl9YeUnX1KBDLD2w,1070
|
|
192
|
+
onnx2tf-1.27.2.dist-info/licenses/LICENSE_onnx-tensorflow,sha256=gK4GtS9S5YcyINu6uuNNWdo-kBClyEM4MFLFGiNTeRM,11231
|
|
193
|
+
onnx2tf-1.27.2.dist-info/METADATA,sha256=Vhy11gd-Dvr86ENsHvxyHUhVQGHzwEY6PHvY8KYmVqM,147712
|
|
194
|
+
onnx2tf-1.27.2.dist-info/WHEEL,sha256=CmyFI0kx5cdEMTLiONQRbGQwjIoR1aIYB7eCAQ4KPJ0,91
|
|
195
|
+
onnx2tf-1.27.2.dist-info/entry_points.txt,sha256=gDPK8ToCFPKMvm8jr9xrGOkXtORJJVh4736fBEKO5k0,41
|
|
196
|
+
onnx2tf-1.27.2.dist-info/top_level.txt,sha256=WgfPiEy3f6vZ_FOpAIEA2CF3TCx1eYrhGw93Ih6b9Fw,8
|
|
197
|
+
onnx2tf-1.27.2.dist-info/RECORD,,
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|