onnx2tf 1.26.0__py3-none-any.whl → 1.26.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
onnx2tf/__init__.py CHANGED
@@ -1,3 +1,3 @@
1
1
  from onnx2tf.onnx2tf import convert, main
2
2
 
3
- __version__ = '1.26.0'
3
+ __version__ = '1.26.1'
onnx2tf/onnx2tf.py CHANGED
@@ -222,9 +222,13 @@ def convert(
222
222
  ["input2","input2.npy",[0.3],[0.07]],\n
223
223
  ]
224
224
 
225
- input_output_quant_dtype: Optional[str]
226
- Input and Output dtypes when doing Full INT8 Quantization.\n
227
- "int8"(default) or "uint8"
225
+ input_quant_dtype: Optional[str]
226
+ Input dtypes when doing Full INT8 Quantization.\n
227
+ "int8"(default) or "uint8" or "float32"
228
+
229
+ output_quant_dtype: Optional[str]
230
+ Output dtypes when doing Full INT8 Quantization.\n
231
+ "int8"(default) or "uint8" or "float32"
228
232
 
229
233
  not_use_onnxsim: Optional[bool]
230
234
  No optimization by onnx-simplifier is performed.\n
@@ -1700,6 +1704,8 @@ def convert(
1700
1704
  inf_type_input = tf.int8
1701
1705
  elif input_quant_dtype == 'uint8':
1702
1706
  inf_type_input = tf.uint8
1707
+ elif input_quant_dtype == 'float32':
1708
+ inf_type_input = tf.float32
1703
1709
  else:
1704
1710
  inf_type_input = tf.int8
1705
1711
 
@@ -1707,6 +1713,8 @@ def convert(
1707
1713
  inf_type_output = tf.int8
1708
1714
  elif output_quant_dtype == 'uint8':
1709
1715
  inf_type_output = tf.uint8
1716
+ elif output_quant_dtype == 'float32':
1717
+ inf_type_output = tf.float32
1710
1718
  else:
1711
1719
  inf_type_output = tf.int8
1712
1720
  converter.inference_input_type = inf_type_input
@@ -2140,21 +2148,21 @@ def main():
2140
2148
  '-iqd',
2141
2149
  '--input_quant_dtype',
2142
2150
  type=str,
2143
- choices=['int8', 'uint8'],
2151
+ choices=['int8', 'uint8', 'float32'],
2144
2152
  default='int8',
2145
2153
  help=\
2146
2154
  'Input dtypes when doing Full INT8 Quantization. \n' +
2147
- '"int8"(default) or "uint8"'
2155
+ '"int8"(default) or "uint8" or "float32"'
2148
2156
  )
2149
2157
  parser.add_argument(
2150
2158
  '-oqd',
2151
2159
  '--output_quant_dtype',
2152
2160
  type=str,
2153
- choices=['int8', 'uint8'],
2161
+ choices=['int8', 'uint8', 'float32'],
2154
2162
  default='int8',
2155
2163
  help=\
2156
2164
  'Output dtypes when doing Full INT8 Quantization. \n' +
2157
- '"int8"(default) or "uint8"'
2165
+ '"int8"(default) or "uint8" or "float32"'
2158
2166
  )
2159
2167
  parser.add_argument(
2160
2168
  '-nuo',
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: onnx2tf
3
- Version: 1.26.0
3
+ Version: 1.26.1
4
4
  Summary: Self-Created Tools to convert ONNX files (NCHW) to TensorFlow/TFLite/Keras format (NHWC). The purpose of this tool is to solve the massive Transpose extrapolation problem in onnx-tensorflow (onnx-tf).
5
5
  Home-page: https://github.com/PINTO0309/onnx2tf
6
6
  Author: Katsuya Hyodo
@@ -314,7 +314,7 @@ Video speed is adjusted approximately 50 times slower than actual speed.
314
314
  docker run --rm -it \
315
315
  -v `pwd`:/workdir \
316
316
  -w /workdir \
317
- ghcr.io/pinto0309/onnx2tf:1.26.0
317
+ ghcr.io/pinto0309/onnx2tf:1.26.1
318
318
 
