onnx 1.16.2__cp312-cp312-win_amd64.whl → 1.18.0__cp312-cp312-win_amd64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of onnx might be problematic. Click here for more details.

Files changed (2010) hide show
  1. onnx/__init__.py +17 -1
  2. onnx/_custom_element_types.py +69 -0
  3. onnx/backend/base.py +28 -17
  4. onnx/backend/sample/ops/__init__.py +10 -7
  5. onnx/backend/sample/ops/abs.py +1 -0
  6. onnx/backend/test/__init__.py +1 -0
  7. onnx/backend/test/case/__init__.py +2 -2
  8. onnx/backend/test/case/base.py +6 -5
  9. onnx/backend/test/case/model/__init__.py +11 -6
  10. onnx/backend/test/case/model/expand.py +5 -1
  11. onnx/backend/test/case/model/gradient.py +1 -0
  12. onnx/backend/test/case/model/sequence.py +28 -26
  13. onnx/backend/test/case/model/shrink.py +1 -0
  14. onnx/backend/test/case/model/sign.py +1 -0
  15. onnx/backend/test/case/model/single-relu.py +1 -0
  16. onnx/backend/test/case/model/stringnormalizer.py +5 -2
  17. onnx/backend/test/case/node/__init__.py +51 -43
  18. onnx/backend/test/case/node/_image_decoder_data.py +1 -0
  19. onnx/backend/test/case/node/abs.py +2 -2
  20. onnx/backend/test/case/node/acos.py +1 -0
  21. onnx/backend/test/case/node/acosh.py +1 -0
  22. onnx/backend/test/case/node/adagrad.py +3 -2
  23. onnx/backend/test/case/node/adam.py +4 -1
  24. onnx/backend/test/case/node/add.py +20 -7
  25. onnx/backend/test/case/node/affinegrid.py +1 -0
  26. onnx/backend/test/case/node/ai_onnx_ml/array_feature_extractor.py +1 -0
  27. onnx/backend/test/case/node/ai_onnx_ml/binarizer.py +1 -0
  28. onnx/backend/test/case/node/ai_onnx_ml/label_encoder.py +1 -0
  29. onnx/backend/test/case/node/ai_onnx_ml/tree_ensemble.py +1 -0
  30. onnx/backend/test/case/node/and.py +1 -0
  31. onnx/backend/test/case/node/argmax.py +1 -0
  32. onnx/backend/test/case/node/argmin.py +1 -0
  33. onnx/backend/test/case/node/asin.py +1 -0
  34. onnx/backend/test/case/node/asinh.py +1 -0
  35. onnx/backend/test/case/node/atan.py +1 -0
  36. onnx/backend/test/case/node/atanh.py +1 -0
  37. onnx/backend/test/case/node/attention.py +1399 -0
  38. onnx/backend/test/case/node/averagepool.py +96 -14
  39. onnx/backend/test/case/node/batchnorm.py +3 -2
  40. onnx/backend/test/case/node/bernoulli.py +2 -1
  41. onnx/backend/test/case/node/bitshift.py +1 -0
  42. onnx/backend/test/case/node/bitwiseand.py +2 -1
  43. onnx/backend/test/case/node/bitwisenot.py +2 -1
  44. onnx/backend/test/case/node/bitwiseor.py +2 -1
  45. onnx/backend/test/case/node/bitwisexor.py +2 -1
  46. onnx/backend/test/case/node/blackmanwindow.py +13 -3
  47. onnx/backend/test/case/node/cast.py +61 -2
  48. onnx/backend/test/case/node/castlike.py +1 -0
  49. onnx/backend/test/case/node/ceil.py +1 -0
  50. onnx/backend/test/case/node/celu.py +1 -0
  51. onnx/backend/test/case/node/center_crop_pad.py +1 -0
  52. onnx/backend/test/case/node/clip.py +12 -0
  53. onnx/backend/test/case/node/col2im.py +1 -1
  54. onnx/backend/test/case/node/compress.py +1 -0
  55. onnx/backend/test/case/node/concat.py +6 -2
  56. onnx/backend/test/case/node/constant.py +1 -0
  57. onnx/backend/test/case/node/constantofshape.py +1 -0
  58. onnx/backend/test/case/node/conv.py +1 -0
  59. onnx/backend/test/case/node/convinteger.py +1 -0
  60. onnx/backend/test/case/node/convtranspose.py +135 -0
  61. onnx/backend/test/case/node/cos.py +1 -0
  62. onnx/backend/test/case/node/cosh.py +1 -0
  63. onnx/backend/test/case/node/cumsum.py +25 -0
  64. onnx/backend/test/case/node/deformconv.py +17 -26
  65. onnx/backend/test/case/node/depthtospace.py +1 -0
  66. onnx/backend/test/case/node/dequantizelinear.py +23 -0
  67. onnx/backend/test/case/node/det.py +1 -0
  68. onnx/backend/test/case/node/dft.py +1 -0
  69. onnx/backend/test/case/node/div.py +26 -0
  70. onnx/backend/test/case/node/dropout.py +2 -1
  71. onnx/backend/test/case/node/dynamicquantizelinear.py +1 -0
  72. onnx/backend/test/case/node/einsum.py +2 -3
  73. onnx/backend/test/case/node/elu.py +1 -0
  74. onnx/backend/test/case/node/equal.py +31 -0
  75. onnx/backend/test/case/node/erf.py +1 -0
  76. onnx/backend/test/case/node/exp.py +1 -0
  77. onnx/backend/test/case/node/expand.py +1 -0
  78. onnx/backend/test/case/node/eyelike.py +1 -0
  79. onnx/backend/test/case/node/flatten.py +1 -0
  80. onnx/backend/test/case/node/floor.py +1 -0
  81. onnx/backend/test/case/node/gather.py +1 -0
  82. onnx/backend/test/case/node/gatherelements.py +2 -1
  83. onnx/backend/test/case/node/gathernd.py +1 -0
  84. onnx/backend/test/case/node/gelu.py +1 -0
  85. onnx/backend/test/case/node/gemm.py +3 -4
  86. onnx/backend/test/case/node/globalaveragepool.py +1 -0
  87. onnx/backend/test/case/node/globalmaxpool.py +1 -0
  88. onnx/backend/test/case/node/greater.py +31 -0
  89. onnx/backend/test/case/node/greater_equal.py +31 -0
  90. onnx/backend/test/case/node/gridsample.py +1 -0
  91. onnx/backend/test/case/node/groupnormalization.py +1 -0
  92. onnx/backend/test/case/node/gru.py +5 -4
  93. onnx/backend/test/case/node/hammingwindow.py +13 -2
  94. onnx/backend/test/case/node/hannwindow.py +10 -2
  95. onnx/backend/test/case/node/hardmax.py +1 -0
  96. onnx/backend/test/case/node/hardsigmoid.py +1 -0
  97. onnx/backend/test/case/node/hardswish.py +1 -0
  98. onnx/backend/test/case/node/identity.py +1 -0
  99. onnx/backend/test/case/node/if.py +2 -1
  100. onnx/backend/test/case/node/instancenorm.py +1 -0
  101. onnx/backend/test/case/node/isinf.py +1 -0
  102. onnx/backend/test/case/node/isnan.py +1 -0
  103. onnx/backend/test/case/node/layernormalization.py +3 -2
  104. onnx/backend/test/case/node/leakyrelu.py +1 -0
  105. onnx/backend/test/case/node/less.py +31 -0
  106. onnx/backend/test/case/node/less_equal.py +31 -0
  107. onnx/backend/test/case/node/log.py +1 -0
  108. onnx/backend/test/case/node/logsoftmax.py +1 -0
  109. onnx/backend/test/case/node/loop.py +5 -4
  110. onnx/backend/test/case/node/lppool.py +25 -5
  111. onnx/backend/test/case/node/lrn.py +1 -0
  112. onnx/backend/test/case/node/lstm.py +5 -4
  113. onnx/backend/test/case/node/matmul.py +1 -0
  114. onnx/backend/test/case/node/matmulinteger.py +1 -0
  115. onnx/backend/test/case/node/max.py +1 -0
  116. onnx/backend/test/case/node/maxpool.py +18 -6
  117. onnx/backend/test/case/node/maxunpool.py +1 -0
  118. onnx/backend/test/case/node/mean.py +1 -0
  119. onnx/backend/test/case/node/meanvariancenormalization.py +1 -0
  120. onnx/backend/test/case/node/melweightmatrix.py +1 -0
  121. onnx/backend/test/case/node/min.py +1 -0
  122. onnx/backend/test/case/node/mish.py +1 -0
  123. onnx/backend/test/case/node/mod.py +1 -0
  124. onnx/backend/test/case/node/momentum.py +3 -2
  125. onnx/backend/test/case/node/mul.py +26 -0
  126. onnx/backend/test/case/node/neg.py +1 -0
  127. onnx/backend/test/case/node/negativeloglikelihoodloss.py +4 -1
  128. onnx/backend/test/case/node/nonmaxsuppression.py +1 -0
  129. onnx/backend/test/case/node/nonzero.py +1 -0
  130. onnx/backend/test/case/node/not.py +1 -0
  131. onnx/backend/test/case/node/onehot.py +2 -1
  132. onnx/backend/test/case/node/optionalgetelement.py +3 -2
  133. onnx/backend/test/case/node/optionalhaselement.py +2 -3
  134. onnx/backend/test/case/node/or.py +1 -0
  135. onnx/backend/test/case/node/pad.py +3 -2
  136. onnx/backend/test/case/node/pow.py +1 -0
  137. onnx/backend/test/case/node/prelu.py +1 -0
  138. onnx/backend/test/case/node/qlinearconv.py +1 -0
  139. onnx/backend/test/case/node/qlinearmatmul.py +1 -0
  140. onnx/backend/test/case/node/quantizelinear.py +39 -0
  141. onnx/backend/test/case/node/rangeop.py +1 -0
  142. onnx/backend/test/case/node/reciprocal.py +1 -0
  143. onnx/backend/test/case/node/reduce_log_sum.py +1 -0
  144. onnx/backend/test/case/node/reduce_log_sum_exp.py +1 -0
  145. onnx/backend/test/case/node/reducel1.py +1 -0
  146. onnx/backend/test/case/node/reducel2.py +1 -0
  147. onnx/backend/test/case/node/reducemax.py +2 -1
  148. onnx/backend/test/case/node/reducemean.py +1 -0
  149. onnx/backend/test/case/node/reducemin.py +1 -0
  150. onnx/backend/test/case/node/reduceprod.py +1 -0
  151. onnx/backend/test/case/node/reducesum.py +2 -1
  152. onnx/backend/test/case/node/reducesumsquare.py +1 -0
  153. onnx/backend/test/case/node/regex_full_match.py +1 -0
  154. onnx/backend/test/case/node/relu.py +1 -0
  155. onnx/backend/test/case/node/reshape.py +1 -0
  156. onnx/backend/test/case/node/resize.py +3 -2
  157. onnx/backend/test/case/node/reversesequence.py +1 -0
  158. onnx/backend/test/case/node/rmsnormalization.py +126 -0
  159. onnx/backend/test/case/node/rnn.py +5 -4
  160. onnx/backend/test/case/node/roialign.py +2 -1
  161. onnx/backend/test/case/node/rotaryembedding.py +231 -0
  162. onnx/backend/test/case/node/round.py +4 -3
  163. onnx/backend/test/case/node/scan.py +1 -0
  164. onnx/backend/test/case/node/scatter.py +1 -0
  165. onnx/backend/test/case/node/scatterelements.py +7 -3
  166. onnx/backend/test/case/node/scatternd.py +1 -0
  167. onnx/backend/test/case/node/selu.py +1 -0
  168. onnx/backend/test/case/node/sequence_map.py +1 -0
  169. onnx/backend/test/case/node/sequenceinsert.py +4 -3
  170. onnx/backend/test/case/node/shape.py +1 -0
  171. onnx/backend/test/case/node/shrink.py +1 -0
  172. onnx/backend/test/case/node/sigmoid.py +1 -0
  173. onnx/backend/test/case/node/sign.py +1 -0
  174. onnx/backend/test/case/node/sin.py +1 -0
  175. onnx/backend/test/case/node/sinh.py +1 -0
  176. onnx/backend/test/case/node/size.py +1 -0
  177. onnx/backend/test/case/node/slice.py +1 -0
  178. onnx/backend/test/case/node/softmax.py +1 -0
  179. onnx/backend/test/case/node/softmaxcrossentropy.py +4 -1
  180. onnx/backend/test/case/node/softplus.py +1 -0
  181. onnx/backend/test/case/node/softsign.py +1 -0
  182. onnx/backend/test/case/node/spacetodepth.py +1 -0
  183. onnx/backend/test/case/node/split.py +1 -0
  184. onnx/backend/test/case/node/splittosequence.py +1 -0
  185. onnx/backend/test/case/node/sqrt.py +1 -0
  186. onnx/backend/test/case/node/squeeze.py +1 -0
  187. onnx/backend/test/case/node/stft.py +4 -1
  188. onnx/backend/test/case/node/string_concat.py +1 -0
  189. onnx/backend/test/case/node/string_split.py +1 -0
  190. onnx/backend/test/case/node/stringnormalizer.py +1 -0
  191. onnx/backend/test/case/node/sub.py +26 -0
  192. onnx/backend/test/case/node/sum.py +1 -0
  193. onnx/backend/test/case/node/tan.py +1 -0
  194. onnx/backend/test/case/node/tanh.py +1 -0
  195. onnx/backend/test/case/node/tfidfvectorizer.py +1 -0
  196. onnx/backend/test/case/node/thresholdedrelu.py +1 -0
  197. onnx/backend/test/case/node/tile.py +1 -0
  198. onnx/backend/test/case/node/topk.py +130 -2
  199. onnx/backend/test/case/node/transpose.py +1 -0
  200. onnx/backend/test/case/node/trilu.py +3 -2
  201. onnx/backend/test/case/node/unique.py +40 -1
  202. onnx/backend/test/case/node/unsqueeze.py +1 -0
  203. onnx/backend/test/case/node/upsample.py +1 -0
  204. onnx/backend/test/case/node/where.py +1 -0
  205. onnx/backend/test/case/node/xor.py +1 -0
  206. onnx/backend/test/case/test_case.py +11 -7
  207. onnx/backend/test/case/utils.py +6 -4
  208. onnx/backend/test/cmd_tools.py +1 -0
  209. onnx/backend/test/data/node/test_acos/model.onnx +0 -0
  210. onnx/backend/test/data/node/test_acos_example/model.onnx +0 -0
  211. onnx/backend/test/data/node/test_acosh/model.onnx +0 -0
  212. onnx/backend/test/data/node/test_acosh_example/model.onnx +0 -0
  213. onnx/backend/test/data/node/test_asin/model.onnx +0 -0
  214. onnx/backend/test/data/node/test_asin_example/model.onnx +0 -0
  215. onnx/backend/test/data/node/test_asinh/model.onnx +0 -0
  216. onnx/backend/test/data/node/test_asinh_example/model.onnx +0 -0
  217. onnx/backend/test/data/node/test_atan/model.onnx +0 -0
  218. onnx/backend/test/data/node/test_atan_example/model.onnx +0 -0
  219. onnx/backend/test/data/node/test_atanh/model.onnx +0 -0
  220. onnx/backend/test/data/node/test_atanh_example/model.onnx +0 -0
  221. onnx/backend/test/data/node/test_attention_3d/model.onnx +0 -0
  222. onnx/backend/test/data/node/test_attention_3d/test_data_set_0/input_0.pb +0 -0
  223. onnx/backend/test/data/node/test_attention_3d/test_data_set_0/input_1.pb +0 -0
  224. onnx/backend/test/data/node/test_attention_3d/test_data_set_0/input_2.pb +0 -0
  225. onnx/backend/test/data/node/test_attention_3d/test_data_set_0/output_0.pb +0 -0
  226. onnx/backend/test/data/node/test_attention_3d_attn_mask/model.onnx +0 -0
  227. onnx/backend/test/data/node/test_attention_3d_attn_mask/test_data_set_0/input_0.pb +0 -0
  228. onnx/backend/test/data/node/test_attention_3d_attn_mask/test_data_set_0/input_1.pb +0 -0
  229. onnx/backend/test/data/node/test_attention_3d_attn_mask/test_data_set_0/input_2.pb +0 -0
  230. onnx/backend/test/data/node/test_attention_3d_attn_mask/test_data_set_0/input_3.pb +1 -0
  231. onnx/backend/test/data/node/test_attention_3d_attn_mask/test_data_set_0/output_0.pb +0 -0
  232. onnx/backend/test/data/node/test_attention_3d_attn_mask_expanded/model.onnx +0 -0
  233. onnx/backend/test/data/node/test_attention_3d_attn_mask_expanded/test_data_set_0/input_0.pb +0 -0
  234. onnx/backend/test/data/node/test_attention_3d_attn_mask_expanded/test_data_set_0/input_1.pb +0 -0
  235. onnx/backend/test/data/node/test_attention_3d_attn_mask_expanded/test_data_set_0/input_2.pb +0 -0
  236. onnx/backend/test/data/node/test_attention_3d_attn_mask_expanded/test_data_set_0/input_3.pb +1 -0
  237. onnx/backend/test/data/node/test_attention_3d_attn_mask_expanded/test_data_set_0/output_0.pb +0 -0
  238. onnx/backend/test/data/node/test_attention_3d_causal/model.onnx +0 -0
  239. onnx/backend/test/data/node/test_attention_3d_causal/test_data_set_0/input_0.pb +0 -0
  240. onnx/backend/test/data/node/test_attention_3d_causal/test_data_set_0/input_1.pb +0 -0
  241. onnx/backend/test/data/node/test_attention_3d_causal/test_data_set_0/input_2.pb +0 -0
  242. onnx/backend/test/data/node/test_attention_3d_causal/test_data_set_0/output_0.pb +0 -0
  243. onnx/backend/test/data/node/test_attention_3d_causal_expanded/model.onnx +0 -0
  244. onnx/backend/test/data/node/test_attention_3d_causal_expanded/test_data_set_0/input_0.pb +0 -0
  245. onnx/backend/test/data/node/test_attention_3d_causal_expanded/test_data_set_0/input_1.pb +0 -0
  246. onnx/backend/test/data/node/test_attention_3d_causal_expanded/test_data_set_0/input_2.pb +0 -0
  247. onnx/backend/test/data/node/test_attention_3d_causal_expanded/test_data_set_0/output_0.pb +0 -0
  248. onnx/backend/test/data/node/test_attention_3d_diff_heads_sizes/model.onnx +0 -0
  249. onnx/backend/test/data/node/test_attention_3d_diff_heads_sizes/test_data_set_0/input_0.pb +0 -0
  250. onnx/backend/test/data/node/test_attention_3d_diff_heads_sizes/test_data_set_0/input_1.pb +0 -0
  251. onnx/backend/test/data/node/test_attention_3d_diff_heads_sizes/test_data_set_0/input_2.pb +0 -0
  252. onnx/backend/test/data/node/test_attention_3d_diff_heads_sizes/test_data_set_0/output_0.pb +0 -0
  253. onnx/backend/test/data/node/test_attention_3d_diff_heads_sizes_attn_mask/model.onnx +0 -0
  254. onnx/backend/test/data/node/test_attention_3d_diff_heads_sizes_attn_mask/test_data_set_0/input_0.pb +0 -0
  255. onnx/backend/test/data/node/test_attention_3d_diff_heads_sizes_attn_mask/test_data_set_0/input_1.pb +0 -0
