onnx2tf 1.26.3__py3-none-any.whl → 1.26.5__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- onnx2tf/__init__.py +1 -1
- onnx2tf/onnx2tf.py +21 -0
- onnx2tf/ops/NonMaxSuppression.py +55 -27
- onnx2tf/utils/common_functions.py +9 -0
- {onnx2tf-1.26.3.dist-info → onnx2tf-1.26.5.dist-info}/METADATA +27 -4
- {onnx2tf-1.26.3.dist-info → onnx2tf-1.26.5.dist-info}/RECORD +11 -11
- {onnx2tf-1.26.3.dist-info → onnx2tf-1.26.5.dist-info}/WHEEL +1 -1
- {onnx2tf-1.26.3.dist-info → onnx2tf-1.26.5.dist-info}/LICENSE +0 -0
- {onnx2tf-1.26.3.dist-info → onnx2tf-1.26.5.dist-info}/LICENSE_onnx-tensorflow +0 -0
- {onnx2tf-1.26.3.dist-info → onnx2tf-1.26.5.dist-info}/entry_points.txt +0 -0
- {onnx2tf-1.26.3.dist-info → onnx2tf-1.26.5.dist-info}/top_level.txt +0 -0
onnx2tf/__init__.py
CHANGED
onnx2tf/onnx2tf.py
CHANGED
|
@@ -80,6 +80,7 @@ def convert(
|
|
|
80
80
|
overwrite_input_shape: Optional[List[str]] = None,
|
|
81
81
|
no_large_tensor: Optional[bool] = False,
|
|
82
82
|
output_nms_with_dynamic_tensor: Optional[bool] = False,
|
|
83
|
+
switch_nms_version: Optional[str] = 'v4',
|
|
83
84
|
keep_ncw_or_nchw_or_ncdhw_input_names: Optional[List[str]] = None,
|
|
84
85
|
keep_nwc_or_nhwc_or_ndhwc_input_names: Optional[List[str]] = None,
|
|
85
86
|
keep_shape_absolutely_input_names: Optional[List[str]] = None,
|
|
@@ -270,6 +271,12 @@ def convert(
|
|
|
270
271
|
enable --output_nms_with_dynamic_tensor:\n
|
|
271
272
|
output_tensor_shape: [N, 7]
|
|
272
273
|
|
|
274
|
+
switch_nms_version: Optional[str]
|
|
275
|
+
Switch the NMS version to V4 or V5 to convert.\n\n
|
|
276
|
+
e.g.\n
|
|
277
|
+
NonMaxSuppressionV4(default): --switch_nms_version v4\n
|
|
278
|
+
NonMaxSuppressionV5: --switch_nms_version v5
|
|
279
|
+
|
|
273
280
|
keep_ncw_or_nchw_or_ncdhw_input_names: Optional[List[str]]
|
|
274
281
|
Holds the NCW or NCHW or NCDHW of the input shape for the specified INPUT OP names.\n
|
|
275
282
|
If a nonexistent INPUT OP name is specified, it is ignored.\n
|
|
@@ -921,6 +928,7 @@ def convert(
|
|
|
921
928
|
'mvn_epsilon': mvn_epsilon,
|
|
922
929
|
'output_signaturedefs': output_signaturedefs,
|
|
923
930
|
'output_nms_with_dynamic_tensor': output_nms_with_dynamic_tensor,
|
|
931
|
+
'switch_nms_version': switch_nms_version,
|
|
924
932
|
'output_integer_quantized_tflite': output_integer_quantized_tflite,
|
|
925
933
|
'gelu_replace_op_names': {},
|
|
926
934
|
'space_to_depth_replace_op_names': {},
|
|
@@ -2233,6 +2241,18 @@ def main():
|
|
|
2233
2241
|
'enable --output_nms_with_dynamic_tensor: \n' +
|
|
2234
2242
|
' output_tensor_shape: [N, 7]'
|
|
2235
2243
|
)
|
|
2244
|
+
parser.add_argument(
|
|
2245
|
+
'-snms',
|
|
2246
|
+
'--switch_nms_version',
|
|
2247
|
+
type=str,
|
|
2248
|
+
choices=['v4', 'v5'],
|
|
2249
|
+
default='v4',
|
|
2250
|
+
help=\
|
|
2251
|
+
'Switch the NMS version to V4 or V5 to convert. \n' +
|
|
2252
|
+