319
319
  or
320
320
 
@@ -322,7 +322,7 @@ Video speed is adjusted approximately 50 times slower than actual speed.
322
322
  docker run --rm -it \
323
323
  -v `pwd`:/workdir \
324
324
  -w /workdir \
325
- docker.io/pinto0309/onnx2tf:1.26.0
325
+ docker.io/pinto0309/onnx2tf:1.26.1
326
326
 
327
327
  or
328
328
 
@@ -1529,8 +1529,8 @@ usage: onnx2tf
1529
1529
  [-oiqt]
1530
1530
  [-qt {per-channel,per-tensor}]
1531
1531
  [-cind INPUT_NAME NUMPY_FILE_PATH MEAN STD]
1532
- [-iqd {int8,uint8}]
1533
- [-oqd {int8,uint8}]
1532
+ [-iqd {int8,uint8,float32}]
1533
+ [-oqd {int8,uint8,float32}]
1534
1534
  [-nuo]
1535
1535
  [-nuonag]
1536
1536
  [-b BATCH_SIZE]
@@ -1687,13 +1687,13 @@ optional arguments:
1687
1687
  and {input_op_name}, {numpy_file_path}, {mean}, and {std} must all be entered.
1688
1688
  Otherwise, an error will occur during the -oiqt stage.
1689
1689
 
1690
- -iqd {int8,uint8}, --input_quant_dtype {int8,uint8}
1690
+ -iqd {int8,uint8,float32}, --input_quant_dtype {int8,uint8,float32}
1691
1691
  Input dtypes when doing Full INT8 Quantization.
1692
- "int8"(default) or "uint8"
1692
+ "int8"(default) or "uint8" or "float32"
1693
1693
 
1694
- -oqd {int8,uint8}, --output_quant_dtype {int8,uint8}
1694
+ -oqd {int8,uint8,float32}, --output_quant_dtype {int8,uint8,float32}
1695
1695
  Output dtypes when doing Full INT8 Quantization.
1696
- "int8"(default) or "uint8"
1696
+ "int8"(default) or "uint8" or "float32"
1697
1697
 
1698
1698
  -nuo, --not_use_onnxsim
1699
1699
  No optimization by onnx-simplifier is performed.
@@ -2180,11 +2180,11 @@ convert(
2180
2180
 
2181
2181
  input_quant_dtype: Optional[str]
2182
2182
  Input dtypes when doing Full INT8 Quantization.
2183
- "int8"(default) or "uint8"
2183
+ "int8"(default) or "uint8" or "float32"
2184
2184
 
2185
2185
  output_quant_dtype: Optional[str]
2186
2186
  Output dtypes when doing Full INT8 Quantization.
2187
- "int8"(default) or "uint8"
2187
+ "int8"(default) or "uint8" or "float32"
2188
2188
 