  256. onnx/backend/test/data/node/test_attention_3d_diff_heads_sizes_attn_mask/test_data_set_0/input_2.pb +0 -0
  257. onnx/backend/test/data/node/test_attention_3d_diff_heads_sizes_attn_mask/test_data_set_0/input_3.pb +0 -0
  258. onnx/backend/test/data/node/test_attention_3d_diff_heads_sizes_attn_mask/test_data_set_0/output_0.pb +0 -0
  259. onnx/backend/test/data/node/test_attention_3d_diff_heads_sizes_attn_mask_expanded/model.onnx +0 -0
  260. onnx/backend/test/data/node/test_attention_3d_diff_heads_sizes_attn_mask_expanded/test_data_set_0/input_0.pb +0 -0
  261. onnx/backend/test/data/node/test_attention_3d_diff_heads_sizes_attn_mask_expanded/test_data_set_0/input_1.pb +0 -0
  262. onnx/backend/test/data/node/test_attention_3d_diff_heads_sizes_attn_mask_expanded/test_data_set_0/input_2.pb +0 -0
  263. onnx/backend/test/data/node/test_attention_3d_diff_heads_sizes_attn_mask_expanded/test_data_set_0/input_3.pb +0 -0
  264. onnx/backend/test/data/node/test_attention_3d_diff_heads_sizes_attn_mask_expanded/test_data_set_0/output_0.pb +0 -0
  265. onnx/backend/test/data/node/test_attention_3d_diff_heads_sizes_causal/model.onnx +0 -0
  266. onnx/backend/test/data/node/test_attention_3d_diff_heads_sizes_causal/test_data_set_0/input_0.pb +0 -0
  267. onnx/backend/test/data/node/test_attention_3d_diff_heads_sizes_causal/test_data_set_0/input_1.pb +0 -0
  268. onnx/backend/test/data/node/test_attention_3d_diff_heads_sizes_causal/test_data_set_0/input_2.pb +0 -0
  269. onnx/backend/test/data/node/test_attention_3d_diff_heads_sizes_causal/test_data_set_0/output_0.pb +0 -0
  270. onnx/backend/test/data/node/test_attention_3d_diff_heads_sizes_causal_expanded/model.onnx +0 -0
  271. onnx/backend/test/data/node/test_attention_3d_diff_heads_sizes_causal_expanded/test_data_set_0/input_0.pb +0 -0
  272. onnx/backend/test/data/node/test_attention_3d_diff_heads_sizes_causal_expanded/test_data_set_0/input_1.pb +0 -0
  273. onnx/backend/test/data/node/test_attention_3d_diff_heads_sizes_causal_expanded/test_data_set_0/input_2.pb +0 -0
  274. onnx/backend/test/data/node/test_attention_3d_diff_heads_sizes_causal_expanded/test_data_set_0/output_0.pb +0 -0
  275. onnx/backend/test/data/node/test_attention_3d_diff_heads_sizes_expanded/model.onnx +0 -0
  276. onnx/backend/test/data/node/test_attention_3d_diff_heads_sizes_expanded/test_data_set_0/input_0.pb +0 -0
  277. onnx/backend/test/data/node/test_attention_3d_diff_heads_sizes_expanded/test_data_set_0/input_1.pb +0 -0
  278. onnx/backend/test/data/node/test_attention_3d_diff_heads_sizes_expanded/test_data_set_0/input_2.pb +0 -0
  279. onnx/backend/test/data/node/test_attention_3d_diff_heads_sizes_expanded/test_data_set_0/output_0.pb +0 -0
  280. onnx/backend/test/data/node/test_attention_3d_diff_heads_sizes_scaled/model.onnx +0 -0
  281. onnx/backend/test/data/node/test_attention_3d_diff_heads_sizes_scaled/test_data_set_0/input_0.pb +0 -0
  282. onnx/backend/test/data/node/test_attention_3d_diff_heads_sizes_scaled/test_data_set_0/input_1.pb +0 -0
  283. onnx/backend/test/data/node/test_attention_3d_diff_heads_sizes_scaled/test_data_set_0/input_2.pb +0 -0
  284. onnx/backend/test/data/node/test_attention_3d_diff_heads_sizes_scaled/test_data_set_0/output_0.pb +0 -0
  285. onnx/backend/test/data/node/test_attention_3d_diff_heads_sizes_scaled_expanded/model.onnx +0 -0
  286. onnx/backend/test/data/node/test_attention_3d_diff_heads_sizes_scaled_expanded/test_data_set_0/input_0.pb +0 -0
  287. onnx/backend/test/data/node/test_attention_3d_diff_heads_sizes_scaled_expanded/test_data_set_0/input_1.pb +0 -0
  288. onnx/backend/test/data/node/test_attention_3d_diff_heads_sizes_scaled_expanded/test_data_set_0/input_2.pb +0 -0
  289. onnx/backend/test/data/node/test_attention_3d_diff_heads_sizes_scaled_expanded/test_data_set_0/output_0.pb +0 -0
  290. onnx/backend/test/data/node/test_attention_3d_diff_heads_sizes_softcap/model.onnx +0 -0
  291. onnx/backend/test/data/node/test_attention_3d_diff_heads_sizes_softcap/test_data_set_0/input_0.pb +0 -0
  292. onnx/backend/test/data/node/test_attention_3d_diff_heads_sizes_softcap/test_data_set_0/input_1.pb +0 -0
  293. onnx/backend/test/data/node/test_attention_3d_diff_heads_sizes_softcap/test_data_set_0/input_2.pb +0 -0
  294. onnx/backend/test/data/node/test_attention_3d_diff_heads_sizes_softcap/test_data_set_0/output_0.pb +0 -0
  295. onnx/backend/test/data/node/test_attention_3d_diff_heads_sizes_softcap_expanded/model.onnx +0 -0
  296. onnx/backend/test/data/node/test_attention_3d_diff_heads_sizes_softcap_expanded/test_data_set_0/input_0.pb +0 -0
  297. onnx/backend/test/data/node/test_attention_3d_diff_heads_sizes_softcap_expanded/test_data_set_0/input_1.pb +0 -0
  298. onnx/backend/test/data/node/test_attention_3d_diff_heads_sizes_softcap_expanded/test_data_set_0/input_2.pb +0 -0
  299. onnx/backend/test/data/node/test_attention_3d_diff_heads_sizes_softcap_expanded/test_data_set_0/output_0.pb +0 -0
  300. onnx/backend/test/data/node/test_attention_3d_diff_heads_with_past_and_present/model.onnx +0 -0
  301. onnx/backend/test/data/node/test_attention_3d_diff_heads_with_past_and_present/test_data_set_0/input_0.pb +0 -0
  302. onnx/backend/test/data/node/test_attention_3d_diff_heads_with_past_and_present/test_data_set_0/input_1.pb +0 -0
  303. onnx/backend/test/data/node/test_attention_3d_diff_heads_with_past_and_present/test_data_set_0/input_2.pb +0 -0
  304. onnx/backend/test/data/node/test_attention_3d_diff_heads_with_past_and_present/test_data_set_0/input_3.pb +0 -0
  305. onnx/backend/test/data/node/test_attention_3d_diff_heads_with_past_and_present/test_data_set_0/input_4.pb +0 -0
  306. onnx/backend/test/data/node/test_attention_3d_diff_heads_with_past_and_present/test_data_set_0/input_5.pb +0 -0
  307. onnx/backend/test/data/node/test_attention_3d_diff_heads_with_past_and_present/test_data_set_0/output_0.pb +0 -0
  308. onnx/backend/test/data/node/test_attention_3d_diff_heads_with_past_and_present/test_data_set_0/output_1.pb +0 -0
  309. onnx/backend/test/data/node/test_attention_3d_diff_heads_with_past_and_present/test_data_set_0/output_2.pb +0 -0
  310. onnx/backend/test/data/node/test_attention_3d_diff_heads_with_past_and_present_expanded/model.onnx +0 -0
  311. onnx/backend/test/data/node/test_attention_3d_diff_heads_with_past_and_present_expanded/test_data_set_0/input_0.pb +0 -0
  312. onnx/backend/test/data/node/test_attention_3d_diff_heads_with_past_and_present_expanded/test_data_set_0/input_1.pb +0 -0
  313. onnx/backend/test/data/node/test_attention_3d_diff_heads_with_past_and_present_expanded/test_data_set_0/input_2.pb +0 -0
  314. onnx/backend/test/data/node/test_attention_3d_diff_heads_with_past_and_present_expanded/test_data_set_0/input_3.pb +0 -0
  315. onnx/backend/test/data/node/test_attention_3d_diff_heads_with_past_and_present_expanded/test_data_set_0/input_4.pb +0 -0
  316. onnx/backend/test/data/node/test_attention_3d_diff_heads_with_past_and_present_expanded/test_data_set_0/input_5.pb +0 -0
  317. onnx/backend/test/data/node/test_attention_3d_diff_heads_with_past_and_present_expanded/test_data_set_0/output_0.pb +0 -0
  318. onnx/backend/test/data/node/test_attention_3d_diff_heads_with_past_and_present_expanded/test_data_set_0/output_1.pb +0 -0
  319. onnx/backend/test/data/node/test_attention_3d_diff_heads_with_past_and_present_expanded/test_data_set_0/output_2.pb +0 -0
  320. onnx/backend/test/data/node/test_attention_3d_expanded/model.onnx +0 -0
  321. onnx/backend/test/data/node/test_attention_3d_expanded/test_data_set_0/input_0.pb +0 -0
  322. onnx/backend/test/data/node/test_attention_3d_expanded/test_data_set_0/input_1.pb +0 -0
  323. onnx/backend/test/data/node/test_attention_3d_expanded/test_data_set_0/input_2.pb +0 -0
  324. onnx/backend/test/data/node/test_attention_3d_expanded/test_data_set_0/output_0.pb +0 -0
  325. onnx/backend/test/data/node/test_attention_3d_gqa/model.onnx +0 -0
  326. onnx/backend/test/data/node/test_attention_3d_gqa/test_data_set_0/input_0.pb +0 -0
  327. onnx/backend/test/data/node/test_attention_3d_gqa/test_data_set_0/input_1.pb +0 -0
  328. onnx/backend/test/data/node/test_attention_3d_gqa/test_data_set_0/input_2.pb +0 -0
  329. onnx/backend/test/data/node/test_attention_3d_gqa/test_data_set_0/output_0.pb +0 -0
  330. onnx/backend/test/data/node/test_attention_3d_gqa_attn_mask/model.onnx +0 -0
  331. onnx/backend/test/data/node/test_attention_3d_gqa_attn_mask/test_data_set_0/input_0.pb +0 -0
  332. onnx/backend/test/data/node/test_attention_3d_gqa_attn_mask/test_data_set_0/input_1.pb +0 -0
  333. onnx/backend/test/data/node/test_attention_3d_gqa_attn_mask/test_data_set_0/input_2.pb +0 -0
  334. onnx/backend/test/data/node/test_attention_3d_gqa_attn_mask/test_data_set_0/input_3.pb +1 -0
  335. onnx/backend/test/data/node/test_attention_3d_gqa_attn_mask/test_data_set_0/output_0.pb +0 -0
  336. onnx/backend/test/data/node/test_attention_3d_gqa_attn_mask_expanded/model.onnx +0 -0
  337. onnx/backend/test/data/node/test_attention_3d_gqa_attn_mask_expanded/test_data_set_0/input_0.pb +0 -0
  338. onnx/backend/test/data/node/test_attention_3d_gqa_attn_mask_expanded/test_data_set_0/input_1.pb +0 -0
  339. onnx/backend/test/data/node/test_attention_3d_gqa_attn_mask_expanded/test_data_set_0/input_2.pb +0 -0
  340. onnx/backend/test/data/node/test_attention_3d_gqa_attn_mask_expanded/test_data_set_0/input_3.pb +1 -0
  341. onnx/backend/test/data/node/test_attention_3d_gqa_attn_mask_expanded/test_data_set_0/output_0.pb +0 -0
  342. onnx/backend/test/data/node/test_attention_3d_gqa_causal/model.onnx +0 -0
  343. onnx/backend/test/data/node/test_attention_3d_gqa_causal/test_data_set_0/input_0.pb +0 -0
  344. onnx/backend/test/data/node/test_attention_3d_gqa_causal/test_data_set_0/input_1.pb +0 -0
  345. onnx/backend/test/data/node/test_attention_3d_gqa_causal/test_data_set_0/input_2.pb +0 -0
  346. onnx/backend/test/data/node/test_attention_3d_gqa_causal/test_data_set_0/output_0.pb +0 -0
  347. onnx/backend/test/data/node/test_attention_3d_gqa_causal_expanded/model.onnx +0 -0
  348. onnx/backend/test/data/node/test_attention_3d_gqa_causal_expanded/test_data_set_0/input_0.pb +0 -0
  349. onnx/backend/test/data/node/test_attention_3d_gqa_causal_expanded/test_data_set_0/input_1.pb +0 -0
  350. onnx/backend/test/data/node/test_attention_3d_gqa_causal_expanded/test_data_set_0/input_2.pb +0 -0
  351. onnx/backend/test/data/node/test_attention_3d_gqa_causal_expanded/test_data_set_0/output_0.pb +0 -0
  352. onnx/backend/test/data/node/test_attention_3d_gqa_expanded/model.onnx +0 -0
  353. onnx/backend/test/data/node/test_attention_3d_gqa_expanded/test_data_set_0/input_0.pb +0 -0
  354. onnx/backend/test/data/node/test_attention_3d_gqa_expanded/test_data_set_0/input_1.pb +0 -0
  355. onnx/backend/test/data/node/test_attention_3d_gqa_expanded/test_data_set_0/input_2.pb +0 -0
  356. onnx/backend/test/data/node/test_attention_3d_gqa_expanded/test_data_set_0/output_0.pb +0 -0
  357. onnx/backend/test/data/node/test_attention_3d_gqa_scaled/model.onnx +0 -0
  358. onnx/backend/test/data/node/test_attention_3d_gqa_scaled/test_data_set_0/input_0.pb +0 -0
  359. onnx/backend/test/data/node/test_attention_3d_gqa_scaled/test_data_set_0/input_1.pb +0 -0
  360. onnx/backend/test/data/node/test_attention_3d_gqa_scaled/test_data_set_0/input_2.pb +0 -0
  361. onnx/backend/test/data/node/test_attention_3d_gqa_scaled/test_data_set_0/output_0.pb +0 -0
  362. onnx/backend/test/data/node/test_attention_3d_gqa_scaled_expanded/model.onnx +0 -0
  363. onnx/backend/test/data/node/test_attention_3d_gqa_scaled_expanded/test_data_set_0/input_0.pb +0 -0
  364. onnx/backend/test/data/node/test_attention_3d_gqa_scaled_expanded/test_data_set_0/input_1.pb +0 -0
  365. onnx/backend/test/data/node/test_attention_3d_gqa_scaled_expanded/test_data_set_0/input_2.pb +0 -0
  366. onnx/backend/test/data/node/test_attention_3d_gqa_scaled_expanded/test_data_set_0/output_0.pb +0 -0
  367. onnx/backend/test/data/node/test_attention_3d_gqa_softcap/model.onnx +0 -0
  368. onnx/backend/test/data/node/test_attention_3d_gqa_softcap/test_data_set_0/input_0.pb +0 -0
  369. onnx/backend/test/data/node/test_attention_3d_gqa_softcap/test_data_set_0/input_1.pb +0 -0
  370. onnx/backend/test/data/node/test_attention_3d_gqa_softcap/test_data_set_0/input_2.pb +0 -0
  371. onnx/backend/test/data/node/test_attention_3d_gqa_softcap/test_data_set_0/output_0.pb +0 -0
  372. onnx/backend/test/data/node/test_attention_3d_gqa_softcap_expanded/model.onnx +0 -0
  373. onnx/backend/test/data/node/test_attention_3d_gqa_softcap_expanded/test_data_set_0/input_0.pb +0 -0
  374. onnx/backend/test/data/node/test_attention_3d_gqa_softcap_expanded/test_data_set_0/input_1.pb +0 -0
  375. onnx/backend/test/data/node/test_attention_3d_gqa_softcap_expanded/test_data_set_0/input_2.pb +0 -0
  376. onnx/backend/test/data/node/test_attention_3d_gqa_softcap_expanded/test_data_set_0/output_0.pb +0 -0
  377. onnx/backend/test/data/node/test_attention_3d_gqa_with_past_and_present/model.onnx +0 -0
  378. onnx/backend/test/data/node/test_attention_3d_gqa_with_past_and_present/test_data_set_0/input_0.pb +0 -0
  379. onnx/backend/test/data/node/test_attention_3d_gqa_with_past_and_present/test_data_set_0/input_1.pb +0 -0
  380. onnx/backend/test/data/node/test_attention_3d_gqa_with_past_and_present/test_data_set_0/input_2.pb +0 -0
  381. onnx/backend/test/data/node/test_attention_3d_gqa_with_past_and_present/test_data_set_0/input_3.pb +0 -0
  382. onnx/backend/test/data/node/test_attention_3d_gqa_with_past_and_present/test_data_set_0/input_4.pb +0 -0
  383. onnx/backend/test/data/node/test_attention_3d_gqa_with_past_and_present/test_data_set_0/input_5.pb +0 -0
  384. onnx/backend/test/data/node/test_attention_3d_gqa_with_past_and_present/test_data_set_0/output_0.pb +0 -0
  385. onnx/backend/test/data/node/test_attention_3d_gqa_with_past_and_present/test_data_set_0/output_1.pb +0 -0
  386. onnx/backend/test/data/node/test_attention_3d_gqa_with_past_and_present/test_data_set_0/output_2.pb +0 -0
  387. onnx/backend/test/data/node/test_attention_3d_gqa_with_past_and_present_expanded/model.onnx +0 -0
  388. onnx/backend/test/data/node/test_attention_3d_gqa_with_past_and_present_expanded/test_data_set_0/input_0.pb +0 -0
  389. onnx/backend/test/data/node/test_attention_3d_gqa_with_past_and_present_expanded/test_data_set_0/input_1.pb +0 -0
  390. onnx/backend/test/data/node/test_attention_3d_gqa_with_past_and_present_expanded/test_data_set_0/input_2.pb +0 -0
  391. onnx/backend/test/data/node/test_attention_3d_gqa_with_past_and_present_expanded/test_data_set_0/input_3.pb +0 -0
  392. onnx/backend/test/data/node/test_attention_3d_gqa_with_past_and_present_expanded/test_data_set_0/input_4.pb +0 -0
  393. onnx/backend/test/data/node/test_attention_3d_gqa_with_past_and_present_expanded/test_data_set_0/input_5.pb +0 -0
  394. onnx/backend/test/data/node/test_attention_3d_gqa_with_past_and_present_expanded/test_data_set_0/output_0.pb +0 -0
  395. onnx/backend/test/data/node/test_attention_3d_gqa_with_past_and_present_expanded/test_data_set_0/output_1.pb +0 -0
  396. onnx/backend/test/data/node/test_attention_3d_gqa_with_past_and_present_expanded/test_data_set_0/output_2.pb +0 -0
