onnx2tf 1.26.2__py3-none-any.whl → 1.26.4__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
onnx2tf/__init__.py CHANGED
@@ -1,3 +1,3 @@
1
1
  from onnx2tf.onnx2tf import convert, main
2
2
 
3
- __version__ = '1.26.2'
3
+ __version__ = '1.26.4'
onnx2tf/ops/MatMul.py CHANGED
@@ -87,7 +87,7 @@ def make_node(
87
87
  input_tensor_2_is_one_d = False
88
88
  if input_tensor_1.shape is not None \
89
89
  and len(input_tensor_1.shape) == 1:
90
- input_tensor_1 = tf.expand_dims(input_tensor_2, axis=0)
90
+ input_tensor_1 = tf.expand_dims(input_tensor_1, axis=0)
91
91
  input_tensor_1_is_one_d = True
92
92
  elif input_tensor_2.shape is not None \
93
93
  and len(input_tensor_2.shape) == 1:
@@ -2386,6 +2386,15 @@ def shape_unmatched_special_avoidance_workaround(
2386
2386
  input_tensor_2: Any
2387
2387
  Input shape-corrected TensorFlow input node Y
2388
2388
  """
2389
+ try:
2390
+ if hasattr(input_tensor_1, "shape") \
2391
+ and hasattr(input_tensor_2, "shape") \
2392
+ and input_tensor_1.shape is not None \
2393
+ and input_tensor_2.shape is not None \
2394
+ and input_tensor_1.shape == input_tensor_2.shape:
2395
+ return input_tensor_1, input_tensor_2
2396
+ except:
2397
+ pass
2389
2398
  # At least one True value for same_input_shape_as_onnx
2390
2399
  # At least one True value in nhwc_flags
2391
2400
  # same_input_shape_as_onnx == True and nhwc_flags == False and 3D or 4D or 5D tensor is NHWC transposed
@@ -1,6 +1,6 @@
1
- Metadata-Version: 2.1
1
+ Metadata-Version: 2.2
2
2
  Name: onnx2tf
3
- Version: 1.26.2
3
+ Version: 1.26.4
4
4
  Summary: Self-Created Tools to convert ONNX files (NCHW) to TensorFlow/TFLite/Keras format (NHWC). The purpose of this tool is to solve the massive Transpose extrapolation problem in onnx-tensorflow (onnx-tf).
5
5
  Home-page: https://github.com/PINTO0309/onnx2tf
6
6
  Author: Katsuya Hyodo
@@ -12,6 +12,15 @@ Requires-Python: >=3.10
12
12
  Description-Content-Type: text/markdown
13
13
  License-File: LICENSE
14
14
  License-File: LICENSE_onnx-tensorflow
15
+ Dynamic: author
16
+ Dynamic: author-email
17
+ Dynamic: description
18
+ Dynamic: description-content-type
19
+ Dynamic: home-page
20
+ Dynamic: license
21
+ Dynamic: platform
22
+ Dynamic: requires-python
23
+ Dynamic: summary
15
24
 
16
25
  # onnx2tf
17
26
  Self-Created Tools to convert ONNX files (NCHW) to TensorFlow/TFLite/Keras format (NHWC). The purpose of this tool is to solve the massive Transpose extrapolation problem in [onnx-tensorflow](https://github.com/onnx/onnx-tensorflow) ([onnx-tf](https://pypi.org/project/onnx-tf/)). I don't need a Star, but give me a pull request. Since I am adding challenging model optimizations and fixing bugs almost daily, I frequently embed potential bugs that would otherwise break through CI's regression testing. Therefore, if you encounter new problems, I recommend that you try a package that is a few versions older, or try the latest package that will be released in a few days.
@@ -314,7 +323,7 @@ Video speed is adjusted approximately 50 times slower than actual speed.
314
323
  docker run --rm -it \
315
324
  -v `pwd`:/workdir \
316
325
  -w /workdir \
317
- ghcr.io/pinto0309/onnx2tf:1.26.2
326
+ ghcr.io/pinto0309/onnx2tf:1.26.4
318
327
 