'e.g. \n' +
|
|
2253
|
+
'NonMaxSuppressionV4(default): --switch_nms_version v4 \n' +
|
|
2254
|
+
'NonMaxSuppressionV5: --switch_nms_version v5'
|
|
2255
|
+
)
|
|
2236
2256
|
parser.add_argument(
|
|
2237
2257
|
'-k',
|
|
2238
2258
|
'--keep_ncw_or_nchw_or_ncdhw_input_names',
|
|
@@ -2623,6 +2643,7 @@ def main():
|
|
|
2623
2643
|
overwrite_input_shape=args.overwrite_input_shape,
|
|
2624
2644
|
no_large_tensor=args.no_large_tensor,
|
|
2625
2645
|
output_nms_with_dynamic_tensor=args.output_nms_with_dynamic_tensor,
|
|
2646
|
+
switch_nms_version=args.switch_nms_version,
|
|
2626
2647
|
keep_ncw_or_nchw_or_ncdhw_input_names=args.keep_ncw_or_nchw_or_ncdhw_input_names,
|
|
2627
2648
|
keep_nwc_or_nhwc_or_ndhwc_input_names=args.keep_nwc_or_nhwc_or_ndhwc_input_names,
|
|
2628
2649
|
keep_shape_absolutely_input_names=args.keep_shape_absolutely_input_names,
|
onnx2tf/ops/NonMaxSuppression.py
CHANGED
|
@@ -25,8 +25,9 @@ from tensorflow.python.util import dispatch
|
|
|
25
25
|
|
|
26
26
|
|
|
27
27
|
class NMSLayer(tf_keras.layers.Layer):
|
|
28
|
-
def __init__(self):
|
|
28
|
+
def __init__(self, switch_nms_version='v4'):
|
|
29
29
|
super(NMSLayer, self).__init__()
|
|
30
|
+
self.switch_nms_version = switch_nms_version
|
|
30
31
|
|
|
31
32
|
@dispatch.add_dispatch_support
|
|
32
33
|
def non_max_suppression(
|
|
@@ -40,29 +41,56 @@ class NMSLayer(tf_keras.layers.Layer):
|
|
|
40
41
|
name=None,
|
|
41
42
|
):
|
|
42
43
|
with ops.name_scope(name, 'non_max_suppression'):
|
|
43
|
-
|
|
44
|
-
|
|
45
|
-
|
|
46
|
-
|
|
47
|
-
|
|
48
|
-
|
|
49
|
-
|
|
50
|
-
|
|
51
|
-
|
|
52
|
-
|
|
53
|
-
|
|
54
|
-
|
|
55
|
-
|
|
56
|
-
|
|
57
|
-
|
|
58
|
-
|
|
59
|
-
|
|
60
|
-
|
|
61
|
-
|
|
62
|
-
|
|
63
|
-
|
|
64
|
-
|
|
65
|
-
|
|
44
|
+
if self.switch_nms_version == 'v4':
|
|
45
|
+
selected_indices, num_valid = gen_image_ops.non_max_suppression_v4(
|
|
46
|
+
boxes=boxes,
|
|
47
|
+
scores=scores,
|
|
48
|
+
max_output_size=max_output_size \
|
|
49
|
+
if not isinstance(max_output_size, np.ndarray) \
|
|
50
|
+
else tf.convert_to_tensor(
|
|
51
|
+
value=max_output_size,
|
|
52
|
+
name='max_output_size'
|
|
53
|
+
),
|
|
54
|
+
iou_threshold=iou_threshold \
|
|
55
|
+
if not isinstance(iou_threshold, np.ndarray) \
|
|
56
|
+
else tf.convert_to_tensor(
|
|
57
|
+
value=iou_threshold,
|
|
58
|
+
name='iou_threshold',
|
|
59
|
+
),
|
|
60
|
+
score_threshold=score_threshold \
|
|
61
|
+
if not isinstance(score_threshold, np.ndarray) \
|
|
62
|
+
else tf.convert_to_tensor(
|
|
63
|
+
value=score_threshold,
|
|
64
|
+
name='score_threshold',
|
|
65
|
+
),
|
|
66
|
+
pad_to_max_output_size=pad_to_max_output_size,
|
|
67
|
+
)
|
|
68
|
+
|
|
69
|
+
elif self.switch_nms_version == 'v5':
|
|
70
|
+
selected_indices, selected_scores, num_valid = gen_image_ops.non_max_suppression_v5(
|
|
71
|
+
boxes=boxes,
|
|
72
|
+
scores=scores,
|
|
73
|
+