  397. onnx/backend/test/data/node/test_attention_3d_scaled/model.onnx +0 -0
  398. onnx/backend/test/data/node/test_attention_3d_scaled/test_data_set_0/input_0.pb +0 -0
  399. onnx/backend/test/data/node/test_attention_3d_scaled/test_data_set_0/input_1.pb +0 -0
  400. onnx/backend/test/data/node/test_attention_3d_scaled/test_data_set_0/input_2.pb +0 -0
  401. onnx/backend/test/data/node/test_attention_3d_scaled/test_data_set_0/output_0.pb +0 -0
  402. onnx/backend/test/data/node/test_attention_3d_scaled_expanded/model.onnx +0 -0
  403. onnx/backend/test/data/node/test_attention_3d_scaled_expanded/test_data_set_0/input_0.pb +0 -0
  404. onnx/backend/test/data/node/test_attention_3d_scaled_expanded/test_data_set_0/input_1.pb +0 -0
  405. onnx/backend/test/data/node/test_attention_3d_scaled_expanded/test_data_set_0/input_2.pb +0 -0
  406. onnx/backend/test/data/node/test_attention_3d_scaled_expanded/test_data_set_0/output_0.pb +0 -0
  407. onnx/backend/test/data/node/test_attention_3d_softcap/model.onnx +0 -0
  408. onnx/backend/test/data/node/test_attention_3d_softcap/test_data_set_0/input_0.pb +0 -0
  409. onnx/backend/test/data/node/test_attention_3d_softcap/test_data_set_0/input_1.pb +0 -0
  410. onnx/backend/test/data/node/test_attention_3d_softcap/test_data_set_0/input_2.pb +0 -0
  411. onnx/backend/test/data/node/test_attention_3d_softcap/test_data_set_0/output_0.pb +0 -0
  412. onnx/backend/test/data/node/test_attention_3d_softcap_expanded/model.onnx +0 -0
  413. onnx/backend/test/data/node/test_attention_3d_softcap_expanded/test_data_set_0/input_0.pb +0 -0
  414. onnx/backend/test/data/node/test_attention_3d_softcap_expanded/test_data_set_0/input_1.pb +0 -0
  415. onnx/backend/test/data/node/test_attention_3d_softcap_expanded/test_data_set_0/input_2.pb +0 -0
  416. onnx/backend/test/data/node/test_attention_3d_softcap_expanded/test_data_set_0/output_0.pb +0 -0
  417. onnx/backend/test/data/node/test_attention_3d_with_past_and_present/model.onnx +0 -0
  418. onnx/backend/test/data/node/test_attention_3d_with_past_and_present/test_data_set_0/input_0.pb +0 -0
  419. onnx/backend/test/data/node/test_attention_3d_with_past_and_present/test_data_set_0/input_1.pb +0 -0
  420. onnx/backend/test/data/node/test_attention_3d_with_past_and_present/test_data_set_0/input_2.pb +0 -0
  421. onnx/backend/test/data/node/test_attention_3d_with_past_and_present/test_data_set_0/input_3.pb +0 -0
  422. onnx/backend/test/data/node/test_attention_3d_with_past_and_present/test_data_set_0/input_4.pb +0 -0
  423. onnx/backend/test/data/node/test_attention_3d_with_past_and_present/test_data_set_0/input_5.pb +0 -0
  424. onnx/backend/test/data/node/test_attention_3d_with_past_and_present/test_data_set_0/output_0.pb +0 -0
  425. onnx/backend/test/data/node/test_attention_3d_with_past_and_present/test_data_set_0/output_1.pb +0 -0
  426. onnx/backend/test/data/node/test_attention_3d_with_past_and_present/test_data_set_0/output_2.pb +0 -0
  427. onnx/backend/test/data/node/test_attention_3d_with_past_and_present_expanded/model.onnx +0 -0
  428. onnx/backend/test/data/node/test_attention_3d_with_past_and_present_expanded/test_data_set_0/input_0.pb +0 -0
  429. onnx/backend/test/data/node/test_attention_3d_with_past_and_present_expanded/test_data_set_0/input_1.pb +0 -0
  430. onnx/backend/test/data/node/test_attention_3d_with_past_and_present_expanded/test_data_set_0/input_2.pb +0 -0
  431. onnx/backend/test/data/node/test_attention_3d_with_past_and_present_expanded/test_data_set_0/input_3.pb +0 -0
  432. onnx/backend/test/data/node/test_attention_3d_with_past_and_present_expanded/test_data_set_0/input_4.pb +0 -0
  433. onnx/backend/test/data/node/test_attention_3d_with_past_and_present_expanded/test_data_set_0/input_5.pb +0 -0
  434. onnx/backend/test/data/node/test_attention_3d_with_past_and_present_expanded/test_data_set_0/output_0.pb +0 -0
  435. onnx/backend/test/data/node/test_attention_3d_with_past_and_present_expanded/test_data_set_0/output_1.pb +0 -0
  436. onnx/backend/test/data/node/test_attention_3d_with_past_and_present_expanded/test_data_set_0/output_2.pb +0 -0
  437. onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul/model.onnx +0 -0
  438. onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul/test_data_set_0/input_0.pb +0 -0
  439. onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul/test_data_set_0/input_1.pb +0 -0
  440. onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul/test_data_set_0/input_2.pb +0 -0
  441. onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul/test_data_set_0/input_3.pb +0 -0
  442. onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul/test_data_set_0/input_4.pb +0 -0
  443. onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul/test_data_set_0/input_5.pb +0 -0
  444. onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul/test_data_set_0/output_0.pb +0 -0
  445. onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul/test_data_set_0/output_1.pb +0 -0
  446. onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul/test_data_set_0/output_2.pb +0 -0
  447. onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul/test_data_set_0/output_3.pb +0 -0
  448. onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul_bias/model.onnx +0 -0
  449. onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul_bias/test_data_set_0/input_0.pb +0 -0
  450. onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul_bias/test_data_set_0/input_1.pb +0 -0
  451. onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul_bias/test_data_set_0/input_2.pb +0 -0
  452. onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul_bias/test_data_set_0/input_3.pb +0 -0
  453. onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul_bias/test_data_set_0/input_4.pb +0 -0
  454. onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul_bias/test_data_set_0/input_5.pb +0 -0
  455. onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul_bias/test_data_set_0/output_0.pb +0 -0
  456. onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul_bias/test_data_set_0/output_1.pb +0 -0
  457. onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul_bias/test_data_set_0/output_2.pb +0 -0
  458. onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul_bias/test_data_set_0/output_3.pb +0 -0
  459. onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul_bias_expanded/model.onnx +0 -0
  460. onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul_bias_expanded/test_data_set_0/input_0.pb +0 -0
  461. onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul_bias_expanded/test_data_set_0/input_1.pb +0 -0
  462. onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul_bias_expanded/test_data_set_0/input_2.pb +0 -0
  463. onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul_bias_expanded/test_data_set_0/input_3.pb +0 -0
  464. onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul_bias_expanded/test_data_set_0/input_4.pb +0 -0
  465. onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul_bias_expanded/test_data_set_0/input_5.pb +0 -0
  466. onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul_bias_expanded/test_data_set_0/output_0.pb +0 -0
  467. onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul_bias_expanded/test_data_set_0/output_1.pb +0 -0
  468. onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul_bias_expanded/test_data_set_0/output_2.pb +0 -0
  469. onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul_bias_expanded/test_data_set_0/output_3.pb +0 -0
  470. onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul_expanded/model.onnx +0 -0
  471. onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul_expanded/test_data_set_0/input_0.pb +0 -0
  472. onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul_expanded/test_data_set_0/input_1.pb +0 -0
  473. onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul_expanded/test_data_set_0/input_2.pb +0 -0
  474. onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul_expanded/test_data_set_0/input_3.pb +0 -0
  475. onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul_expanded/test_data_set_0/input_4.pb +0 -0
  476. onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul_expanded/test_data_set_0/input_5.pb +0 -0
  477. onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul_expanded/test_data_set_0/output_0.pb +0 -0
  478. onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul_expanded/test_data_set_0/output_1.pb +0 -0
  479. onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul_expanded/test_data_set_0/output_2.pb +0 -0
  480. onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul_expanded/test_data_set_0/output_3.pb +0 -0
  481. onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul_softcap/model.onnx +0 -0
  482. onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul_softcap/test_data_set_0/input_0.pb +0 -0
  483. onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul_softcap/test_data_set_0/input_1.pb +0 -0
  484. onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul_softcap/test_data_set_0/input_2.pb +0 -0
  485. onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul_softcap/test_data_set_0/input_3.pb +0 -0
  486. onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul_softcap/test_data_set_0/input_4.pb +0 -0
  487. onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul_softcap/test_data_set_0/input_5.pb +0 -0
  488. onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul_softcap/test_data_set_0/output_0.pb +0 -0
  489. onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul_softcap/test_data_set_0/output_1.pb +0 -0
  490. onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul_softcap/test_data_set_0/output_2.pb +0 -0
  491. onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul_softcap/test_data_set_0/output_3.pb +0 -0
  492. onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul_softcap_expanded/model.onnx +0 -0
  493. onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul_softcap_expanded/test_data_set_0/input_0.pb +0 -0
  494. onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul_softcap_expanded/test_data_set_0/input_1.pb +0 -0
  495. onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul_softcap_expanded/test_data_set_0/input_2.pb +0 -0
  496. onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul_softcap_expanded/test_data_set_0/input_3.pb +0 -0
  497. onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul_softcap_expanded/test_data_set_0/input_4.pb +0 -0
  498. onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul_softcap_expanded/test_data_set_0/input_5.pb +0 -0
  499. onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul_softcap_expanded/test_data_set_0/output_0.pb +0 -0
  500. onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul_softcap_expanded/test_data_set_0/output_1.pb +0 -0
  501. onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul_softcap_expanded/test_data_set_0/output_2.pb +0 -0
  502. onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul_softcap_expanded/test_data_set_0/output_3.pb +0 -0
  503. onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul_softmax/model.onnx +0 -0
  504. onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul_softmax/test_data_set_0/input_0.pb +0 -0
  505. onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul_softmax/test_data_set_0/input_1.pb +0 -0
  506. onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul_softmax/test_data_set_0/input_2.pb +0 -0
  507. onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul_softmax/test_data_set_0/input_3.pb +0 -0
  508. onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul_softmax/test_data_set_0/input_4.pb +0 -0
  509. onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul_softmax/test_data_set_0/input_5.pb +0 -0
  510. onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul_softmax/test_data_set_0/output_0.pb +0 -0
  511. onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul_softmax/test_data_set_0/output_1.pb +0 -0
  512. onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul_softmax/test_data_set_0/output_2.pb +0 -0
  513. onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul_softmax/test_data_set_0/output_3.pb +0 -0
  514. onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul_softmax_expanded/model.onnx +0 -0
  515. onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul_softmax_expanded/test_data_set_0/input_0.pb +0 -0
  516. onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul_softmax_expanded/test_data_set_0/input_1.pb +0 -0
  517. onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul_softmax_expanded/test_data_set_0/input_2.pb +0 -0
  518. onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul_softmax_expanded/test_data_set_0/input_3.pb +0 -0
  519. onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul_softmax_expanded/test_data_set_0/input_4.pb +0 -0
  520. onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul_softmax_expanded/test_data_set_0/input_5.pb +0 -0
  521. onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul_softmax_expanded/test_data_set_0/output_0.pb +0 -0
  522. onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul_softmax_expanded/test_data_set_0/output_1.pb +0 -0
  523. onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul_softmax_expanded/test_data_set_0/output_2.pb +0 -0
  524. onnx/backend/test/data/node/test_attention_3d_with_past_and_present_qk_matmul_softmax_expanded/test_data_set_0/output_3.pb +0 -0
  525. onnx/backend/test/data/node/test_attention_4d/model.onnx +0 -0
  526. onnx/backend/test/data/node/test_attention_4d/test_data_set_0/input_0.pb +0 -0
  527. onnx/backend/test/data/node/test_attention_4d/test_data_set_0/input_1.pb +0 -0
  528. onnx/backend/test/data/node/test_attention_4d/test_data_set_0/input_2.pb +0 -0
  529. onnx/backend/test/data/node/test_attention_4d/test_data_set_0/output_0.pb +0 -0
  530. onnx/backend/test/data/node/test_attention_4d_attn_mask/model.onnx +0 -0
  531. onnx/backend/test/data/node/test_attention_4d_attn_mask/test_data_set_0/input_0.pb +0 -0
  532. onnx/backend/test/data/node/test_attention_4d_attn_mask/test_data_set_0/input_1.pb +0 -0
  533. onnx/backend/test/data/node/test_attention_4d_attn_mask/test_data_set_0/input_2.pb +0 -0
  534. onnx/backend/test/data/node/test_attention_4d_attn_mask/test_data_set_0/input_3.pb +1 -0
  535. onnx/backend/test/data/node/test_attention_4d_attn_mask/test_data_set_0/output_0.pb +0 -0
  536. onnx/backend/test/data/node/test_attention_4d_attn_mask_bool/model.onnx +0 -0
  537. onnx/backend/test/data/node/test_attention_4d_attn_mask_bool/test_data_set_0/input_0.pb +0 -0
  538. onnx/backend/test/data/node/test_attention_4d_attn_mask_bool/test_data_set_0/input_1.pb +0 -0
  539. onnx/backend/test/data/node/test_attention_4d_attn_mask_bool/test_data_set_0/input_2.pb +0 -0
  540. onnx/backend/test/data/node/test_attention_4d_attn_mask_bool/test_data_set_0/input_3.pb +1 -0
  541. onnx/backend/test/data/node/test_attention_4d_attn_mask_bool/test_data_set_0/output_0.pb +0 -0
  542. onnx/backend/test/data/node/test_attention_4d_attn_mask_bool_expanded/model.onnx +0 -0
  543. onnx/backend/test/data/node/test_attention_4d_attn_mask_bool_expanded/test_data_set_0/input_0.pb +0 -0