2189
2189
  not_use_onnxsim: Optional[bool]
2190
2190
  No optimization by onnx-simplifier is performed.
@@ -2610,7 +2610,7 @@ Do not submit an issue that only contains an amount of information that cannot b
2610
2610
  |14|Unsqueeze|1. "param_target": "inputs"<br>`pre_process_transpose_perm`: Transpose is applied to the tensor before the Unsqueeze operation with the perm specified as pre-processing.<br>2. "param_target": "outputs"<br>`post_process_transpose_perm`: Transpose is applied to the tensor after the Unsqueeze operation with the perm specified as post-processing.<br>3. "param_target": "op"<br>`new_shape`: Specifies directly the shape after Unsqueeze processing.<br>{<br>&nbsp;&nbsp;"op_name": "/backbone/backbone.1/Unsqueeze_1",<br>&nbsp;&nbsp;"param_target": "op",<br>&nbsp;&nbsp;"new_shape": [1,15,15,1]<br>}|
2611
2611
  |15|Reshape|1. "param_target": "inputs"<br>`values`: Value of `shape`<br>`pre_process_transpose_perm`: Transpose is applied to the tensor before the Reshape operation with the perm specified as pre-processing.<br>2. "param_target": "outputs"<br>`post_process_transpose_perm`: Transpose is applied to the tensor after the Reshape operation with the perm specified as post-processing.|
2612
2612
  |16|Resize|1. "param_target": "attributes"<br>`coordinate_transformation_mode`: Value of `coordinate_transformation_mode`<br>`extrapolation_value`: Value of `extrapolation_value`<br>`mode`: Value of `mode`<br>2. "param_target": "inputs"<br>`values`: Value of `roi` or `scales` or `sizes`. `scales`=`[scale_h,scale_w]`,`sizes`=`[h,w]`<br>`pre_process_transpose_perm`: Transpose is applied to the tensor before the Resize operation with the perm specified as pre-processing.<br>3. "param_target": "outputs"<br>`post_process_transpose_perm`: Transpose is applied to the tensor after the Resize operation with the perm specified as post-processing.|
2613
- |17|Slice|`Slice` implements special replacements separately ignore all automatic conversions and generate `tf.strided_slice` directly by specifying all parameters of `tf.strided_slice` directly.<br>https://www.tensorflow.org/api_docs/python/tf/strided_slice<br>See [replace_slice.json](https://github.com/PINTO0309/onnx2tf/blob/main/replace_slice.json) for a sample description.<br>![20221221222956](https://user-images.githubusercontent.com/33194443/208916732-9987a69a-83a7-4a29-8b77-d97b1812d59c.png)<br>1. "param_target": "op"<br>`begin`: Value of `begin`<br>`end`: Value of `end`<br>`strides`: Value of `strides`<br>`begin_mask`: Value of `begin_mask`<br>`end_mask`: Value of `end_mask`<br>`ellipsis_mask`: Value of `ellipsis_mask`<br>`new_axis_mask`: Value of `new_axis_mask`<br>`shrink_axis_mask`: Value of `shrink_axis_mask`<br>{<br>&nbsp;&nbsp;"op_name": "/Slice",<br>&nbsp;&nbsp;"param_target": "op",<br>&nbsp;&nbsp;"begin": [0,0,1,0],<br>&nbsp;&nbsp;"end": [0,0,0,0],<br>&nbsp;&nbsp;"end_mask": 15<br>}|
2613
+ |17|Slice|`Slice` implements special replacements separately ignore all automatic conversions and generate `tf.strided_slice` directly by specifying all parameters of `tf.strided_slice` directly.<br>https://www.tensorflow.org/api_docs/python/tf/strided_slice<br>See [json_samples/replace_slice.json](https://github.com/PINTO0309/onnx2tf/blob/main/json_samples/replace_slice.json) for a sample description.<br>![20221221222956](https://user-images.githubusercontent.com/33194443/208916732-9987a69a-83a7-4a29-8b77-d97b1812d59c.png)<br>1. "param_target": "op"<br>`begin`: Value of `begin`<br>`end`: Value of `end`<br>`strides`: Value of `strides`<br>`begin_mask`: Value of `begin_mask`<br>`end_mask`: Value of `end_mask`<br>`ellipsis_mask`: Value of `ellipsis_mask`<br>`new_axis_mask`: Value of `new_axis_mask`<br>`shrink_axis_mask`: Value of `shrink_axis_mask`<br>{<br>&nbsp;&nbsp;"op_name": "/Slice",<br>&nbsp;&nbsp;"param_target": "op",<br>&nbsp;&nbsp;"begin": [0,0,1,0],<br>&nbsp;&nbsp;"end": [0,0,0,0],<br>&nbsp;&nbsp;"end_mask": 15<br>}|