max_output_size=max_output_size \
|
|
74
|
+
if not isinstance(max_output_size, np.ndarray) \
|
|
75
|
+
else tf.convert_to_tensor(
|
|
76
|
+
value=max_output_size,
|
|
77
|
+
name='max_output_size'
|
|
78
|
+
),
|
|
79
|
+
iou_threshold=iou_threshold \
|
|
80
|
+
if not isinstance(iou_threshold, np.ndarray) \
|
|
81
|
+
else tf.convert_to_tensor(
|
|
82
|
+
value=iou_threshold,
|
|
83
|
+
name='iou_threshold',
|
|
84
|
+
),
|
|
85
|
+
score_threshold=score_threshold \
|
|
86
|
+
if not isinstance(score_threshold, np.ndarray) \
|
|
87
|
+
else tf.convert_to_tensor(
|
|
88
|
+
value=score_threshold,
|
|
89
|
+
name='score_threshold',
|
|
90
|
+
),
|
|
91
|
+
soft_nms_sigma=0.0,
|
|
92
|
+
pad_to_max_output_size=pad_to_max_output_size,
|
|
93
|
+
)
|
|
66
94
|
if pad_to_max_output_size:
|
|
67
95
|
return selected_indices
|
|
68
96
|
|
|
@@ -130,8 +158,8 @@ def make_node(
|
|
|
130
158
|
scores = tf_layers_dict[graph_node_input_2.name]['tf_node'] \
|
|
131
159
|
if isinstance(graph_node_input_2, gs.Variable) else graph_node_input_2
|
|
132
160
|
|
|
133
|
-
output_nms_with_dynamic_tensor: bool =
|
|
134
|
-
|
|
161
|
+
output_nms_with_dynamic_tensor: bool = kwargs['output_nms_with_dynamic_tensor']
|
|
162
|
+
switch_nms_version: str = kwargs['switch_nms_version']
|
|
135
163
|
|
|
136
164
|
# Pre-process transpose
|
|
137
165
|
boxes = pre_process_transpose(
|
|
@@ -339,7 +367,7 @@ def make_node(
|
|
|
339
367
|
axis=0,
|
|
340
368
|
)
|
|
341
369
|
# get the selected boxes indices
|
|
342
|
-
nms = NMSLayer()
|
|
370
|
+
nms = NMSLayer(switch_nms_version=switch_nms_version)
|
|
343
371
|
selected_indices = nms(
|
|
344
372
|
boxes=tf_boxes,
|
|
345
373
|
scores=tf_scores,
|
|
@@ -2386,6 +2386,15 @@ def shape_unmatched_special_avoidance_workaround(
|
|
|
2386
2386
|
input_tensor_2: Any
|
|
2387
2387
|
Input shape-corrected TensorFlow input node Y
|
|
2388
2388
|
"""
|
|
2389
|
+
try:
|
|
2390
|
+
if hasattr(input_tensor_1, "shape") \
|
|
2391
|
+
and hasattr(input_tensor_2, "shape") \
|
|
2392
|
+
and input_tensor_1.shape is not None \
|
|
2393
|
+
and input_tensor_2.shape is not None \
|
|
2394
|
+
and input_tensor_1.shape == input_tensor_2.shape:
|
|
2395
|
+
return input_tensor_1, input_tensor_2
|
|
2396
|
+
except:
|
|
2397
|
+
pass
|
|
2389
2398
|
# At least one True value for same_input_shape_as_onnx
|
|
2390
2399
|
# At least one True value in nhwc_flags
|
|
2391
2400
|
# same_input_shape_as_onnx == True and nhwc_flags == False and 3D or 4D or 5D tensor is NHWC transposed
|
|
@@ -1,6 +1,6 @@
|
|
|
1
|
-
Metadata-Version: 2.
|
|
1
|
+
Metadata-Version: 2.2
|
|
2
2
|
Name: onnx2tf
|
|
3
|
-
Version: 1.26.
|
|
3
|
+
Version: 1.26.5
|
|
4
4
|
Summary: Self-Created Tools to convert ONNX files (NCHW) to TensorFlow/TFLite/Keras format (NHWC). The purpose of this tool is to solve the massive Transpose extrapolation problem in onnx-tensorflow (onnx-tf).