  544. onnx/backend/test/data/node/test_attention_4d_attn_mask_bool_expanded/test_data_set_0/input_1.pb +0 -0
  545. onnx/backend/test/data/node/test_attention_4d_attn_mask_bool_expanded/test_data_set_0/input_2.pb +0 -0
  546. onnx/backend/test/data/node/test_attention_4d_attn_mask_bool_expanded/test_data_set_0/input_3.pb +1 -0
  547. onnx/backend/test/data/node/test_attention_4d_attn_mask_bool_expanded/test_data_set_0/output_0.pb +0 -0
  548. onnx/backend/test/data/node/test_attention_4d_attn_mask_expanded/model.onnx +0 -0
  549. onnx/backend/test/data/node/test_attention_4d_attn_mask_expanded/test_data_set_0/input_0.pb +0 -0
  550. onnx/backend/test/data/node/test_attention_4d_attn_mask_expanded/test_data_set_0/input_1.pb +0 -0
  551. onnx/backend/test/data/node/test_attention_4d_attn_mask_expanded/test_data_set_0/input_2.pb +0 -0
  552. onnx/backend/test/data/node/test_attention_4d_attn_mask_expanded/test_data_set_0/input_3.pb +1 -0
  553. onnx/backend/test/data/node/test_attention_4d_attn_mask_expanded/test_data_set_0/output_0.pb +0 -0
  554. onnx/backend/test/data/node/test_attention_4d_causal/model.onnx +0 -0
  555. onnx/backend/test/data/node/test_attention_4d_causal/test_data_set_0/input_0.pb +0 -0
  556. onnx/backend/test/data/node/test_attention_4d_causal/test_data_set_0/input_1.pb +0 -0
  557. onnx/backend/test/data/node/test_attention_4d_causal/test_data_set_0/input_2.pb +0 -0
  558. onnx/backend/test/data/node/test_attention_4d_causal/test_data_set_0/output_0.pb +0 -0
  559. onnx/backend/test/data/node/test_attention_4d_causal_expanded/model.onnx +0 -0
  560. onnx/backend/test/data/node/test_attention_4d_causal_expanded/test_data_set_0/input_0.pb +0 -0
  561. onnx/backend/test/data/node/test_attention_4d_causal_expanded/test_data_set_0/input_1.pb +0 -0
  562. onnx/backend/test/data/node/test_attention_4d_causal_expanded/test_data_set_0/input_2.pb +0 -0
  563. onnx/backend/test/data/node/test_attention_4d_causal_expanded/test_data_set_0/output_0.pb +0 -0
  564. onnx/backend/test/data/node/test_attention_4d_diff_heads_sizes/model.onnx +0 -0
  565. onnx/backend/test/data/node/test_attention_4d_diff_heads_sizes/test_data_set_0/input_0.pb +0 -0
  566. onnx/backend/test/data/node/test_attention_4d_diff_heads_sizes/test_data_set_0/input_1.pb +0 -0
  567. onnx/backend/test/data/node/test_attention_4d_diff_heads_sizes/test_data_set_0/input_2.pb +0 -0
  568. onnx/backend/test/data/node/test_attention_4d_diff_heads_sizes/test_data_set_0/output_0.pb +0 -0
  569. onnx/backend/test/data/node/test_attention_4d_diff_heads_sizes_attn_mask/model.onnx +0 -0
  570. onnx/backend/test/data/node/test_attention_4d_diff_heads_sizes_attn_mask/test_data_set_0/input_0.pb +0 -0
  571. onnx/backend/test/data/node/test_attention_4d_diff_heads_sizes_attn_mask/test_data_set_0/input_1.pb +0 -0
  572. onnx/backend/test/data/node/test_attention_4d_diff_heads_sizes_attn_mask/test_data_set_0/input_2.pb +0 -0
  573. onnx/backend/test/data/node/test_attention_4d_diff_heads_sizes_attn_mask/test_data_set_0/input_3.pb +0 -0
  574. onnx/backend/test/data/node/test_attention_4d_diff_heads_sizes_attn_mask/test_data_set_0/output_0.pb +0 -0
  575. onnx/backend/test/data/node/test_attention_4d_diff_heads_sizes_attn_mask_expanded/model.onnx +0 -0
  576. onnx/backend/test/data/node/test_attention_4d_diff_heads_sizes_attn_mask_expanded/test_data_set_0/input_0.pb +0 -0
  577. onnx/backend/test/data/node/test_attention_4d_diff_heads_sizes_attn_mask_expanded/test_data_set_0/input_1.pb +0 -0
  578. onnx/backend/test/data/node/test_attention_4d_diff_heads_sizes_attn_mask_expanded/test_data_set_0/input_2.pb +0 -0
  579. onnx/backend/test/data/node/test_attention_4d_diff_heads_sizes_attn_mask_expanded/test_data_set_0/input_3.pb +0 -0
  580. onnx/backend/test/data/node/test_attention_4d_diff_heads_sizes_attn_mask_expanded/test_data_set_0/output_0.pb +0 -0
  581. onnx/backend/test/data/node/test_attention_4d_diff_heads_sizes_causal/model.onnx +0 -0
  582. onnx/backend/test/data/node/test_attention_4d_diff_heads_sizes_causal/test_data_set_0/input_0.pb +0 -0
  583. onnx/backend/test/data/node/test_attention_4d_diff_heads_sizes_causal/test_data_set_0/input_1.pb +0 -0
  584. onnx/backend/test/data/node/test_attention_4d_diff_heads_sizes_causal/test_data_set_0/input_2.pb +0 -0
  585. onnx/backend/test/data/node/test_attention_4d_diff_heads_sizes_causal/test_data_set_0/output_0.pb +0 -0
  586. onnx/backend/test/data/node/test_attention_4d_diff_heads_sizes_causal_expanded/model.onnx +0 -0
  587. onnx/backend/test/data/node/test_attention_4d_diff_heads_sizes_causal_expanded/test_data_set_0/input_0.pb +0 -0
  588. onnx/backend/test/data/node/test_attention_4d_diff_heads_sizes_causal_expanded/test_data_set_0/input_1.pb +0 -0
  589. onnx/backend/test/data/node/test_attention_4d_diff_heads_sizes_causal_expanded/test_data_set_0/input_2.pb +0 -0
  590. onnx/backend/test/data/node/test_attention_4d_diff_heads_sizes_causal_expanded/test_data_set_0/output_0.pb +0 -0
  591. onnx/backend/test/data/node/test_attention_4d_diff_heads_sizes_expanded/model.onnx +0 -0
  592. onnx/backend/test/data/node/test_attention_4d_diff_heads_sizes_expanded/test_data_set_0/input_0.pb +0 -0
  593. onnx/backend/test/data/node/test_attention_4d_diff_heads_sizes_expanded/test_data_set_0/input_1.pb +0 -0
  594. onnx/backend/test/data/node/test_attention_4d_diff_heads_sizes_expanded/test_data_set_0/input_2.pb +0 -0
  595. onnx/backend/test/data/node/test_attention_4d_diff_heads_sizes_expanded/test_data_set_0/output_0.pb +0 -0
  596. onnx/backend/test/data/node/test_attention_4d_diff_heads_sizes_scaled/model.onnx +0 -0
  597. onnx/backend/test/data/node/test_attention_4d_diff_heads_sizes_scaled/test_data_set_0/input_0.pb +0 -0
  598. onnx/backend/test/data/node/test_attention_4d_diff_heads_sizes_scaled/test_data_set_0/input_1.pb +0 -0
  599. onnx/backend/test/data/node/test_attention_4d_diff_heads_sizes_scaled/test_data_set_0/input_2.pb +0 -0
  600. onnx/backend/test/data/node/test_attention_4d_diff_heads_sizes_scaled/test_data_set_0/output_0.pb +0 -0
  601. onnx/backend/test/data/node/test_attention_4d_diff_heads_sizes_scaled_expanded/model.onnx +0 -0
  602. onnx/backend/test/data/node/test_attention_4d_diff_heads_sizes_scaled_expanded/test_data_set_0/input_0.pb +0 -0
  603. onnx/backend/test/data/node/test_attention_4d_diff_heads_sizes_scaled_expanded/test_data_set_0/input_1.pb +0 -0
  604. onnx/backend/test/data/node/test_attention_4d_diff_heads_sizes_scaled_expanded/test_data_set_0/input_2.pb +0 -0
  605. onnx/backend/test/data/node/test_attention_4d_diff_heads_sizes_scaled_expanded/test_data_set_0/output_0.pb +0 -0
  606. onnx/backend/test/data/node/test_attention_4d_diff_heads_sizes_softcap/model.onnx +0 -0
  607. onnx/backend/test/data/node/test_attention_4d_diff_heads_sizes_softcap/test_data_set_0/input_0.pb +0 -0
  608. onnx/backend/test/data/node/test_attention_4d_diff_heads_sizes_softcap/test_data_set_0/input_1.pb +0 -0
  609. onnx/backend/test/data/node/test_attention_4d_diff_heads_sizes_softcap/test_data_set_0/input_2.pb +0 -0
  610. onnx/backend/test/data/node/test_attention_4d_diff_heads_sizes_softcap/test_data_set_0/output_0.pb +0 -0
  611. onnx/backend/test/data/node/test_attention_4d_diff_heads_sizes_softcap_expanded/model.onnx +0 -0
  612. onnx/backend/test/data/node/test_attention_4d_diff_heads_sizes_softcap_expanded/test_data_set_0/input_0.pb +0 -0
  613. onnx/backend/test/data/node/test_attention_4d_diff_heads_sizes_softcap_expanded/test_data_set_0/input_1.pb +0 -0
  614. onnx/backend/test/data/node/test_attention_4d_diff_heads_sizes_softcap_expanded/test_data_set_0/input_2.pb +0 -0
  615. onnx/backend/test/data/node/test_attention_4d_diff_heads_sizes_softcap_expanded/test_data_set_0/output_0.pb +0 -0
  616. onnx/backend/test/data/node/test_attention_4d_diff_heads_with_past_and_present/model.onnx +0 -0
  617. onnx/backend/test/data/node/test_attention_4d_diff_heads_with_past_and_present/test_data_set_0/input_0.pb +0 -0
  618. onnx/backend/test/data/node/test_attention_4d_diff_heads_with_past_and_present/test_data_set_0/input_1.pb +0 -0
  619. onnx/backend/test/data/node/test_attention_4d_diff_heads_with_past_and_present/test_data_set_0/input_2.pb +0 -0
  620. onnx/backend/test/data/node/test_attention_4d_diff_heads_with_past_and_present/test_data_set_0/input_3.pb +0 -0
  621. onnx/backend/test/data/node/test_attention_4d_diff_heads_with_past_and_present/test_data_set_0/input_4.pb +0 -0
  622. onnx/backend/test/data/node/test_attention_4d_diff_heads_with_past_and_present/test_data_set_0/input_5.pb +0 -0
  623. onnx/backend/test/data/node/test_attention_4d_diff_heads_with_past_and_present/test_data_set_0/output_0.pb +0 -0
  624. onnx/backend/test/data/node/test_attention_4d_diff_heads_with_past_and_present/test_data_set_0/output_1.pb +0 -0
  625. onnx/backend/test/data/node/test_attention_4d_diff_heads_with_past_and_present/test_data_set_0/output_2.pb +0 -0
  626. onnx/backend/test/data/node/test_attention_4d_diff_heads_with_past_and_present_expanded/model.onnx +0 -0
  627. onnx/backend/test/data/node/test_attention_4d_diff_heads_with_past_and_present_expanded/test_data_set_0/input_0.pb +0 -0
  628. onnx/backend/test/data/node/test_attention_4d_diff_heads_with_past_and_present_expanded/test_data_set_0/input_1.pb +0 -0
  629. onnx/backend/test/data/node/test_attention_4d_diff_heads_with_past_and_present_expanded/test_data_set_0/input_2.pb +0 -0
  630. onnx/backend/test/data/node/test_attention_4d_diff_heads_with_past_and_present_expanded/test_data_set_0/input_3.pb +0 -0
  631. onnx/backend/test/data/node/test_attention_4d_diff_heads_with_past_and_present_expanded/test_data_set_0/input_4.pb +0 -0
  632. onnx/backend/test/data/node/test_attention_4d_diff_heads_with_past_and_present_expanded/test_data_set_0/input_5.pb +0 -0
  633. onnx/backend/test/data/node/test_attention_4d_diff_heads_with_past_and_present_expanded/test_data_set_0/output_0.pb +0 -0
  634. onnx/backend/test/data/node/test_attention_4d_diff_heads_with_past_and_present_expanded/test_data_set_0/output_1.pb +0 -0
  635. onnx/backend/test/data/node/test_attention_4d_diff_heads_with_past_and_present_expanded/test_data_set_0/output_2.pb +0 -0
  636. onnx/backend/test/data/node/test_attention_4d_expanded/model.onnx +0 -0
  637. onnx/backend/test/data/node/test_attention_4d_expanded/test_data_set_0/input_0.pb +0 -0
  638. onnx/backend/test/data/node/test_attention_4d_expanded/test_data_set_0/input_1.pb +0 -0
  639. onnx/backend/test/data/node/test_attention_4d_expanded/test_data_set_0/input_2.pb +0 -0
  640. onnx/backend/test/data/node/test_attention_4d_expanded/test_data_set_0/output_0.pb +0 -0
  641. onnx/backend/test/data/node/test_attention_4d_gqa/model.onnx +0 -0
  642. onnx/backend/test/data/node/test_attention_4d_gqa/test_data_set_0/input_0.pb +0 -0
  643. onnx/backend/test/data/node/test_attention_4d_gqa/test_data_set_0/input_1.pb +0 -0
  644. onnx/backend/test/data/node/test_attention_4d_gqa/test_data_set_0/input_2.pb +0 -0
  645. onnx/backend/test/data/node/test_attention_4d_gqa/test_data_set_0/output_0.pb +0 -0
  646. onnx/backend/test/data/node/test_attention_4d_gqa_attn_mask/model.onnx +0 -0
  647. onnx/backend/test/data/node/test_attention_4d_gqa_attn_mask/test_data_set_0/input_0.pb +0 -0
  648. onnx/backend/test/data/node/test_attention_4d_gqa_attn_mask/test_data_set_0/input_1.pb +0 -0
  649. onnx/backend/test/data/node/test_attention_4d_gqa_attn_mask/test_data_set_0/input_2.pb +0 -0
  650. onnx/backend/test/data/node/test_attention_4d_gqa_attn_mask/test_data_set_0/input_3.pb +1 -0
  651. onnx/backend/test/data/node/test_attention_4d_gqa_attn_mask/test_data_set_0/output_0.pb +0 -0
  652. onnx/backend/test/data/node/test_attention_4d_gqa_attn_mask_expanded/model.onnx +0 -0
  653. onnx/backend/test/data/node/test_attention_4d_gqa_attn_mask_expanded/test_data_set_0/input_0.pb +0 -0
  654. onnx/backend/test/data/node/test_attention_4d_gqa_attn_mask_expanded/test_data_set_0/input_1.pb +0 -0
  655. onnx/backend/test/data/node/test_attention_4d_gqa_attn_mask_expanded/test_data_set_0/input_2.pb +0 -0
  656. onnx/backend/test/data/node/test_attention_4d_gqa_attn_mask_expanded/test_data_set_0/input_3.pb +1 -0
  657. onnx/backend/test/data/node/test_attention_4d_gqa_attn_mask_expanded/test_data_set_0/output_0.pb +0 -0
  658. onnx/backend/test/data/node/test_attention_4d_gqa_causal/model.onnx +0 -0
  659. onnx/backend/test/data/node/test_attention_4d_gqa_causal/test_data_set_0/input_0.pb +0 -0
  660. onnx/backend/test/data/node/test_attention_4d_gqa_causal/test_data_set_0/input_1.pb +0 -0
  661. onnx/backend/test/data/node/test_attention_4d_gqa_causal/test_data_set_0/input_2.pb +0 -0
  662. onnx/backend/test/data/node/test_attention_4d_gqa_causal/test_data_set_0/output_0.pb +0 -0
  663. onnx/backend/test/data/node/test_attention_4d_gqa_causal_expanded/model.onnx +0 -0
  664. onnx/backend/test/data/node/test_attention_4d_gqa_causal_expanded/test_data_set_0/input_0.pb +0 -0
  665. onnx/backend/test/data/node/test_attention_4d_gqa_causal_expanded/test_data_set_0/input_1.pb +0 -0
  666. onnx/backend/test/data/node/test_attention_4d_gqa_causal_expanded/test_data_set_0/input_2.pb +0 -0
  667. onnx/backend/test/data/node/test_attention_4d_gqa_causal_expanded/test_data_set_0/output_0.pb +0 -0
  668. onnx/backend/test/data/node/test_attention_4d_gqa_expanded/model.onnx +0 -0
  669. onnx/backend/test/data/node/test_attention_4d_gqa_expanded/test_data_set_0/input_0.pb +0 -0
  670. onnx/backend/test/data/node/test_attention_4d_gqa_expanded/test_data_set_0/input_1.pb +0 -0
  671. onnx/backend/test/data/node/test_attention_4d_gqa_expanded/test_data_set_0/input_2.pb +0 -0
  672. onnx/backend/test/data/node/test_attention_4d_gqa_expanded/test_data_set_0/output_0.pb +0 -0
  673. onnx/backend/test/data/node/test_attention_4d_gqa_scaled/model.onnx +0 -0
  674. onnx/backend/test/data/node/test_attention_4d_gqa_scaled/test_data_set_0/input_0.pb +0 -0
  675. onnx/backend/test/data/node/test_attention_4d_gqa_scaled/test_data_set_0/input_1.pb +0 -0
  676. onnx/backend/test/data/node/test_attention_4d_gqa_scaled/test_data_set_0/input_2.pb +0 -0
  677. onnx/backend/test/data/node/test_attention_4d_gqa_scaled/test_data_set_0/output_0.pb +0 -0
  678. onnx/backend/test/data/node/test_attention_4d_gqa_scaled_expanded/model.onnx +0 -0
  679. onnx/backend/test/data/node/test_attention_4d_gqa_scaled_expanded/test_data_set_0/input_0.pb +0 -0
  680. onnx/backend/test/data/node/test_attention_4d_gqa_scaled_expanded/test_data_set_0/input_1.pb +0 -0
  681. onnx/backend/test/data/node/test_attention_4d_gqa_scaled_expanded/test_data_set_0/input_2.pb +0 -0
  682. onnx/backend/test/data/node/test_attention_4d_gqa_scaled_expanded/test_data_set_0/output_0.pb +0 -0
  683. onnx/backend/test/data/node/test_attention_4d_gqa_softcap/model.onnx +0 -0
  684. onnx/backend/test/data/node/test_attention_4d_gqa_softcap/test_data_set_0/input_0.pb +0 -0
  685. onnx/backend/test/data/node/test_attention_4d_gqa_softcap/test_data_set_0/input_1.pb +0 -0
  686. onnx/backend/test/data/node/test_attention_4d_gqa_softcap/test_data_set_0/input_2.pb +0 -0
  687. onnx/backend/test/data/node/test_attention_4d_gqa_softcap/test_data_set_0/output_0.pb +0 -0
  688. onnx/backend/test/data/node/test_attention_4d_gqa_softcap_expanded/model.onnx +0 -0