319
328
  or
320
329
 
@@ -322,7 +331,7 @@ Video speed is adjusted approximately 50 times slower than actual speed.
322
331
  docker run --rm -it \
323
332
  -v `pwd`:/workdir \
324
333
  -w /workdir \
325
- docker.io/pinto0309/onnx2tf:1.26.2
334
+ docker.io/pinto0309/onnx2tf:1.26.4
326
335
 
327
336
  or
328
337
 
@@ -1463,9 +1472,13 @@ For example, take a model with multiple inputs and multiple outputs as shown in
1463
1472
  When converting to TensorFlow.js, process as follows.
1464
1473
 
1465
1474
  ```bash
1466
- pip install tensorflowjs
1475
+ pip install -U --no-deps \
1476
+ tensorflowjs \
1477
+ tensorflow_decision_forests \
1478
+ ydf \
1479
+ tensorflow_hub
1467
1480
 
1468
- onnx2tf -i mobilenetv2-12.onnx -ois input:1,3,224,224 -osd
1481
+ onnx2tf -i mobilenetv2-12.onnx -ois input:1,3,224,224 -osd -dgc
1469
1482
 
1470
1483
  tensorflowjs_converter \
1471
1484
  --input_format tf_saved_model \
@@ -1,4 +1,4 @@
1
- onnx2tf/__init__.py,sha256=ukSyMQD2nvmJ0y2IY36gj51rhGbnV4IJhhjBoTOZI3w,66
1
+ onnx2tf/__init__.py,sha256=yvXD35bY-2gNs9gj_0CHpN50j9qhEZ4Srq2TEr2Eq0Y,66
2
2
  onnx2tf/__main__.py,sha256=2RSCQ7d4lc6CwD-rlGn9UicPFg-P5du7ZD_yh-kuBEU,57
3
3
  onnx2tf/onnx2tf.py,sha256=0QiBJXhX_m2ZuWoGbAsO_N6z3o9uqN0rL8uEkllYhJc,123980
4
4
  onnx2tf/ops/Abs.py,sha256=V7btmCG_ZvK_qJovUsguq0ZMJ349mhNQ4FHSgzP_Yuo,4029
@@ -82,7 +82,7 @@ onnx2tf/ops/LessOrEqual.py,sha256=9Lc8qaYUPVC6yZoQluNqcdHnvpUbfWBOI4Ow38RRAJo,45
82
82
  onnx2tf/ops/Log.py,sha256=UZebF3SGq85BnoPgYyN2j-zzFRp67fJnYPNyu33W55o,3582
83
83
  onnx2tf/ops/LogSoftmax.py,sha256=j2nhYY7__8ViLFJVLA5tS98QEvGS1gTIW0QCdnZWUPQ,3923
84
84
  onnx2tf/ops/LpNormalization.py,sha256=Uu15HgxFNXb6gNMgdTJyf0SLPaLbcbkOYqY_4hMBxNA,3153
85
- onnx2tf/ops/MatMul.py,sha256=vCvDYN-BSSTolhK4I02Zsud29Ubaxn5-RS6clGm195I,18804
85
+ onnx2tf/ops/MatMul.py,sha256=oH-VvMn-RTozk3E8zcFE2-T78csDIygtMksVX30o4MY,18804
86
86
  onnx2tf/ops/MatMulInteger.py,sha256=qHqzdJNI9SeJDbW8pR90baYCdGN6FdOez4hi9EzwXoc,6538
87
87
  onnx2tf/ops/Max.py,sha256=w5nMciO_6ApYUobHuwMGuS3xhuza7eSvKDRhvMPgAuo,3256
88
88
  onnx2tf/ops/MaxPool.py,sha256=_JC4eqBTh-qLkZCMG8RZhthRZ8D2d821zaFMWeGMEWc,15775