|
|
5
5
|
Home-page: https://github.com/PINTO0309/onnx2tf
|
|
6
6
|
Author: Katsuya Hyodo
|
|
@@ -12,6 +12,15 @@ Requires-Python: >=3.10
|
|
|
12
12
|
Description-Content-Type: text/markdown
|
|
13
13
|
License-File: LICENSE
|
|
14
14
|
License-File: LICENSE_onnx-tensorflow
|
|
15
|
+
Dynamic: author
|
|
16
|
+
Dynamic: author-email
|
|
17
|
+
Dynamic: description
|
|
18
|
+
Dynamic: description-content-type
|
|
19
|
+
Dynamic: home-page
|
|
20
|
+
Dynamic: license
|
|
21
|
+
Dynamic: platform
|
|
22
|
+
Dynamic: requires-python
|
|
23
|
+
Dynamic: summary
|
|
15
24
|
|
|
16
25
|
# onnx2tf
|
|
17
26
|
Self-Created Tools to convert ONNX files (NCHW) to TensorFlow/TFLite/Keras format (NHWC). The purpose of this tool is to solve the massive Transpose extrapolation problem in [onnx-tensorflow](https://github.com/onnx/onnx-tensorflow) ([onnx-tf](https://pypi.org/project/onnx-tf/)). I don't need a Star, but give me a pull request. Since I am adding challenging model optimizations and fixing bugs almost daily, I frequently embed potential bugs that would otherwise break through CI's regression testing. Therefore, if you encounter new problems, I recommend that you try a package that is a few versions older, or try the latest package that will be released in a few days.
|
|
@@ -314,7 +323,7 @@ Video speed is adjusted approximately 50 times slower than actual speed.
|
|
|
314
323
|
docker run --rm -it \
|
|
315
324
|
-v `pwd`:/workdir \
|
|
316
325
|
-w /workdir \
|
|
317
|
-
ghcr.io/pinto0309/onnx2tf:1.26.
|
|
326
|
+
ghcr.io/pinto0309/onnx2tf:1.26.5
|
|
318
327
|
|
|
319
328
|
or
|
|
320
329
|
|
|
@@ -322,7 +331,7 @@ Video speed is adjusted approximately 50 times slower than actual speed.
|
|
|
322
331
|
docker run --rm -it \
|
|
323
332
|
-v `pwd`:/workdir \
|
|
324
333
|
-w /workdir \
|
|
325
|
-
docker.io/pinto0309/onnx2tf:1.26.
|
|
334
|
+
docker.io/pinto0309/onnx2tf:1.26.5
|
|
326
335
|
|
|
327
336
|
or
|
|
328
337
|
|
|
@@ -1541,6 +1550,7 @@ usage: onnx2tf
|
|
|
1541
1550
|
[-ois OVERWRITE_INPUT_SHAPE [OVERWRITE_INPUT_SHAPE ...]]
|
|
1542
1551
|
[-nlt]
|
|
1543
1552
|
[-onwdt]
|
|
1553
|
+
[-snms {v4,v5}]
|
|
1544
1554
|
[-k KEEP_NCW_OR_NCHW_OR_NCDHW_INPUT_NAMES [KEEP_NCW_OR_NCHW_OR_NCDHW_INPUT_NAMES ...]]
|
|
1545
1555
|
[-kt KEEP_NWC_OR_NHWC_OR_NDHWC_INPUT_NAMES [KEEP_NWC_OR_NHWC_OR_NDHWC_INPUT_NAMES ...]]
|
|
1546
1556
|
[-kat KEEP_SHAPE_ABSOLUTELY_INPUT_NAMES [KEEP_SHAPE_ABSOLUTELY_INPUT_NAMES ...]]
|
|
@@ -1740,6 +1750,12 @@ optional arguments:
|
|
|
1740
1750
|
enable --output_nms_with_dynamic_tensor:
|
|
1741
1751
|
output_tensor_shape: [N, 7]
|
|
1742
1752
|
|
|
1753
|
+
-snms {v4,v5}, --switch_nms_version {v4,v5}
|
|
1754
|
+
Switch the NMS version to V4 or V5 to convert.
|
|
1755
|
+
e.g.