  689. onnx/backend/test/data/node/test_attention_4d_gqa_softcap_expanded/test_data_set_0/input_0.pb +0 -0
  690. onnx/backend/test/data/node/test_attention_4d_gqa_softcap_expanded/test_data_set_0/input_1.pb +0 -0
  691. onnx/backend/test/data/node/test_attention_4d_gqa_softcap_expanded/test_data_set_0/input_2.pb +0 -0
  692. onnx/backend/test/data/node/test_attention_4d_gqa_softcap_expanded/test_data_set_0/output_0.pb +0 -0
  693. onnx/backend/test/data/node/test_attention_4d_gqa_with_past_and_present/model.onnx +0 -0
  694. onnx/backend/test/data/node/test_attention_4d_gqa_with_past_and_present/test_data_set_0/input_0.pb +0 -0
  695. onnx/backend/test/data/node/test_attention_4d_gqa_with_past_and_present/test_data_set_0/input_1.pb +0 -0
  696. onnx/backend/test/data/node/test_attention_4d_gqa_with_past_and_present/test_data_set_0/input_2.pb +0 -0
  697. onnx/backend/test/data/node/test_attention_4d_gqa_with_past_and_present/test_data_set_0/input_3.pb +0 -0
  698. onnx/backend/test/data/node/test_attention_4d_gqa_with_past_and_present/test_data_set_0/input_4.pb +0 -0
  699. onnx/backend/test/data/node/test_attention_4d_gqa_with_past_and_present/test_data_set_0/input_5.pb +0 -0
  700. onnx/backend/test/data/node/test_attention_4d_gqa_with_past_and_present/test_data_set_0/output_0.pb +0 -0
  701. onnx/backend/test/data/node/test_attention_4d_gqa_with_past_and_present/test_data_set_0/output_1.pb +0 -0
  702. onnx/backend/test/data/node/test_attention_4d_gqa_with_past_and_present/test_data_set_0/output_2.pb +0 -0
  703. onnx/backend/test/data/node/test_attention_4d_gqa_with_past_and_present_expanded/model.onnx +0 -0
  704. onnx/backend/test/data/node/test_attention_4d_gqa_with_past_and_present_expanded/test_data_set_0/input_0.pb +0 -0
  705. onnx/backend/test/data/node/test_attention_4d_gqa_with_past_and_present_expanded/test_data_set_0/input_1.pb +0 -0
  706. onnx/backend/test/data/node/test_attention_4d_gqa_with_past_and_present_expanded/test_data_set_0/input_2.pb +0 -0
  707. onnx/backend/test/data/node/test_attention_4d_gqa_with_past_and_present_expanded/test_data_set_0/input_3.pb +0 -0
  708. onnx/backend/test/data/node/test_attention_4d_gqa_with_past_and_present_expanded/test_data_set_0/input_4.pb +0 -0
  709. onnx/backend/test/data/node/test_attention_4d_gqa_with_past_and_present_expanded/test_data_set_0/input_5.pb +0 -0
  710. onnx/backend/test/data/node/test_attention_4d_gqa_with_past_and_present_expanded/test_data_set_0/output_0.pb +0 -0
  711. onnx/backend/test/data/node/test_attention_4d_gqa_with_past_and_present_expanded/test_data_set_0/output_1.pb +0 -0
  712. onnx/backend/test/data/node/test_attention_4d_gqa_with_past_and_present_expanded/test_data_set_0/output_2.pb +0 -0
  713. onnx/backend/test/data/node/test_attention_4d_scaled/model.onnx +0 -0
  714. onnx/backend/test/data/node/test_attention_4d_scaled/test_data_set_0/input_0.pb +0 -0
  715. onnx/backend/test/data/node/test_attention_4d_scaled/test_data_set_0/input_1.pb +0 -0
  716. onnx/backend/test/data/node/test_attention_4d_scaled/test_data_set_0/input_2.pb +0 -0
  717. onnx/backend/test/data/node/test_attention_4d_scaled/test_data_set_0/output_0.pb +0 -0
  718. onnx/backend/test/data/node/test_attention_4d_scaled_expanded/model.onnx +0 -0
  719. onnx/backend/test/data/node/test_attention_4d_scaled_expanded/test_data_set_0/input_0.pb +0 -0
  720. onnx/backend/test/data/node/test_attention_4d_scaled_expanded/test_data_set_0/input_1.pb +0 -0
  721. onnx/backend/test/data/node/test_attention_4d_scaled_expanded/test_data_set_0/input_2.pb +0 -0
  722. onnx/backend/test/data/node/test_attention_4d_scaled_expanded/test_data_set_0/output_0.pb +0 -0
  723. onnx/backend/test/data/node/test_attention_4d_softcap/model.onnx +0 -0
  724. onnx/backend/test/data/node/test_attention_4d_softcap/test_data_set_0/input_0.pb +0 -0
  725. onnx/backend/test/data/node/test_attention_4d_softcap/test_data_set_0/input_1.pb +0 -0
  726. onnx/backend/test/data/node/test_attention_4d_softcap/test_data_set_0/input_2.pb +0 -0
  727. onnx/backend/test/data/node/test_attention_4d_softcap/test_data_set_0/output_0.pb +0 -0
  728. onnx/backend/test/data/node/test_attention_4d_softcap_expanded/model.onnx +0 -0
  729. onnx/backend/test/data/node/test_attention_4d_softcap_expanded/test_data_set_0/input_0.pb +0 -0
  730. onnx/backend/test/data/node/test_attention_4d_softcap_expanded/test_data_set_0/input_1.pb +0 -0
  731. onnx/backend/test/data/node/test_attention_4d_softcap_expanded/test_data_set_0/input_2.pb +0 -0
  732. onnx/backend/test/data/node/test_attention_4d_softcap_expanded/test_data_set_0/output_0.pb +0 -0
  733. onnx/backend/test/data/node/test_attention_4d_with_past_and_present/model.onnx +0 -0
  734. onnx/backend/test/data/node/test_attention_4d_with_past_and_present/test_data_set_0/input_0.pb +0 -0
  735. onnx/backend/test/data/node/test_attention_4d_with_past_and_present/test_data_set_0/input_1.pb +0 -0
  736. onnx/backend/test/data/node/test_attention_4d_with_past_and_present/test_data_set_0/input_2.pb +0 -0
  737. onnx/backend/test/data/node/test_attention_4d_with_past_and_present/test_data_set_0/input_3.pb +0 -0
  738. onnx/backend/test/data/node/test_attention_4d_with_past_and_present/test_data_set_0/input_4.pb +0 -0
  739. onnx/backend/test/data/node/test_attention_4d_with_past_and_present/test_data_set_0/input_5.pb +0 -0
  740. onnx/backend/test/data/node/test_attention_4d_with_past_and_present/test_data_set_0/output_0.pb +0 -0
  741. onnx/backend/test/data/node/test_attention_4d_with_past_and_present/test_data_set_0/output_1.pb +0 -0
  742. onnx/backend/test/data/node/test_attention_4d_with_past_and_present/test_data_set_0/output_2.pb +0 -0
  743. onnx/backend/test/data/node/test_attention_4d_with_past_and_present_expanded/model.onnx +0 -0
  744. onnx/backend/test/data/node/test_attention_4d_with_past_and_present_expanded/test_data_set_0/input_0.pb +0 -0
  745. onnx/backend/test/data/node/test_attention_4d_with_past_and_present_expanded/test_data_set_0/input_1.pb +0 -0
  746. onnx/backend/test/data/node/test_attention_4d_with_past_and_present_expanded/test_data_set_0/input_2.pb +0 -0
  747. onnx/backend/test/data/node/test_attention_4d_with_past_and_present_expanded/test_data_set_0/input_3.pb +0 -0
  748. onnx/backend/test/data/node/test_attention_4d_with_past_and_present_expanded/test_data_set_0/input_4.pb +0 -0
  749. onnx/backend/test/data/node/test_attention_4d_with_past_and_present_expanded/test_data_set_0/input_5.pb +0 -0
  750. onnx/backend/test/data/node/test_attention_4d_with_past_and_present_expanded/test_data_set_0/output_0.pb +0 -0
  751. onnx/backend/test/data/node/test_attention_4d_with_past_and_present_expanded/test_data_set_0/output_1.pb +0 -0
  752. onnx/backend/test/data/node/test_attention_4d_with_past_and_present_expanded/test_data_set_0/output_2.pb +0 -0
  753. onnx/backend/test/data/node/test_attention_4d_with_past_and_present_qk_matmul/model.onnx +0 -0
  754. onnx/backend/test/data/node/test_attention_4d_with_past_and_present_qk_matmul/test_data_set_0/input_0.pb +0 -0
  755. onnx/backend/test/data/node/test_attention_4d_with_past_and_present_qk_matmul/test_data_set_0/input_1.pb +0 -0
  756. onnx/backend/test/data/node/test_attention_4d_with_past_and_present_qk_matmul/test_data_set_0/input_2.pb +0 -0
  757. onnx/backend/test/data/node/test_attention_4d_with_past_and_present_qk_matmul/test_data_set_0/input_3.pb +0 -0
  758. onnx/backend/test/data/node/test_attention_4d_with_past_and_present_qk_matmul/test_data_set_0/input_4.pb +0 -0
  759. onnx/backend/test/data/node/test_attention_4d_with_past_and_present_qk_matmul/test_data_set_0/input_5.pb +0 -0
  760. onnx/backend/test/data/node/test_attention_4d_with_past_and_present_qk_matmul/test_data_set_0/output_0.pb +0 -0
  761. onnx/backend/test/data/node/test_attention_4d_with_past_and_present_qk_matmul/test_data_set_0/output_1.pb +0 -0
  762. onnx/backend/test/data/node/test_attention_4d_with_past_and_present_qk_matmul/test_data_set_0/output_2.pb +0 -0
  763. onnx/backend/test/data/node/test_attention_4d_with_past_and_present_qk_matmul/test_data_set_0/output_3.pb +0 -0
  764. onnx/backend/test/data/node/test_attention_4d_with_past_and_present_qk_matmul_bias/model.onnx +0 -0
  765. onnx/backend/test/data/node/test_attention_4d_with_past_and_present_qk_matmul_bias/test_data_set_0/input_0.pb +0 -0
  766. onnx/backend/test/data/node/test_attention_4d_with_past_and_present_qk_matmul_bias/test_data_set_0/input_1.pb +0 -0
  767. onnx/backend/test/data/node/test_attention_4d_with_past_and_present_qk_matmul_bias/test_data_set_0/input_2.pb +0 -0
  768. onnx/backend/test/data/node/test_attention_4d_with_past_and_present_qk_matmul_bias/test_data_set_0/input_3.pb +0 -0
  769. onnx/backend/test/data/node/test_attention_4d_with_past_and_present_qk_matmul_bias/test_data_set_0/input_4.pb +0 -0
  770. onnx/backend/test/data/node/test_attention_4d_with_past_and_present_qk_matmul_bias/test_data_set_0/input_5.pb +0 -0
  771. onnx/backend/test/data/node/test_attention_4d_with_past_and_present_qk_matmul_bias/test_data_set_0/output_0.pb +0 -0
  772. onnx/backend/test/data/node/test_attention_4d_with_past_and_present_qk_matmul_bias/test_data_set_0/output_1.pb +0 -0
  773. onnx/backend/test/data/node/test_attention_4d_with_past_and_present_qk_matmul_bias/test_data_set_0/output_2.pb +0 -0
  774. onnx/backend/test/data/node/test_attention_4d_with_past_and_present_qk_matmul_bias/test_data_set_0/output_3.pb +0 -0
  775. onnx/backend/test/data/node/test_attention_4d_with_past_and_present_qk_matmul_bias_expanded/model.onnx +0 -0
  776. onnx/backend/test/data/node/test_attention_4d_with_past_and_present_qk_matmul_bias_expanded/test_data_set_0/input_0.pb +0 -0
  777. onnx/backend/test/data/node/test_attention_4d_with_past_and_present_qk_matmul_bias_expanded/test_data_set_0/input_1.pb +0 -0
  778. onnx/backend/test/data/node/test_attention_4d_with_past_and_present_qk_matmul_bias_expanded/test_data_set_0/input_2.pb +0 -0
  779. onnx/backend/test/data/node/test_attention_4d_with_past_and_present_qk_matmul_bias_expanded/test_data_set_0/input_3.pb +0 -0
  780. onnx/backend/test/data/node/test_attention_4d_with_past_and_present_qk_matmul_bias_expanded/test_data_set_0/input_4.pb +0 -0
  781. onnx/backend/test/data/node/test_attention_4d_with_past_and_present_qk_matmul_bias_expanded/test_data_set_0/input_5.pb +0 -0
  782. onnx/backend/test/data/node/test_attention_4d_with_past_and_present_qk_matmul_bias_expanded/test_data_set_0/output_0.pb +0 -0
  783. onnx/backend/test/data/node/test_attention_4d_with_past_and_present_qk_matmul_bias_expanded/test_data_set_0/output_1.pb +0 -0
  784. onnx/backend/test/data/node/test_attention_4d_with_past_and_present_qk_matmul_bias_expanded/test_data_set_0/output_2.pb +0 -0
  785. onnx/backend/test/data/node/test_attention_4d_with_past_and_present_qk_matmul_bias_expanded/test_data_set_0/output_3.pb +0 -0
  786. onnx/backend/test/data/node/test_attention_4d_with_past_and_present_qk_matmul_expanded/model.onnx +0 -0
  787. onnx/backend/test/data/node/test_attention_4d_with_past_and_present_qk_matmul_expanded/test_data_set_0/input_0.pb +0 -0
  788. onnx/backend/test/data/node/test_attention_4d_with_past_and_present_qk_matmul_expanded/test_data_set_0/input_1.pb +0 -0
  789. onnx/backend/test/data/node/test_attention_4d_with_past_and_present_qk_matmul_expanded/test_data_set_0/input_2.pb +0 -0
  790. onnx/backend/test/data/node/test_attention_4d_with_past_and_present_qk_matmul_expanded/test_data_set_0/input_3.pb +0 -0
  791. onnx/backend/test/data/node/test_attention_4d_with_past_and_present_qk_matmul_expanded/test_data_set_0/input_4.pb +0 -0
  792. onnx/backend/test/data/node/test_attention_4d_with_past_and_present_qk_matmul_expanded/test_data_set_0/input_5.pb +0 -0
  793. onnx/backend/test/data/node/test_attention_4d_with_past_and_present_qk_matmul_expanded/test_data_set_0/output_0.pb +0 -0
  794. onnx/backend/test/data/node/test_attention_4d_with_past_and_present_qk_matmul_expanded/test_data_set_0/output_1.pb +0 -0
  795. onnx/backend/test/data/node/test_attention_4d_with_past_and_present_qk_matmul_expanded/test_data_set_0/output_2.pb +0 -0
  796. onnx/backend/test/data/node/test_attention_4d_with_past_and_present_qk_matmul_expanded/test_data_set_0/output_3.pb +0 -0
  797. onnx/backend/test/data/node/test_attention_4d_with_qk_matmul/model.onnx +0 -0
  798. onnx/backend/test/data/node/test_attention_4d_with_qk_matmul/test_data_set_0/input_0.pb +0 -0
  799. onnx/backend/test/data/node/test_attention_4d_with_qk_matmul/test_data_set_0/input_1.pb +0 -0
  800. onnx/backend/test/data/node/test_attention_4d_with_qk_matmul/test_data_set_0/input_2.pb +0 -0
  801. onnx/backend/test/data/node/test_attention_4d_with_qk_matmul/test_data_set_0/output_0.pb +0 -0
  802. onnx/backend/test/data/node/test_attention_4d_with_qk_matmul/test_data_set_0/output_1.pb +0 -0
  803. onnx/backend/test/data/node/test_attention_4d_with_qk_matmul_bias/model.onnx +0 -0
  804. onnx/backend/test/data/node/test_attention_4d_with_qk_matmul_bias/test_data_set_0/input_0.pb +0 -0
  805. onnx/backend/test/data/node/test_attention_4d_with_qk_matmul_bias/test_data_set_0/input_1.pb +0 -0
  806. onnx/backend/test/data/node/test_attention_4d_with_qk_matmul_bias/test_data_set_0/input_2.pb +0 -0
  807. onnx/backend/test/data/node/test_attention_4d_with_qk_matmul_bias/test_data_set_0/input_3.pb +1 -0
  808. onnx/backend/test/data/node/test_attention_4d_with_qk_matmul_bias/test_data_set_0/output_0.pb +0 -0
  809. onnx/backend/test/data/node/test_attention_4d_with_qk_matmul_bias/test_data_set_0/output_1.pb +0 -0
  810. onnx/backend/test/data/node/test_attention_4d_with_qk_matmul_bias_expanded/model.onnx +0 -0
  811. onnx/backend/test/data/node/test_attention_4d_with_qk_matmul_bias_expanded/test_data_set_0/input_0.pb +0 -0
  812. onnx/backend/test/data/node/test_attention_4d_with_qk_matmul_bias_expanded/test_data_set_0/input_1.pb +0 -0
  813. onnx/backend/test/data/node/test_attention_4d_with_qk_matmul_bias_expanded/test_data_set_0/input_2.pb +0 -0
  814. onnx/backend/test/data/node/test_attention_4d_with_qk_matmul_bias_expanded/test_data_set_0/input_3.pb +1 -0
  815. onnx/backend/test/data/node/test_attention_4d_with_qk_matmul_bias_expanded/test_data_set_0/output_0.pb +0 -0
  816. onnx/backend/test/data/node/test_attention_4d_with_qk_matmul_bias_expanded/test_data_set_0/output_1.pb +0 -0
  817. onnx/backend/test/data/node/test_attention_4d_with_qk_matmul_expanded/model.onnx +0 -0
  818. onnx/backend/test/data/node/test_attention_4d_with_qk_matmul_expanded/test_data_set_0/input_0.pb +0 -0
  819. onnx/backend/test/data/node/test_attention_4d_with_qk_matmul_expanded/test_data_set_0/input_1.pb +0 -0
  820. onnx/backend/test/data/node/test_attention_4d_with_qk_matmul_expanded/test_data_set_0/input_2.pb +0 -0
  821. onnx/backend/test/data/node/test_attention_4d_with_qk_matmul_expanded/test_data_set_0/output_0.pb +0 -0
  822. onnx/backend/test/data/node/test_attention_4d_with_qk_matmul_expanded/test_data_set_0/output_1.pb +0 -0
  823. onnx/backend/test/data/node/test_attention_4d_with_qk_matmul_softcap/model.onnx +0 -0
  824. onnx/backend/test/data/node/test_attention_4d_with_qk_matmul_softcap/test_data_set_0/input_0.pb +0 -0
  825. onnx/backend/test/data/node/test_attention_4d_with_qk_matmul_softcap/test_data_set_0/input_1.pb +0 -0