@@ -185,13 +185,13 @@ onnx2tf/ops/_Loop.py,sha256=eo5sNfrfOnKV6_I737AWsM5LJTY9DVOxQEvhanxtP4g,11322
185
185
  onnx2tf/ops/__Loop.py,sha256=ClwMcbNS4hqUtW_pzwjMa9Cqg7ONvz9aplke55A0uJ0,19704
186
186
  onnx2tf/ops/__init__.py,sha256=jnmUWWa-3dHzBZV9bmPzXu6eoz2dumJTzO7i8JdcgSM,25
187
187
  onnx2tf/utils/__init__.py,sha256=E9FM9He68VIASDnYp-OrxvHFVn55GzWqw2OEkCqn1zg,27
188
- onnx2tf/utils/common_functions.py,sha256=35vTJfectN2lPwsVGaka_wzpZpCLJeQDmn327oVj4FA,241128
188
+ onnx2tf/utils/common_functions.py,sha256=lhhWuNVDwM_mVFc9DD2kYcYEyyT46CDlJMvZzi9KWD4,241473
189
189
  onnx2tf/utils/enums.py,sha256=7c5TqetqB07VjyHoxJHfLgtqBqk9ZRyUF33fPOJR1IM,1649
190
190
  onnx2tf/utils/logging.py,sha256=yUCmPuJ_XiUItM3sZMcaMO24JErkQy7zZwVTYWAuiKg,1982
191
- onnx2tf-1.26.2.dist-info/LICENSE,sha256=5v_Kxihy8i6mzHVl349ikSREaIdsl9YeUnX1KBDLD2w,1070
192
- onnx2tf-1.26.2.dist-info/LICENSE_onnx-tensorflow,sha256=gK4GtS9S5YcyINu6uuNNWdo-kBClyEM4MFLFGiNTeRM,11231
193
- onnx2tf-1.26.2.dist-info/METADATA,sha256=qhOCQWAfBYKQHEomxc8ouP7mC2IhENrgDttNpgnTwRg,146536
194
- onnx2tf-1.26.2.dist-info/WHEEL,sha256=OVMc5UfuAQiSplgO0_WdW7vXVGAt9Hdd6qtN4HotdyA,91
195
- onnx2tf-1.26.2.dist-info/entry_points.txt,sha256=gDPK8ToCFPKMvm8jr9xrGOkXtORJJVh4736fBEKO5k0,41
196
- onnx2tf-1.26.2.dist-info/top_level.txt,sha256=WgfPiEy3f6vZ_FOpAIEA2CF3TCx1eYrhGw93Ih6b9Fw,8
197
- onnx2tf-1.26.2.dist-info/RECORD,,
191
+ onnx2tf-1.26.4.dist-info/LICENSE,sha256=5v_Kxihy8i6mzHVl349ikSREaIdsl9YeUnX1KBDLD2w,1070
192
+ onnx2tf-1.26.4.dist-info/LICENSE_onnx-tensorflow,sha256=gK4GtS9S5YcyINu6uuNNWdo-kBClyEM4MFLFGiNTeRM,11231
193
+ onnx2tf-1.26.4.dist-info/METADATA,sha256=S2NjeVHmb3vQ_tcbSlmYNgCmonESBzC46-gZjRhqvkQ,146798
194
+ onnx2tf-1.26.4.dist-info/WHEEL,sha256=In9FTNxeP60KnTkGw7wk6mJPYd_dQSjEZmXdBdMCI-8,91
195
+ onnx2tf-1.26.4.dist-info/entry_points.txt,sha256=gDPK8ToCFPKMvm8jr9xrGOkXtORJJVh4736fBEKO5k0,41
196
+ onnx2tf-1.26.4.dist-info/top_level.txt,sha256=WgfPiEy3f6vZ_FOpAIEA2CF3TCx1eYrhGw93Ih6b9Fw,8
197
+ onnx2tf-1.26.4.dist-info/RECORD,,
@@ -1,5 +1,5 @@
1
1
  Wheel-Version: 1.0
2
- Generator: setuptools (75.2.0)
2
+ Generator: setuptools (75.8.0)
3
3
  Root-Is-Purelib: true
4
4
  Tag: py3-none-any
5
5