|
|
1756
|
+
NonMaxSuppressionV4(default): --switch_nms_version v4
|
|
1757
|
+
NonMaxSuppressionV5: --switch_nms_version v5
|
|
1758
|
+
|
|
1743
1759
|
-k KEEP_NCW_OR_NCHW_OR_NCDHW_INPUT_NAMES [KEEP_NCW_OR_NCHW_OR_NCDHW_INPUT_NAMES ...], \
|
|
1744
1760
|
--keep_ncw_or_nchw_or_ncdhw_input_names KEEP_NCW_OR_NCHW_OR_NCDHW_INPUT_NAMES \
|
|
1745
1761
|
[KEEP_NCW_OR_NCHW_OR_NCDHW_INPUT_NAMES ...]
|
|
@@ -2025,6 +2041,7 @@ convert(
|
|
|
2025
2041
|
overwrite_input_shape: Union[List[str], NoneType] = None,
|
|
2026
2042
|
no_large_tensor: Optional[bool] = False,
|
|
2027
2043
|
output_nms_with_dynamic_tensor: Optional[bool] = False,
|
|
2044
|
+
switch_nms_version: Optional[str] = 'v4',
|
|
2028
2045
|
keep_ncw_or_nchw_or_ncdhw_input_names: Union[List[str], NoneType] = None,
|
|
2029
2046
|
keep_nwc_or_nhwc_or_ndhwc_input_names: Union[List[str], NoneType] = None,
|
|
2030
2047
|
keep_shape_absolutely_input_names: Optional[List[str]] = None,
|
|
@@ -2230,6 +2247,12 @@ convert(
|
|
|
2230
2247
|
enable --output_nms_with_dynamic_tensor:
|
|
2231
2248
|
output_tensor_shape: [N, 7]
|
|
2232
2249
|
|
|
2250
|
+
switch_nms_version {v4,v5}
|
|
2251
|
+
Switch the NMS version to V4 or V5 to convert.
|
|
2252
|
+
e.g.
|
|
2253
|
+
NonMaxSuppressionV4(default): switch_nms_version="v4"
|
|
2254
|
+
NonMaxSuppressionV5: switch_nms_version="v5"
|
|
2255
|
+
|
|
2233
2256
|
keep_ncw_or_nchw_or_ncdhw_input_names: Optional[List[str]]
|
|
2234
2257
|
Holds the NCW or NCHW or NCDHW of the input shape for the specified INPUT OP names.
|
|
2235
2258
|
If a nonexistent INPUT OP name is specified, it is ignored.
|
|
@@ -1,6 +1,6 @@
|
|
|
1
|
-
onnx2tf/__init__.py,sha256=
|
|
1
|
+
onnx2tf/__init__.py,sha256=CCPWz_VoOl1azpYesO2K-voE8SmUyaEdAT-xziLuToc,66
|
|
2
2
|
onnx2tf/__main__.py,sha256=2RSCQ7d4lc6CwD-rlGn9UicPFg-P5du7ZD_yh-kuBEU,57
|
|
3
|
-
onnx2tf/onnx2tf.py,sha256=
|
|
3
|
+
onnx2tf/onnx2tf.py,sha256=IEnfIs3Dy8Y5F3iJ4HY7bWkn3QuB6lq_gHa1q5E3tMI,124745
|
|
4
4
|
onnx2tf/ops/Abs.py,sha256=V7btmCG_ZvK_qJovUsguq0ZMJ349mhNQ4FHSgzP_Yuo,4029
|
|
5
5
|
onnx2tf/ops/Acos.py,sha256=Fo8YkFKuWq8Fi2xUrBdKcAH1yJ8r5pjSD0wgLttTNdk,4003
|
|
6
6
|
onnx2tf/ops/Acosh.py,sha256=ATQj2cT5JS_mTfXi0kXqJ1yzSZu5J0zHA5VjV3j7uKY,3588
|
|
@@ -96,7 +96,7 @@ onnx2tf/ops/Mod.py,sha256=K6oH5Q4I5JWh8DFp8T1CSdL4WUJCexYdfqTy5iceJxo,9999
|
|
|
96
96