2614
2614
  |18|Softmax|1. "param_target": "attributes"<br>`axis`: Value of `axis`. The transpositions corresponding to the specified axis are extrapolated before and after `Softmax`.<br>2. "param_target": "inputs"<br>`values`: Value of `tensor`|
2615
2615
  |19|Split|1. "param_target": "inputs"<br>`values`: Value of `split`<br>2. "param_target": "attributes"<br>`axis`: Value of `axis`.<br>`num_outputs`: Value of `num_outputs`.|
2616
2616
  |20|Sub|1. "param_target": "inputs"<br>`values`: Value of `input`<br>`pre_process_transpose_perm`: Transpose is applied to the tensor before the Sub operation with the perm specified as pre-processing.<br>2. "param_target": "outputs"<br>`post_process_transpose_perm`: Transpose is applied to the tensor after the Sub operation with the perm specified as post-processing.|
@@ -1,6 +1,6 @@
1
- onnx2tf/__init__.py,sha256=7Jw_w1lXtSSYSXHYbs-Ar7MWPMylolp5t9BCT461nSA,66
1
+ onnx2tf/__init__.py,sha256=VdUE2DxKBM0W8yDa6byr11bxjYw_QKVdSvq071Ap8Rs,66
2
2
  onnx2tf/__main__.py,sha256=2RSCQ7d4lc6CwD-rlGn9UicPFg-P5du7ZD_yh-kuBEU,57
3
- onnx2tf/onnx2tf.py,sha256=BWsBmBW3oz4igKErTdCHgT8ouwSwdiZELfEgr3Jziks,123431
3
+ onnx2tf/onnx2tf.py,sha256=vUMz_U8PQ0MQE6a8BBmOmsiFKAE-TMZPE1H_fnn0UCo,123824
4
4
  onnx2tf/ops/Abs.py,sha256=V7btmCG_ZvK_qJovUsguq0ZMJ349mhNQ4FHSgzP_Yuo,4029
5
5
  onnx2tf/ops/Acos.py,sha256=Fo8YkFKuWq8Fi2xUrBdKcAH1yJ8r5pjSD0wgLttTNdk,4003
6
6
  onnx2tf/ops/Acosh.py,sha256=ATQj2cT5JS_mTfXi0kXqJ1yzSZu5J0zHA5VjV3j7uKY,3588
@@ -188,10 +188,10 @@ onnx2tf/utils/__init__.py,sha256=E9FM9He68VIASDnYp-OrxvHFVn55GzWqw2OEkCqn1zg,27
188
188
  onnx2tf/utils/common_functions.py,sha256=35vTJfectN2lPwsVGaka_wzpZpCLJeQDmn327oVj4FA,241128
189
189
  onnx2tf/utils/enums.py,sha256=7c5TqetqB07VjyHoxJHfLgtqBqk9ZRyUF33fPOJR1IM,1649
190
190
  onnx2tf/utils/logging.py,sha256=yUCmPuJ_XiUItM3sZMcaMO24JErkQy7zZwVTYWAuiKg,1982
191
- onnx2tf-1.26.0.dist-info/LICENSE,sha256=5v_Kxihy8i6mzHVl349ikSREaIdsl9YeUnX1KBDLD2w,1070
192
- onnx2tf-1.26.0.dist-info/LICENSE_onnx-tensorflow,sha256=gK4GtS9S5YcyINu6uuNNWdo-kBClyEM4MFLFGiNTeRM,11231
193
- onnx2tf-1.26.0.dist-info/METADATA,sha256=inAwjAJYSA4zbNccza_K71FR2Ut7Ai_YQBCN7dLus8o,146410
194
- onnx2tf-1.26.0.dist-info/WHEEL,sha256=GV9aMThwP_4oNCtvEC2ec3qUYutgWeAzklro_0m4WJQ,91
195
- onnx2tf-1.26.0.dist-info/entry_points.txt,sha256=gDPK8ToCFPKMvm8jr9xrGOkXtORJJVh4736fBEKO5k0,41
196
- onnx2tf-1.26.0.dist-info/top_level.txt,sha256=WgfPiEy3f6vZ_FOpAIEA2CF3TCx1eYrhGw93Ih6b9Fw,8
197
- onnx2tf-1.26.0.dist-info/RECORD,,
191
+ onnx2tf-1.26.1.dist-info/LICENSE,sha256=5v_Kxihy8i6mzHVl349ikSREaIdsl9YeUnX1KBDLD2w,1070
192
+ onnx2tf-1.26.1.dist-info/LICENSE_onnx-tensorflow,sha256=gK4GtS9S5YcyINu6uuNNWdo-kBClyEM4MFLFGiNTeRM,11231
193
+ onnx2tf-1.26.1.dist-info/METADATA,sha256=h7Qt9w1jz2cYvjyl_nmXcrzhsPmbovld2ZBpxEeu_J4,146536
194
+ onnx2tf-1.26.1.dist-info/WHEEL,sha256=GV9aMThwP_4oNCtvEC2ec3qUYutgWeAzklro_0m4WJQ,91
195
+ onnx2tf-1.26.1.dist-info/entry_points.txt,sha256=gDPK8ToCFPKMvm8jr9xrGOkXtORJJVh4736fBEKO5k0,41
196
+ onnx2tf-1.26.1.dist-info/top_level.txt,sha256=WgfPiEy3f6vZ_FOpAIEA2CF3TCx1eYrhGw93Ih6b9Fw,8
197
+ onnx2tf-1.26.1.dist-info/RECORD,,