  826. onnx/backend/test/data/node/test_attention_4d_with_qk_matmul_softcap/test_data_set_0/input_2.pb +0 -0
  827. onnx/backend/test/data/node/test_attention_4d_with_qk_matmul_softcap/test_data_set_0/input_3.pb +1 -0
  828. onnx/backend/test/data/node/test_attention_4d_with_qk_matmul_softcap/test_data_set_0/output_0.pb +0 -0
  829. onnx/backend/test/data/node/test_attention_4d_with_qk_matmul_softcap/test_data_set_0/output_1.pb +0 -0
  830. onnx/backend/test/data/node/test_attention_4d_with_qk_matmul_softcap_expanded/model.onnx +0 -0
  831. onnx/backend/test/data/node/test_attention_4d_with_qk_matmul_softcap_expanded/test_data_set_0/input_0.pb +0 -0
  832. onnx/backend/test/data/node/test_attention_4d_with_qk_matmul_softcap_expanded/test_data_set_0/input_1.pb +0 -0
  833. onnx/backend/test/data/node/test_attention_4d_with_qk_matmul_softcap_expanded/test_data_set_0/input_2.pb +0 -0
  834. onnx/backend/test/data/node/test_attention_4d_with_qk_matmul_softcap_expanded/test_data_set_0/input_3.pb +1 -0
  835. onnx/backend/test/data/node/test_attention_4d_with_qk_matmul_softcap_expanded/test_data_set_0/output_0.pb +0 -0
  836. onnx/backend/test/data/node/test_attention_4d_with_qk_matmul_softcap_expanded/test_data_set_0/output_1.pb +0 -0
  837. onnx/backend/test/data/node/test_attention_4d_with_qk_matmul_softmax/model.onnx +0 -0
  838. onnx/backend/test/data/node/test_attention_4d_with_qk_matmul_softmax/test_data_set_0/input_0.pb +0 -0
  839. onnx/backend/test/data/node/test_attention_4d_with_qk_matmul_softmax/test_data_set_0/input_1.pb +0 -0
  840. onnx/backend/test/data/node/test_attention_4d_with_qk_matmul_softmax/test_data_set_0/input_2.pb +0 -0
  841. onnx/backend/test/data/node/test_attention_4d_with_qk_matmul_softmax/test_data_set_0/input_3.pb +1 -0
  842. onnx/backend/test/data/node/test_attention_4d_with_qk_matmul_softmax/test_data_set_0/output_0.pb +0 -0
  843. onnx/backend/test/data/node/test_attention_4d_with_qk_matmul_softmax/test_data_set_0/output_1.pb +0 -0
  844. onnx/backend/test/data/node/test_attention_4d_with_qk_matmul_softmax_expanded/model.onnx +0 -0
  845. onnx/backend/test/data/node/test_attention_4d_with_qk_matmul_softmax_expanded/test_data_set_0/input_0.pb +0 -0
  846. onnx/backend/test/data/node/test_attention_4d_with_qk_matmul_softmax_expanded/test_data_set_0/input_1.pb +0 -0
  847. onnx/backend/test/data/node/test_attention_4d_with_qk_matmul_softmax_expanded/test_data_set_0/input_2.pb +0 -0
  848. onnx/backend/test/data/node/test_attention_4d_with_qk_matmul_softmax_expanded/test_data_set_0/input_3.pb +1 -0
  849. onnx/backend/test/data/node/test_attention_4d_with_qk_matmul_softmax_expanded/test_data_set_0/output_0.pb +0 -0
  850. onnx/backend/test/data/node/test_attention_4d_with_qk_matmul_softmax_expanded/test_data_set_0/output_1.pb +0 -0
  851. onnx/backend/test/data/node/test_averagepool_1d_default/model.onnx +0 -0
  852. onnx/backend/test/data/node/test_averagepool_2d_ceil/model.onnx +0 -0
  853. onnx/backend/test/data/node/test_averagepool_2d_ceil_last_window_starts_on_pad/model.onnx +0 -0
  854. onnx/backend/test/data/node/test_averagepool_2d_ceil_last_window_starts_on_pad/test_data_set_0/input_0.pb +1 -0
  855. onnx/backend/test/data/node/test_averagepool_2d_ceil_last_window_starts_on_pad/test_data_set_0/output_0.pb +1 -0
  856. onnx/backend/test/data/node/test_averagepool_2d_default/model.onnx +0 -0
  857. onnx/backend/test/data/node/test_averagepool_2d_dilations/model.onnx +0 -0
  858. onnx/backend/test/data/node/test_averagepool_2d_pads/model.onnx +0 -0
  859. onnx/backend/test/data/node/test_averagepool_2d_pads_count_include_pad/model.onnx +0 -0
  860. onnx/backend/test/data/node/test_averagepool_2d_precomputed_pads/model.onnx +0 -0
  861. onnx/backend/test/data/node/test_averagepool_2d_precomputed_pads_count_include_pad/model.onnx +0 -0
  862. onnx/backend/test/data/node/test_averagepool_2d_precomputed_same_upper/model.onnx +0 -0
  863. onnx/backend/test/data/node/test_averagepool_2d_precomputed_strides/model.onnx +0 -0
  864. onnx/backend/test/data/node/test_averagepool_2d_same_lower/model.onnx +0 -0
  865. onnx/backend/test/data/node/test_averagepool_2d_same_upper/model.onnx +0 -0
  866. onnx/backend/test/data/node/test_averagepool_2d_strides/model.onnx +0 -0
  867. onnx/backend/test/data/node/test_averagepool_3d_default/model.onnx +0 -0
  868. onnx/backend/test/data/node/test_averagepool_3d_dilations_large_count_include_pad_is_0_ceil_mode_is_False/model.onnx +0 -0
  869. onnx/backend/test/data/node/test_averagepool_3d_dilations_large_count_include_pad_is_0_ceil_mode_is_True/model.onnx +0 -0
  870. onnx/backend/test/data/node/test_averagepool_3d_dilations_large_count_include_pad_is_1_ceil_mode_is_False/model.onnx +0 -0
  871. onnx/backend/test/data/node/test_averagepool_3d_dilations_large_count_include_pad_is_1_ceil_mode_is_True/model.onnx +0 -0
  872. onnx/backend/test/data/node/test_averagepool_3d_dilations_large_count_include_pad_is_1_ceil_mode_is_True/test_data_set_0/output_0.pb +0 -0
  873. onnx/backend/test/data/node/test_averagepool_3d_dilations_small/model.onnx +0 -0
  874. onnx/backend/test/data/node/test_basic_conv_with_padding/model.onnx +0 -0
  875. onnx/backend/test/data/node/test_basic_conv_without_padding/model.onnx +0 -0
  876. onnx/backend/test/data/node/test_basic_deform_conv_with_padding/model.onnx +0 -0
  877. onnx/backend/test/data/node/test_basic_deform_conv_without_padding/model.onnx +0 -0
  878. onnx/backend/test/data/node/test_bernoulli/model.onnx +0 -0
  879. onnx/backend/test/data/node/test_bernoulli_double/model.onnx +0 -0
  880. onnx/backend/test/data/node/test_bernoulli_double_expanded/model.onnx +0 -0
  881. onnx/backend/test/data/node/test_bernoulli_expanded/model.onnx +0 -0
  882. onnx/backend/test/data/node/test_bernoulli_seed/model.onnx +0 -0
  883. onnx/backend/test/data/node/test_bernoulli_seed_expanded/model.onnx +0 -0
  884. onnx/backend/test/data/node/test_cast_BFLOAT16_to_FLOAT/model.onnx +0 -0
  885. onnx/backend/test/data/node/test_cast_DOUBLE_to_FLOAT/model.onnx +0 -0
  886. onnx/backend/test/data/node/test_cast_DOUBLE_to_FLOAT16/model.onnx +0 -0
  887. onnx/backend/test/data/node/test_cast_FLOAT16_to_DOUBLE/model.onnx +0 -0
  888. onnx/backend/test/data/node/test_cast_FLOAT16_to_FLOAT/model.onnx +0 -0
  889. onnx/backend/test/data/node/test_cast_FLOAT16_to_FLOAT4E2M1/model.onnx +0 -0
  890. onnx/backend/test/data/node/test_cast_FLOAT16_to_FLOAT4E2M1/test_data_set_0/input_0.pb +2 -0
  891. onnx/backend/test/data/node/test_cast_FLOAT16_to_FLOAT4E2M1/test_data_set_0/output_0.pb +2 -0
  892. onnx/backend/test/data/node/test_cast_FLOAT16_to_FLOAT8E4M3FN/model.onnx +0 -0
  893. onnx/backend/test/data/node/test_cast_FLOAT16_to_FLOAT8E4M3FNUZ/model.onnx +0 -0
  894. onnx/backend/test/data/node/test_cast_FLOAT16_to_FLOAT8E5M2/model.onnx +0 -0
  895. onnx/backend/test/data/node/test_cast_FLOAT16_to_FLOAT8E5M2FNUZ/model.onnx +0 -0
  896. onnx/backend/test/data/node/test_cast_FLOAT16_to_INT4/model.onnx +0 -0
  897. onnx/backend/test/data/node/test_cast_FLOAT16_to_INT4/test_data_set_0/output_0.pb +1 -1
  898. onnx/backend/test/data/node/test_cast_FLOAT16_to_UINT4/model.onnx +0 -0
  899. onnx/backend/test/data/node/test_cast_FLOAT4E2M1_to_FLOAT/model.onnx +0 -0
  900. onnx/backend/test/data/node/test_cast_FLOAT4E2M1_to_FLOAT/test_data_set_0/input_0.pb +2 -0
  901. onnx/backend/test/data/node/test_cast_FLOAT4E2M1_to_FLOAT/test_data_set_0/output_0.pb +0 -0
  902. onnx/backend/test/data/node/test_cast_FLOAT4E2M1_to_FLOAT16/model.onnx +0 -0
  903. onnx/backend/test/data/node/test_cast_FLOAT4E2M1_to_FLOAT16/test_data_set_0/input_0.pb +2 -0
  904. onnx/backend/test/data/node/test_cast_FLOAT4E2M1_to_FLOAT16/test_data_set_0/output_0.pb +0 -0
  905. onnx/backend/test/data/node/test_cast_FLOAT8E4M3FNUZ_to_FLOAT/model.onnx +0 -0
  906. onnx/backend/test/data/node/test_cast_FLOAT8E4M3FNUZ_to_FLOAT16/model.onnx +0 -0
  907. onnx/backend/test/data/node/test_cast_FLOAT8E4M3FN_to_FLOAT/model.onnx +0 -0
  908. onnx/backend/test/data/node/test_cast_FLOAT8E4M3FN_to_FLOAT16/model.onnx +0 -0
  909. onnx/backend/test/data/node/test_cast_FLOAT8E5M2FNUZ_to_FLOAT/model.onnx +0 -0
  910. onnx/backend/test/data/node/test_cast_FLOAT8E5M2FNUZ_to_FLOAT16/model.onnx +0 -0
  911. onnx/backend/test/data/node/test_cast_FLOAT8E5M2_to_FLOAT/model.onnx +0 -0
  912. onnx/backend/test/data/node/test_cast_FLOAT8E5M2_to_FLOAT16/model.onnx +0 -0
  913. onnx/backend/test/data/node/test_cast_FLOAT_to_BFLOAT16/model.onnx +0 -0
  914. onnx/backend/test/data/node/test_cast_FLOAT_to_DOUBLE/model.onnx +0 -0
  915. onnx/backend/test/data/node/test_cast_FLOAT_to_FLOAT16/model.onnx +0 -0
  916. onnx/backend/test/data/node/test_cast_FLOAT_to_FLOAT4E2M1/model.onnx +0 -0
  917. onnx/backend/test/data/node/test_cast_FLOAT_to_FLOAT4E2M1/test_data_set_0/input_0.pb +0 -0
  918. onnx/backend/test/data/node/test_cast_FLOAT_to_FLOAT4E2M1/test_data_set_0/output_0.pb +2 -0
  919. onnx/backend/test/data/node/test_cast_FLOAT_to_FLOAT8E4M3FN/model.onnx +0 -0
  920. onnx/backend/test/data/node/test_cast_FLOAT_to_FLOAT8E4M3FNUZ/model.onnx +0 -0
  921. onnx/backend/test/data/node/test_cast_FLOAT_to_FLOAT8E5M2/model.onnx +0 -0
  922. onnx/backend/test/data/node/test_cast_FLOAT_to_FLOAT8E5M2FNUZ/model.onnx +0 -0
  923. onnx/backend/test/data/node/test_cast_FLOAT_to_INT4/model.onnx +0 -0
  924. onnx/backend/test/data/node/test_cast_FLOAT_to_INT4/test_data_set_0/output_0.pb +1 -1
  925. onnx/backend/test/data/node/test_cast_FLOAT_to_STRING/model.onnx +0 -0
  926. onnx/backend/test/data/node/test_cast_FLOAT_to_UINT4/model.onnx +0 -0
  927. onnx/backend/test/data/node/test_cast_INT4_to_FLOAT/model.onnx +0 -0
  928. onnx/backend/test/data/node/test_cast_INT4_to_FLOAT/test_data_set_0/input_0.pb +1 -1
  929. onnx/backend/test/data/node/test_cast_INT4_to_FLOAT16/model.onnx +0 -0
  930. onnx/backend/test/data/node/test_cast_INT4_to_FLOAT16/test_data_set_0/input_0.pb +1 -1
  931. onnx/backend/test/data/node/test_cast_INT4_to_INT8/model.onnx +0 -0
  932. onnx/backend/test/data/node/test_cast_INT4_to_INT8/test_data_set_0/input_0.pb +1 -1
  933. onnx/backend/test/data/node/test_cast_STRING_to_FLOAT/model.onnx +0 -0
  934. onnx/backend/test/data/node/test_cast_UINT4_to_FLOAT/model.onnx +0 -0
  935. onnx/backend/test/data/node/test_cast_UINT4_to_FLOAT16/model.onnx +0 -0
  936. onnx/backend/test/data/node/test_cast_UINT4_to_UINT8/model.onnx +0 -0
  937. onnx/backend/test/data/node/test_cast_no_saturate_FLOAT16_to_FLOAT8E4M3FN/model.onnx +0 -0
  938. onnx/backend/test/data/node/test_cast_no_saturate_FLOAT16_to_FLOAT8E4M3FNUZ/model.onnx +0 -0
  939. onnx/backend/test/data/node/test_cast_no_saturate_FLOAT16_to_FLOAT8E5M2/model.onnx +0 -0
  940. onnx/backend/test/data/node/test_cast_no_saturate_FLOAT16_to_FLOAT8E5M2FNUZ/model.onnx +0 -0
  941. onnx/backend/test/data/node/test_cast_no_saturate_FLOAT_to_FLOAT8E4M3FN/model.onnx +0 -0
  942. onnx/backend/test/data/node/test_cast_no_saturate_FLOAT_to_FLOAT8E4M3FNUZ/model.onnx +0 -0
  943. onnx/backend/test/data/node/test_cast_no_saturate_FLOAT_to_FLOAT8E5M2/model.onnx +0 -0
  944. onnx/backend/test/data/node/test_cast_no_saturate_FLOAT_to_FLOAT8E5M2FNUZ/model.onnx +0 -0
  945. onnx/backend/test/data/node/test_castlike_BFLOAT16_to_FLOAT/model.onnx +0 -0
  946. onnx/backend/test/data/node/test_castlike_BFLOAT16_to_FLOAT_expanded/model.onnx +0 -0
  947. onnx/backend/test/data/node/test_castlike_DOUBLE_to_FLOAT/model.onnx +0 -0
  948. onnx/backend/test/data/node/test_castlike_DOUBLE_to_FLOAT16/model.onnx +0 -0
  949. onnx/backend/test/data/node/test_castlike_DOUBLE_to_FLOAT16_expanded/model.onnx +0 -0
  950. onnx/backend/test/data/node/test_castlike_DOUBLE_to_FLOAT_expanded/model.onnx +0 -0
  951. onnx/backend/test/data/node/test_castlike_FLOAT16_to_DOUBLE/model.onnx +0 -0
  952. onnx/backend/test/data/node/test_castlike_FLOAT16_to_DOUBLE_expanded/model.onnx +0 -0
  953. onnx/backend/test/data/node/test_castlike_FLOAT16_to_FLOAT/model.onnx +0 -0
  954. onnx/backend/test/data/node/test_castlike_FLOAT16_to_FLOAT_expanded/model.onnx +0 -0
  955. onnx/backend/test/data/node/test_castlike_FLOAT8E4M3FNUZ_to_FLOAT/model.onnx +0 -0
  956. onnx/backend/test/data/node/test_castlike_FLOAT8E4M3FNUZ_to_FLOAT_expanded/model.onnx +0 -0
  957. onnx/backend/test/data/node/test_castlike_FLOAT8E4M3FN_to_FLOAT/model.onnx +0 -0
  958. onnx/backend/test/data/node/test_castlike_FLOAT8E4M3FN_to_FLOAT_expanded/model.onnx +0 -0
  959. onnx/backend/test/data/node/test_castlike_FLOAT8E5M2FNUZ_to_FLOAT/model.onnx +0 -0
  960. onnx/backend/test/data/node/test_castlike_FLOAT8E5M2FNUZ_to_FLOAT_expanded/model.onnx +0 -0
  961. onnx/backend/test/data/node/test_castlike_FLOAT8E5M2_to_FLOAT/model.onnx +0 -0
  962. onnx/backend/test/data/node/test_castlike_FLOAT8E5M2_to_FLOAT_expanded/model.onnx +0 -0
  963. onnx/backend/test/data/node/test_castlike_FLOAT_to_BFLOAT16/model.onnx +0 -0
  964. onnx/backend/test/data/node/test_castlike_FLOAT_to_BFLOAT16_expanded/model.onnx +0 -0
  965. onnx/backend/test/data/node/test_castlike_FLOAT_to_DOUBLE/model.onnx +0 -0
  966. onnx/backend/test/data/node/test_castlike_FLOAT_to_DOUBLE_expanded/model.onnx +0 -0
  967. onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT16/model.onnx +0 -0
  968. onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT16_expanded/model.onnx +0 -0
  969. onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT8E4M3FN/model.onnx +0 -0
  970. onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT8E4M3FNUZ/model.onnx +0 -0
  971. onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT8E4M3FNUZ_expanded/model.onnx +0 -0
  972. onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT8E4M3FN_expanded/model.onnx +0 -0
  973. onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT8E5M2/model.onnx +0 -0
  974. onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT8E5M2FNUZ/model.onnx +0 -0
  975. onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT8E5M2FNUZ_expanded/model.onnx +0 -0
  976. onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT8E5M2_expanded/model.onnx +0 -0
  977. onnx/backend/test/data/node/test_castlike_FLOAT_to_STRING/model.onnx +0 -0
  978. onnx/backend/test/data/node/test_castlike_FLOAT_to_STRING_expanded/model.onnx +0 -0
  979. onnx/backend/test/data/node/test_castlike_STRING_to_FLOAT/model.onnx +0 -0
  980. onnx/backend/test/data/node/test_castlike_STRING_to_FLOAT_expanded/model.onnx +0 -0
  981. onnx/backend/test/data/node/test_clip_min_greater_than_max/model.onnx +0 -0
  982. onnx/backend/test/data/node/test_clip_min_greater_than_max/test_data_set_0/input_0.pb +0 -0
  983. onnx/backend/test/data/node/test_clip_min_greater_than_max/test_data_set_0/input_1.pb +0 -0
  984. onnx/backend/test/data/node/test_clip_min_greater_than_max/test_data_set_0/input_2.pb +0 -0
  985. onnx/backend/test/data/node/test_clip_min_greater_than_max/test_data_set_0/output_0.pb +0 -0
  986. onnx/backend/test/data/node/test_clip_min_greater_than_max_expanded/model.onnx +0 -0
  987. onnx/backend/test/data/node/test_clip_min_greater_than_max_expanded/test_data_set_0/input_0.pb +0 -0
  988. onnx/backend/test/data/node/test_clip_min_greater_than_max_expanded/test_data_set_0/input_1.pb +0 -0