|
onnx2tf/ops/Mul.py,sha256=p75MHWbJSo6jLarFzmfK6oQREar4ntlFGqn-U7MzY8s,15962
|
|
97
97
|
onnx2tf/ops/Multinomial.py,sha256=0HQC76IA3AvRsUx9RS0S__nIfEmPuvIaDfSt8bns4FU,3158
|
|
98
98
|
onnx2tf/ops/Neg.py,sha256=vu2ExVXyGpggAM_DNPeZj9QFeUyqhn5XmJnDlPJFsQU,4219
|
|
99
|
-
onnx2tf/ops/NonMaxSuppression.py,sha256=
|
|
99
|
+
onnx2tf/ops/NonMaxSuppression.py,sha256=nHeiX5eMGQAq_51KoljNZGlZddJ89Oe7Yfe33xLhl6M,15763
|
|
100
100
|
onnx2tf/ops/NonZero.py,sha256=2EYZFMNIejeqR2azHw0CT2mthiKuRPQepUafzeVE8Nk,2788
|
|
101
101
|
onnx2tf/ops/Not.py,sha256=wn3nThGf4gtpQdHjP7OX2xlhyaNQGeHifjZ18O5shhg,3599
|
|
102
102
|
onnx2tf/ops/OneHot.py,sha256=OThLm1MF1X75zx7gep_qdnRHsTRZX_tqZxjt6pAVi7E,6489
|
|
@@ -185,13 +185,13 @@ onnx2tf/ops/_Loop.py,sha256=eo5sNfrfOnKV6_I737AWsM5LJTY9DVOxQEvhanxtP4g,11322
|
|
|
185
185
|
onnx2tf/ops/__Loop.py,sha256=ClwMcbNS4hqUtW_pzwjMa9Cqg7ONvz9aplke55A0uJ0,19704
|
|
186
186
|
onnx2tf/ops/__init__.py,sha256=jnmUWWa-3dHzBZV9bmPzXu6eoz2dumJTzO7i8JdcgSM,25
|
|
187
187
|
onnx2tf/utils/__init__.py,sha256=E9FM9He68VIASDnYp-OrxvHFVn55GzWqw2OEkCqn1zg,27
|
|
188
|
-
onnx2tf/utils/common_functions.py,sha256=
|
|
188
|
+
onnx2tf/utils/common_functions.py,sha256=lhhWuNVDwM_mVFc9DD2kYcYEyyT46CDlJMvZzi9KWD4,241473
|
|
189
189
|
onnx2tf/utils/enums.py,sha256=7c5TqetqB07VjyHoxJHfLgtqBqk9ZRyUF33fPOJR1IM,1649
|
|
190
190
|
onnx2tf/utils/logging.py,sha256=yUCmPuJ_XiUItM3sZMcaMO24JErkQy7zZwVTYWAuiKg,1982
|
|
191
|
-
onnx2tf-1.26.
|
|
192
|
-
onnx2tf-1.26.
|
|
193
|
-
onnx2tf-1.26.
|
|
194
|
-
onnx2tf-1.26.
|
|
195
|
-
onnx2tf-1.26.
|
|
196
|
-
onnx2tf-1.26.
|
|
197
|
-
onnx2tf-1.26.
|
|
191
|
+
onnx2tf-1.26.5.dist-info/LICENSE,sha256=5v_Kxihy8i6mzHVl349ikSREaIdsl9YeUnX1KBDLD2w,1070
|
|
192
|
+
onnx2tf-1.26.5.dist-info/LICENSE_onnx-tensorflow,sha256=gK4GtS9S5YcyINu6uuNNWdo-kBClyEM4MFLFGiNTeRM,11231
|
|
193
|
+
onnx2tf-1.26.5.dist-info/METADATA,sha256=GtIaK3JYaUlveLrLhxHuJX-Tb9H54timBbTLctSs8Rw,147279
|
|
194
|
+
onnx2tf-1.26.5.dist-info/WHEEL,sha256=In9FTNxeP60KnTkGw7wk6mJPYd_dQSjEZmXdBdMCI-8,91
|
|
195
|
+
onnx2tf-1.26.5.dist-info/entry_points.txt,sha256=gDPK8ToCFPKMvm8jr9xrGOkXtORJJVh4736fBEKO5k0,41
|
|
196
|
+
onnx2tf-1.26.5.dist-info/top_level.txt,sha256=WgfPiEy3f6vZ_FOpAIEA2CF3TCx1eYrhGw93Ih6b9Fw,8
|
|
197
|
+
onnx2tf-1.26.5.dist-info/RECORD,,
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|