  989. onnx/backend/test/data/node/test_clip_min_greater_than_max_expanded/test_data_set_0/input_2.pb +0 -0
  990. onnx/backend/test/data/node/test_clip_min_greater_than_max_expanded/test_data_set_0/output_0.pb +0 -0
  991. onnx/backend/test/data/node/test_constant/model.onnx +0 -0
  992. onnx/backend/test/data/node/test_constant_pad/model.onnx +0 -0
  993. onnx/backend/test/data/node/test_constant_pad_axes/model.onnx +0 -0
  994. onnx/backend/test/data/node/test_constant_pad_negative_axes/model.onnx +0 -0
  995. onnx/backend/test/data/node/test_constantofshape_float_ones/model.onnx +0 -0
  996. onnx/backend/test/data/node/test_constantofshape_int_shape_zero/model.onnx +0 -0
  997. onnx/backend/test/data/node/test_constantofshape_int_zeros/model.onnx +0 -0
  998. onnx/backend/test/data/node/test_conv_with_autopad_same/model.onnx +0 -0
  999. onnx/backend/test/data/node/test_conv_with_strides_and_asymmetric_padding/model.onnx +0 -0
  1000. onnx/backend/test/data/node/test_conv_with_strides_no_padding/model.onnx +0 -0
  1001. onnx/backend/test/data/node/test_conv_with_strides_padding/model.onnx +0 -0
  1002. onnx/backend/test/data/node/test_convtranspose/model.onnx +0 -0
  1003. onnx/backend/test/data/node/test_convtranspose_1d/model.onnx +0 -0
  1004. onnx/backend/test/data/node/test_convtranspose_3d/model.onnx +0 -0
  1005. onnx/backend/test/data/node/test_convtranspose_autopad_same/model.onnx +0 -0
  1006. onnx/backend/test/data/node/test_convtranspose_dilations/model.onnx +0 -0
  1007. onnx/backend/test/data/node/test_convtranspose_group_2/model.onnx +0 -0
  1008. onnx/backend/test/data/node/test_convtranspose_group_2/test_data_set_0/input_0.pb +0 -0
  1009. onnx/backend/test/data/node/test_convtranspose_group_2/test_data_set_0/input_1.pb +0 -0
  1010. onnx/backend/test/data/node/test_convtranspose_group_2/test_data_set_0/output_0.pb +0 -0
  1011. onnx/backend/test/data/node/test_convtranspose_group_2_image_3/model.onnx +0 -0
  1012. onnx/backend/test/data/node/test_convtranspose_group_2_image_3/test_data_set_0/input_0.pb +0 -0
  1013. onnx/backend/test/data/node/test_convtranspose_group_2_image_3/test_data_set_0/input_1.pb +0 -0
  1014. onnx/backend/test/data/node/test_convtranspose_group_2_image_3/test_data_set_0/output_0.pb +0 -0
  1015. onnx/backend/test/data/node/test_convtranspose_kernel_shape/model.onnx +0 -0
  1016. onnx/backend/test/data/node/test_convtranspose_output_shape/model.onnx +0 -0
  1017. onnx/backend/test/data/node/test_convtranspose_pad/model.onnx +0 -0
  1018. onnx/backend/test/data/node/test_convtranspose_pads/model.onnx +0 -0
  1019. onnx/backend/test/data/node/test_cos/model.onnx +0 -0
  1020. onnx/backend/test/data/node/test_cos_example/model.onnx +0 -0
  1021. onnx/backend/test/data/node/test_cosh/model.onnx +0 -0
  1022. onnx/backend/test/data/node/test_cosh_example/model.onnx +0 -0
  1023. onnx/backend/test/data/node/test_deform_conv_with_mask_bias/model.onnx +0 -0
  1024. onnx/backend/test/data/node/test_deform_conv_with_multiple_offset_groups/model.onnx +0 -0
  1025. onnx/backend/test/data/node/test_dequantizelinear/model.onnx +0 -0
  1026. onnx/backend/test/data/node/test_dequantizelinear_axis/model.onnx +0 -0
  1027. onnx/backend/test/data/node/test_dequantizelinear_blocked/model.onnx +0 -0
  1028. onnx/backend/test/data/node/test_dequantizelinear_e4m3fn/model.onnx +0 -0
  1029. onnx/backend/test/data/node/test_dequantizelinear_e4m3fn_float16/model.onnx +0 -0
  1030. onnx/backend/test/data/node/test_dequantizelinear_e4m3fn_zero_point/model.onnx +0 -0
  1031. onnx/backend/test/data/node/test_dequantizelinear_e5m2/model.onnx +0 -0
  1032. onnx/backend/test/data/node/test_dequantizelinear_float4e2m1/model.onnx +0 -0
  1033. onnx/backend/test/data/node/test_dequantizelinear_float4e2m1/test_data_set_0/input_0.pb +1 -0
  1034. onnx/backend/test/data/node/test_dequantizelinear_float4e2m1/test_data_set_0/input_1.pb +0 -0
  1035. onnx/backend/test/data/node/test_dequantizelinear_float4e2m1/test_data_set_0/input_2.pb +0 -0
  1036. onnx/backend/test/data/node/test_dequantizelinear_float4e2m1/test_data_set_0/output_0.pb +0 -0
  1037. onnx/backend/test/data/node/test_dequantizelinear_int16/model.onnx +0 -0
  1038. onnx/backend/test/data/node/test_dequantizelinear_int4/model.onnx +0 -0
  1039. onnx/backend/test/data/node/test_dequantizelinear_int4/test_data_set_0/input_0.pb +1 -1
  1040. onnx/backend/test/data/node/test_dequantizelinear_uint16/model.onnx +0 -0
  1041. onnx/backend/test/data/node/test_dequantizelinear_uint4/model.onnx +0 -0
  1042. onnx/backend/test/data/node/test_det_2d/model.onnx +0 -0
  1043. onnx/backend/test/data/node/test_det_nd/model.onnx +0 -0
  1044. onnx/backend/test/data/node/test_dropout_default/model.onnx +0 -0
  1045. onnx/backend/test/data/node/test_dropout_default_mask/model.onnx +0 -0
  1046. onnx/backend/test/data/node/test_dropout_default_mask_ratio/model.onnx +0 -0
  1047. onnx/backend/test/data/node/test_dropout_default_ratio/model.onnx +0 -0
  1048. onnx/backend/test/data/node/test_edge_pad/model.onnx +0 -0
  1049. onnx/backend/test/data/node/test_elu/model.onnx +0 -0
  1050. onnx/backend/test/data/node/test_elu_default/model.onnx +0 -0
  1051. onnx/backend/test/data/node/test_elu_example/model.onnx +0 -0
  1052. onnx/backend/test/data/node/test_eyelike_populate_off_main_diagonal/model.onnx +0 -0
  1053. onnx/backend/test/data/node/test_eyelike_with_dtype/model.onnx +0 -0
  1054. onnx/backend/test/data/node/test_eyelike_without_dtype/model.onnx +0 -0
  1055. onnx/backend/test/data/node/test_flatten_axis0/model.onnx +0 -0
  1056. onnx/backend/test/data/node/test_flatten_axis1/model.onnx +0 -0
  1057. onnx/backend/test/data/node/test_flatten_axis2/model.onnx +0 -0
  1058. onnx/backend/test/data/node/test_flatten_axis3/model.onnx +0 -0
  1059. onnx/backend/test/data/node/test_flatten_default_axis/model.onnx +0 -0
  1060. onnx/backend/test/data/node/test_flatten_negative_axis1/model.onnx +0 -0
  1061. onnx/backend/test/data/node/test_flatten_negative_axis2/model.onnx +0 -0
  1062. onnx/backend/test/data/node/test_flatten_negative_axis3/model.onnx +0 -0
  1063. onnx/backend/test/data/node/test_flatten_negative_axis4/model.onnx +0 -0
  1064. onnx/backend/test/data/node/test_globalaveragepool/model.onnx +0 -0
  1065. onnx/backend/test/data/node/test_globalaveragepool_precomputed/model.onnx +0 -0
  1066. onnx/backend/test/data/node/test_globalmaxpool/model.onnx +0 -0
  1067. onnx/backend/test/data/node/test_globalmaxpool_precomputed/model.onnx +0 -0
  1068. onnx/backend/test/data/node/test_gridsample/model.onnx +0 -0
  1069. onnx/backend/test/data/node/test_gridsample_aligncorners_true/model.onnx +0 -0
  1070. onnx/backend/test/data/node/test_gridsample_bicubic/model.onnx +0 -0
  1071. onnx/backend/test/data/node/test_gridsample_bicubic_align_corners_0_additional_1/model.onnx +0 -0
  1072. onnx/backend/test/data/node/test_gridsample_bicubic_align_corners_1_additional_1/model.onnx +0 -0
  1073. onnx/backend/test/data/node/test_gridsample_bilinear/model.onnx +0 -0
  1074. onnx/backend/test/data/node/test_gridsample_bilinear_align_corners_0_additional_1/model.onnx +0 -0
  1075. onnx/backend/test/data/node/test_gridsample_bilinear_align_corners_1_additional_1/model.onnx +0 -0
  1076. onnx/backend/test/data/node/test_gridsample_border_padding/model.onnx +0 -0
  1077. onnx/backend/test/data/node/test_gridsample_nearest/model.onnx +0 -0
  1078. onnx/backend/test/data/node/test_gridsample_nearest_align_corners_0_additional_1/model.onnx +0 -0
  1079. onnx/backend/test/data/node/test_gridsample_nearest_align_corners_1_additional_1/model.onnx +0 -0
  1080. onnx/backend/test/data/node/test_gridsample_reflection_padding/model.onnx +0 -0
  1081. onnx/backend/test/data/node/test_gridsample_volumetric_bilinear_align_corners_0/model.onnx +0 -0
  1082. onnx/backend/test/data/node/test_gridsample_volumetric_bilinear_align_corners_1/model.onnx +0 -0
  1083. onnx/backend/test/data/node/test_gridsample_volumetric_nearest_align_corners_0/model.onnx +0 -0
  1084. onnx/backend/test/data/node/test_gridsample_volumetric_nearest_align_corners_1/model.onnx +0 -0
  1085. onnx/backend/test/data/node/test_gridsample_zeros_padding/model.onnx +0 -0
  1086. onnx/backend/test/data/node/test_gru_batchwise/model.onnx +0 -0
  1087. onnx/backend/test/data/node/test_gru_defaults/model.onnx +0 -0
  1088. onnx/backend/test/data/node/test_gru_seq_length/model.onnx +0 -0
  1089. onnx/backend/test/data/node/test_gru_with_initial_bias/model.onnx +0 -0
  1090. onnx/backend/test/data/node/test_hardsigmoid/model.onnx +0 -0
  1091. onnx/backend/test/data/node/test_hardsigmoid_default/model.onnx +0 -0
  1092. onnx/backend/test/data/node/test_hardsigmoid_example/model.onnx +0 -0
  1093. onnx/backend/test/data/node/test_hardswish/model.onnx +0 -0
  1094. onnx/backend/test/data/node/test_hardswish_expanded/model.onnx +0 -0
  1095. onnx/backend/test/data/node/test_identity/model.onnx +0 -0
  1096. onnx/backend/test/data/node/test_identity_sequence/model.onnx +0 -0
  1097. onnx/backend/test/data/node/test_instancenorm_epsilon/model.onnx +0 -0
  1098. onnx/backend/test/data/node/test_instancenorm_example/model.onnx +0 -0
  1099. onnx/backend/test/data/node/test_lppool_1d_default/model.onnx +0 -0
  1100. onnx/backend/test/data/node/test_lppool_1d_default/test_data_set_0/output_0.pb +2 -2
  1101. onnx/backend/test/data/node/test_lppool_2d_default/model.onnx +0 -0
  1102. onnx/backend/test/data/node/test_lppool_2d_default/test_data_set_0/output_0.pb +0 -0
  1103. onnx/backend/test/data/node/test_lppool_2d_dilations/model.onnx +0 -0
  1104. onnx/backend/test/data/node/test_lppool_2d_pads/model.onnx +0 -0
  1105. onnx/backend/test/data/node/test_lppool_2d_pads/test_data_set_0/output_0.pb +0 -0
  1106. onnx/backend/test/data/node/test_lppool_2d_same_lower/model.onnx +0 -0
  1107. onnx/backend/test/data/node/test_lppool_2d_same_lower/test_data_set_0/output_0.pb +0 -0
  1108. onnx/backend/test/data/node/test_lppool_2d_same_upper/model.onnx +0 -0
  1109. onnx/backend/test/data/node/test_lppool_2d_same_upper/test_data_set_0/output_0.pb +0 -0
  1110. onnx/backend/test/data/node/test_lppool_2d_strides/model.onnx +0 -0
  1111. onnx/backend/test/data/node/test_lppool_2d_strides/test_data_set_0/output_0.pb +0 -0
  1112. onnx/backend/test/data/node/test_lppool_3d_default/model.onnx +0 -0
  1113. onnx/backend/test/data/node/test_lppool_3d_default/test_data_set_0/output_0.pb +0 -0
  1114. onnx/backend/test/data/node/test_lrn_default/test_data_set_0/output_0.pb +0 -0
  1115. onnx/backend/test/data/node/test_lstm_batchwise/model.onnx +0 -0
  1116. onnx/backend/test/data/node/test_lstm_defaults/model.onnx +0 -0
  1117. onnx/backend/test/data/node/test_lstm_with_initial_bias/model.onnx +0 -0
  1118. onnx/backend/test/data/node/test_lstm_with_peepholes/model.onnx +0 -0
  1119. onnx/backend/test/data/node/test_maxpool_1d_default/model.onnx +0 -0
  1120. onnx/backend/test/data/node/test_maxpool_2d_ceil/model.onnx +0 -0
  1121. onnx/backend/test/data/node/test_maxpool_2d_ceil_output_size_reduce_by_one/model.onnx +0 -0
  1122. onnx/backend/test/data/node/test_maxpool_2d_default/model.onnx +0 -0
  1123. onnx/backend/test/data/node/test_maxpool_2d_dilations/model.onnx +0 -0
  1124. onnx/backend/test/data/node/test_maxpool_2d_pads/model.onnx +0 -0
  1125. onnx/backend/test/data/node/test_maxpool_2d_precomputed_pads/model.onnx +0 -0
  1126. onnx/backend/test/data/node/test_maxpool_2d_precomputed_same_upper/model.onnx +0 -0
  1127. onnx/backend/test/data/node/test_maxpool_2d_precomputed_strides/model.onnx +0 -0
  1128. onnx/backend/test/data/node/test_maxpool_2d_same_lower/model.onnx +0 -0
  1129. onnx/backend/test/data/node/test_maxpool_2d_same_upper/model.onnx +0 -0
  1130. onnx/backend/test/data/node/test_maxpool_2d_strides/model.onnx +0 -0
  1131. onnx/backend/test/data/node/test_maxpool_2d_uint8/model.onnx +0 -0
  1132. onnx/backend/test/data/node/test_maxpool_3d_default/model.onnx +0 -0
  1133. onnx/backend/test/data/node/test_maxpool_3d_dilations/model.onnx +0 -0
  1134. onnx/backend/test/data/node/test_maxpool_3d_dilations_use_ref_impl/model.onnx +0 -0
  1135. onnx/backend/test/data/node/test_maxpool_3d_dilations_use_ref_impl_large/model.onnx +0 -0
  1136. onnx/backend/test/data/node/test_maxpool_with_argmax_2d_precomputed_pads/model.onnx +0 -0
  1137. onnx/backend/test/data/node/test_maxpool_with_argmax_2d_precomputed_strides/model.onnx +0 -0
  1138. onnx/backend/test/data/node/test_maxunpool_export_with_output_shape/model.onnx +0 -0
  1139. onnx/backend/test/data/node/test_maxunpool_export_without_output_shape/model.onnx +0 -0
  1140. onnx/backend/test/data/node/test_mish/model.onnx +0 -0
  1141. onnx/backend/test/data/node/test_mish_expanded/model.onnx +0 -0
  1142. onnx/backend/test/data/node/test_mvn/test_data_set_0/output_0.pb +1 -1
  1143. onnx/backend/test/data/node/test_mvn_expanded/test_data_set_0/output_0.pb +1 -1
  1144. onnx/backend/test/data/node/test_mvn_expanded_ver18/test_data_set_0/output_0.pb +1 -1
  1145. onnx/backend/test/data/node/test_nllloss_NC/model.onnx +0 -0
  1146. onnx/backend/test/data/node/test_nllloss_NC_expanded/model.onnx +0 -0
  1147. onnx/backend/test/data/node/test_nllloss_NCd1/model.onnx +0 -0
  1148. onnx/backend/test/data/node/test_nllloss_NCd1_expanded/model.onnx +0 -0
  1149. onnx/backend/test/data/node/test_nllloss_NCd1_ii/model.onnx +0 -0
  1150. onnx/backend/test/data/node/test_nllloss_NCd1_ii_expanded/model.onnx +0 -0
  1151. onnx/backend/test/data/node/test_nllloss_NCd1_mean_weight_negative_ii/model.onnx +0 -0
  1152. onnx/backend/test/data/node/test_nllloss_NCd1_mean_weight_negative_ii_expanded/model.onnx +0 -0
  1153. onnx/backend/test/data/node/test_nllloss_NCd1_weight/model.onnx +0 -0
  1154. onnx/backend/test/data/node/test_nllloss_NCd1_weight_expanded/model.onnx +0 -0
  1155. onnx/backend/test/data/node/test_nllloss_NCd1_weight_ii/model.onnx +0 -0
  1156. onnx/backend/test/data/node/test_nllloss_NCd1_weight_ii_expanded/model.onnx +0 -0
  1157. onnx/backend/test/data/node/test_nllloss_NCd1d2/model.onnx +0 -0
  1158. onnx/backend/test/data/node/test_nllloss_NCd1d2_expanded/model.onnx +0 -0
  1159. onnx/backend/test/data/node/test_nllloss_NCd1d2_no_weight_reduction_mean_ii/model.onnx +0 -0
  1160. onnx/backend/test/data/node/test_nllloss_NCd1d2_no_weight_reduction_mean_ii_expanded/model.onnx +0 -0
  1161. onnx/backend/test/data/node/test_nllloss_NCd1d2_reduction_mean/model.onnx +0 -0
  1162. onnx/backend/test/data/node/test_nllloss_NCd1d2_reduction_mean_expanded/model.onnx +0 -0
  1163. onnx/backend/test/data/node/test_nllloss_NCd1d2_reduction_sum/model.onnx +0 -0
  1164. onnx/backend/test/data/node/test_nllloss_NCd1d2_reduction_sum_expanded/model.onnx +0 -0
  1165. onnx/backend/test/data/node/test_nllloss_NCd1d2_with_weight/model.onnx +0 -0
  1166. onnx/backend/test/data/node/test_nllloss_NCd1d2_with_weight_expanded/model.onnx +0 -0
  1167. onnx/backend/test/data/node/test_nllloss_NCd1d2_with_weight_reduction_mean/model.onnx +0 -0
  1168. onnx/backend/test/data/node/test_nllloss_NCd1d2_with_weight_reduction_mean_expanded/model.onnx +0 -0
  1169. onnx/backend/test/data/node/test_nllloss_NCd1d2_with_weight_reduction_sum/model.onnx +0 -0
  1170. onnx/backend/test/data/node/test_nllloss_NCd1d2_with_weight_reduction_sum_expanded/model.onnx +0 -0
  1171. onnx/backend/test/data/node/test_nllloss_NCd1d2_with_weight_reduction_sum_ii/model.onnx +0 -0
  1172. onnx/backend/test/data/node/test_nllloss_NCd1d2_with_weight_reduction_sum_ii_expanded/model.onnx +0 -0
  1173. onnx/backend/test/data/node/test_nllloss_NCd1d2d3_none_no_weight_negative_ii/model.onnx +0 -0
  1174. onnx/backend/test/data/node/test_nllloss_NCd1d2d3_none_no_weight_negative_ii_expanded/model.onnx +0 -0
  1175. onnx/backend/test/data/node/test_nllloss_NCd1d2d3_sum_weight_high_ii/model.onnx +0 -0
  1176. onnx/backend/test/data/node/test_nllloss_NCd1d2d3_sum_weight_high_ii_expanded/model.onnx +0 -0
  1177. onnx/backend/test/data/node/test_nllloss_NCd1d2d3d4d5_mean_weight/model.onnx +0 -0
  1178. onnx/backend/test/data/node/test_nllloss_NCd1d2d3d4d5_mean_weight_expanded/model.onnx +0 -0
  1179. onnx/backend/test/data/node/test_nllloss_NCd1d2d3d4d5_none_no_weight/model.onnx +0 -0
  1180. onnx/backend/test/data/node/test_nllloss_NCd1d2d3d4d5_none_no_weight_expanded/model.onnx +0 -0
  1181. onnx/backend/test/data/node/test_pow/test_data_set_0/output_0.pb +0 -0
  1182. onnx/backend/test/data/node/test_quantizelinear/model.onnx +0 -0
  1183. onnx/backend/test/data/node/test_quantizelinear_axis/model.onnx +0 -0
  1184. onnx/backend/test/data/node/test_quantizelinear_blocked_asymmetric/model.onnx +0 -0
  1185. onnx/backend/test/data/node/test_quantizelinear_blocked_symmetric/model.onnx +0 -0
  1186. onnx/backend/test/data/node/test_quantizelinear_e4m3fn/model.onnx +0 -0
  1187. onnx/backend/test/data/node/test_quantizelinear_e5m2/model.onnx +0 -0
  1188. onnx/backend/test/data/node/test_quantizelinear_float4e2m1/model.onnx +0 -0
  1189. onnx/backend/test/data/node/test_quantizelinear_float4e2m1/test_data_set_0/input_0.pb +0 -0
  1190. onnx/backend/test/data/node/test_quantizelinear_float4e2m1/test_data_set_0/input_1.pb +0 -0
  1191. onnx/backend/test/data/node/test_quantizelinear_float4e2m1/test_data_set_0/input_2.pb +0 -0
  1192. onnx/backend/test/data/node/test_quantizelinear_float4e2m1/test_data_set_0/output_0.pb +1 -0
  1193. onnx/backend/test/data/node/test_quantizelinear_int16/model.onnx +0 -0
  1194. onnx/backend/test/data/node/test_quantizelinear_int4/model.onnx +0 -0
  1195. onnx/backend/test/data/node/test_quantizelinear_int4/test_data_set_0/output_0.pb +1 -1
  1196. onnx/backend/test/data/node/test_quantizelinear_uint16/model.onnx +0 -0
  1197. onnx/backend/test/data/node/test_quantizelinear_uint4/model.onnx +0 -0
  1198. onnx/backend/test/data/node/test_reduce_max_empty_set/model.onnx +0 -0
  1199. onnx/backend/test/data/node/test_reduce_max_empty_set/test_data_set_0/input_0.pb +0 -0
  1200. onnx/backend/test/data/node/test_reduce_max_empty_set/test_data_set_0/input_1.pb +0 -0
  1201. onnx/backend/test/data/node/test_reduce_max_empty_set/test_data_set_0/output_0.pb +0 -0
  1202. onnx/backend/test/data/node/test_reduce_sum_empty_axes_input_noop/model.onnx +0 -0
  1203. onnx/backend/test/data/node/test_reduce_sum_empty_axes_input_noop/test_data_set_0/input_0.pb +1 -0
  1204. onnx/backend/test/data/node/test_reduce_sum_empty_axes_input_noop/test_data_set_0/input_1.pb +0 -0
  1205. onnx/backend/test/data/node/test_reduce_sum_empty_axes_input_noop/test_data_set_0/output_0.pb +1 -0
  1206. onnx/backend/test/data/node/test_reduce_sum_negative_axes_keepdims_random/model.onnx +0 -0
  1207. onnx/backend/test/data/node/test_reduce_sum_negative_axes_keepdims_random/test_data_set_0/input_1.pb +0 -0
  1208. onnx/backend/test/data/node/test_reduce_sum_negative_axes_keepdims_random/test_data_set_0/output_0.pb +1 -1
  1209. onnx/backend/test/data/node/test_reflect_pad/model.onnx +0 -0
  1210. onnx/backend/test/data/node/test_reshape_allowzero_reordered/model.onnx +0 -0
  1211. onnx/backend/test/data/node/test_reshape_extended_dims/model.onnx +0 -0
  1212. onnx/backend/test/data/node/test_reshape_negative_dim/model.onnx +0 -0
  1213. onnx/backend/test/data/node/test_reshape_negative_extended_dims/model.onnx +0 -0
  1214. onnx/backend/test/data/node/test_reshape_one_dim/model.onnx +0 -0
  1215. onnx/backend/test/data/node/test_reshape_reduced_dims/model.onnx +0 -0
  1216. onnx/backend/test/data/node/test_reshape_reordered_all_dims/model.onnx +0 -0
  1217. onnx/backend/test/data/node/test_reshape_reordered_last_dims/model.onnx +0 -0
  1218. onnx/backend/test/data/node/test_reshape_zero_and_negative_dim/model.onnx +0 -0
  1219. onnx/backend/test/data/node/test_reshape_zero_dim/model.onnx +0 -0
  1220. onnx/backend/test/data/node/test_resize_tf_crop_and_resize/model.onnx +0 -0
  1221. onnx/backend/test/data/node/test_resize_tf_crop_and_resize/test_data_set_0/input_1.pb +0 -0
  1222. onnx/backend/test/data/node/test_resize_tf_crop_and_resize/test_data_set_0/output_0.pb +0 -0
  1223. onnx/backend/test/data/node/test_resize_tf_crop_and_resize_extrapolation_value/model.onnx +0 -0
  1224. onnx/backend/test/data/node/test_resize_tf_crop_and_resize_extrapolation_value/test_data_set_0/input_0.pb +0 -0
  1225. onnx/backend/test/data/node/test_resize_tf_crop_and_resize_extrapolation_value/test_data_set_0/input_1.pb +0 -0
  1226. onnx/backend/test/data/node/test_resize_tf_crop_and_resize_extrapolation_value/test_data_set_0/input_2.pb +0 -0
  1227. onnx/backend/test/data/node/test_resize_tf_crop_and_resize_extrapolation_value/test_data_set_0/output_0.pb +0 -0
  1228. onnx/backend/test/data/node/test_resize_upsample_sizes_nearest_not_larger/model.onnx +0 -0
  1229. onnx/backend/test/data/node/test_resize_upsample_sizes_nearest_not_larger/test_data_set_0/output_0.pb +0 -0
  1230. onnx/backend/test/data/node/test_resize_upsample_sizes_nearest_not_smaller/model.onnx +0 -0
  1231. onnx/backend/test/data/node/test_resize_upsample_sizes_nearest_not_smaller/test_data_set_0/input_0.pb +0 -0
  1232. onnx/backend/test/data/node/test_resize_upsample_sizes_nearest_not_smaller/test_data_set_0/input_1.pb +0 -0
  1233. onnx/backend/test/data/node/test_resize_upsample_sizes_nearest_not_smaller/test_data_set_0/output_0.pb +0 -0
  1234. onnx/backend/test/data/node/test_rms_normalization_2d_axis0/model.onnx +0 -0
  1235. onnx/backend/test/data/node/test_rms_normalization_2d_axis0/test_data_set_0/input_0.pb +1 -0
  1236. onnx/backend/test/data/node/test_rms_normalization_2d_axis0/test_data_set_0/input_1.pb +1 -0
  1237. onnx/backend/test/data/node/test_rms_normalization_2d_axis0/test_data_set_0/output_0.pb +1 -0
  1238. onnx/backend/test/data/node/test_rms_normalization_2d_axis0_expanded/model.onnx +0 -0
  1239. onnx/backend/test/data/node/test_rms_normalization_2d_axis0_expanded/test_data_set_0/input_0.pb +1 -0
  1240. onnx/backend/test/data/node/test_rms_normalization_2d_axis0_expanded/test_data_set_0/input_1.pb +1 -0
  1241. onnx/backend/test/data/node/test_rms_normalization_2d_axis0_expanded/test_data_set_0/output_0.pb +1 -0
  1242. onnx/backend/test/data/node/test_rms_normalization_2d_axis1/model.onnx +0 -0
  1243. onnx/backend/test/data/node/test_rms_normalization_2d_axis1/test_data_set_0/input_0.pb +1 -0
  1244. onnx/backend/test/data/node/test_rms_normalization_2d_axis1/test_data_set_0/input_1.pb +1 -0
  1245. onnx/backend/test/data/node/test_rms_normalization_2d_axis1/test_data_set_0/output_0.pb +1 -0
  1246. onnx/backend/test/data/node/test_rms_normalization_2d_axis1_expanded/model.onnx +0 -0
  1247. onnx/backend/test/data/node/test_rms_normalization_2d_axis1_expanded/test_data_set_0/input_0.pb +1 -0
  1248. onnx/backend/test/data/node/test_rms_normalization_2d_axis1_expanded/test_data_set_0/input_1.pb +1 -0
  1249. onnx/backend/test/data/node/test_rms_normalization_2d_axis1_expanded/test_data_set_0/output_0.pb +1 -0
  1250. onnx/backend/test/data/node/test_rms_normalization_2d_axis_negative_1/model.onnx +0 -0
  1251. onnx/backend/test/data/node/test_rms_normalization_2d_axis_negative_1/test_data_set_0/input_0.pb +1 -0
  1252. onnx/backend/test/data/node/test_rms_normalization_2d_axis_negative_1/test_data_set_0/input_1.pb +1 -0
  1253. onnx/backend/test/data/node/test_rms_normalization_2d_axis_negative_1/test_data_set_0/output_0.pb +1 -0
  1254. onnx/backend/test/data/node/test_rms_normalization_2d_axis_negative_1_expanded/model.onnx +0 -0
  1255. onnx/backend/test/data/node/test_rms_normalization_2d_axis_negative_1_expanded/test_data_set_0/input_0.pb +1 -0
  1256. onnx/backend/test/data/node/test_rms_normalization_2d_axis_negative_1_expanded/test_data_set_0/input_1.pb +1 -0
  1257. onnx/backend/test/data/node/test_rms_normalization_2d_axis_negative_1_expanded/test_data_set_0/output_0.pb +1 -0
  1258. onnx/backend/test/data/node/test_rms_normalization_2d_axis_negative_2/model.onnx +0 -0
  1259. onnx/backend/test/data/node/test_rms_normalization_2d_axis_negative_2/test_data_set_0/input_0.pb +1 -0
  1260. onnx/backend/test/data/node/test_rms_normalization_2d_axis_negative_2/test_data_set_0/input_1.pb +1 -0
  1261. onnx/backend/test/data/node/test_rms_normalization_2d_axis_negative_2/test_data_set_0/output_0.pb +1 -0
  1262. onnx/backend/test/data/node/test_rms_normalization_2d_axis_negative_2_expanded/model.onnx +0 -0
  1263. onnx/backend/test/data/node/test_rms_normalization_2d_axis_negative_2_expanded/test_data_set_0/input_0.pb +1 -0
  1264. onnx/backend/test/data/node/test_rms_normalization_2d_axis_negative_2_expanded/test_data_set_0/input_1.pb +1 -0
  1265. onnx/backend/test/data/node/test_rms_normalization_2d_axis_negative_2_expanded/test_data_set_0/output_0.pb +1 -0
  1266. onnx/backend/test/data/node/test_rms_normalization_3d_axis0_epsilon/model.onnx +0 -0
  1267. onnx/backend/test/data/node/test_rms_normalization_3d_axis0_epsilon/test_data_set_0/input_0.pb +1 -0
  1268. onnx/backend/test/data/node/test_rms_normalization_3d_axis0_epsilon/test_data_set_0/input_1.pb +1 -0
  1269. onnx/backend/test/data/node/test_rms_normalization_3d_axis0_epsilon/test_data_set_0/output_0.pb +1 -0
  1270. onnx/backend/test/data/node/test_rms_normalization_3d_axis0_epsilon_expanded/model.onnx +0 -0
  1271. onnx/backend/test/data/node/test_rms_normalization_3d_axis0_epsilon_expanded/test_data_set_0/input_0.pb +1 -0
  1272. onnx/backend/test/data/node/test_rms_normalization_3d_axis0_epsilon_expanded/test_data_set_0/input_1.pb +1 -0
  1273. onnx/backend/test/data/node/test_rms_normalization_3d_axis0_epsilon_expanded/test_data_set_0/output_0.pb +1 -0
  1274. onnx/backend/test/data/node/test_rms_normalization_3d_axis1_epsilon/model.onnx +0 -0
  1275. onnx/backend/test/data/node/test_rms_normalization_3d_axis1_epsilon/test_data_set_0/input_0.pb +1 -0
  1276. onnx/backend/test/data/node/test_rms_normalization_3d_axis1_epsilon/test_data_set_0/input_1.pb +1 -0
  1277. onnx/backend/test/data/node/test_rms_normalization_3d_axis1_epsilon/test_data_set_0/output_0.pb +1 -0
  1278. onnx/backend/test/data/node/test_rms_normalization_3d_axis1_epsilon_expanded/model.onnx +0 -0
  1279. onnx/backend/test/data/node/test_rms_normalization_3d_axis1_epsilon_expanded/test_data_set_0/input_0.pb +1 -0
  1280. onnx/backend/test/data/node/test_rms_normalization_3d_axis1_epsilon_expanded/test_data_set_0/input_1.pb +1 -0
  1281. onnx/backend/test/data/node/test_rms_normalization_3d_axis1_epsilon_expanded/test_data_set_0/output_0.pb +1 -0
  1282. onnx/backend/test/data/node/test_rms_normalization_3d_axis2_epsilon/model.onnx +0 -0
  1283. onnx/backend/test/data/node/test_rms_normalization_3d_axis2_epsilon/test_data_set_0/input_0.pb +1 -0
  1284. onnx/backend/test/data/node/test_rms_normalization_3d_axis2_epsilon/test_data_set_0/input_1.pb +1 -0
  1285. onnx/backend/test/data/node/test_rms_normalization_3d_axis2_epsilon/test_data_set_0/output_0.pb +1 -0
  1286. onnx/backend/test/data/node/test_rms_normalization_3d_axis2_epsilon_expanded/model.onnx +0 -0
  1287. onnx/backend/test/data/node/test_rms_normalization_3d_axis2_epsilon_expanded/test_data_set_0/input_0.pb +1 -0
  1288. onnx/backend/test/data/node/test_rms_normalization_3d_axis2_epsilon_expanded/test_data_set_0/input_1.pb +1 -0
  1289. onnx/backend/test/data/node/test_rms_normalization_3d_axis2_epsilon_expanded/test_data_set_0/output_0.pb +1 -0
  1290. onnx/backend/test/data/node/test_rms_normalization_3d_axis_negative_1_epsilon/model.onnx +0 -0
  1291. onnx/backend/test/data/node/test_rms_normalization_3d_axis_negative_1_epsilon/test_data_set_0/input_0.pb +1 -0
  1292. onnx/backend/test/data/node/test_rms_normalization_3d_axis_negative_1_epsilon/test_data_set_0/input_1.pb +1 -0
  1293. onnx/backend/test/data/node/test_rms_normalization_3d_axis_negative_1_epsilon/test_data_set_0/output_0.pb +0 -0
  1294. onnx/backend/test/data/node/test_rms_normalization_3d_axis_negative_1_epsilon_expanded/model.onnx +0 -0
  1295. onnx/backend/test/data/node/test_rms_normalization_3d_axis_negative_1_epsilon_expanded/test_data_set_0/input_0.pb +1 -0
  1296. onnx/backend/test/data/node/test_rms_normalization_3d_axis_negative_1_epsilon_expanded/test_data_set_0/input_1.pb +1 -0
  1297. onnx/backend/test/data/node/test_rms_normalization_3d_axis_negative_1_epsilon_expanded/test_data_set_0/output_0.pb +0 -0
  1298. onnx/backend/test/data/node/test_rms_normalization_3d_axis_negative_2_epsilon/model.onnx +0 -0
  1299. onnx/backend/test/data/node/test_rms_normalization_3d_axis_negative_2_epsilon/test_data_set_0/input_0.pb +1 -0
  1300. onnx/backend/test/data/node/test_rms_normalization_3d_axis_negative_2_epsilon/test_data_set_0/input_1.pb +1 -0
  1301. onnx/backend/test/data/node/test_rms_normalization_3d_axis_negative_2_epsilon/test_data_set_0/output_0.pb +3 -0
  1302. onnx/backend/test/data/node/test_rms_normalization_3d_axis_negative_2_epsilon_expanded/model.onnx +0 -0
  1303. onnx/backend/test/data/node/test_rms_normalization_3d_axis_negative_2_epsilon_expanded/test_data_set_0/input_0.pb +1 -0
  1304. onnx/backend/test/data/node/test_rms_normalization_3d_axis_negative_2_epsilon_expanded/test_data_set_0/input_1.pb +1 -0
  1305. onnx/backend/test/data/node/test_rms_normalization_3d_axis_negative_2_epsilon_expanded/test_data_set_0/output_0.pb +3 -0
  1306. onnx/backend/test/data/node/test_rms_normalization_3d_axis_negative_3_epsilon/model.onnx +0 -0
  1307. onnx/backend/test/data/node/test_rms_normalization_3d_axis_negative_3_epsilon/test_data_set_0/input_0.pb +1 -0
  1308. onnx/backend/test/data/node/test_rms_normalization_3d_axis_negative_3_epsilon/test_data_set_0/input_1.pb +1 -0
  1309. onnx/backend/test/data/node/test_rms_normalization_3d_axis_negative_3_epsilon/test_data_set_0/output_0.pb +1 -0
  1310. onnx/backend/test/data/node/test_rms_normalization_3d_axis_negative_3_epsilon_expanded/model.onnx +0 -0
  1311. onnx/backend/test/data/node/test_rms_normalization_3d_axis_negative_3_epsilon_expanded/test_data_set_0/input_0.pb +1 -0
  1312. onnx/backend/test/data/node/test_rms_normalization_3d_axis_negative_3_epsilon_expanded/test_data_set_0/input_1.pb +1 -0
  1313. onnx/backend/test/data/node/test_rms_normalization_3d_axis_negative_3_epsilon_expanded/test_data_set_0/output_0.pb +1 -0
  1314. onnx/backend/test/data/node/test_rms_normalization_4d_axis0/model.onnx +0 -0
  1315. onnx/backend/test/data/node/test_rms_normalization_4d_axis0/test_data_set_0/input_0.pb +1 -0
  1316. onnx/backend/test/data/node/test_rms_normalization_4d_axis0/test_data_set_0/input_1.pb +0 -0
  1317. onnx/backend/test/data/node/test_rms_normalization_4d_axis0/test_data_set_0/output_0.pb +0 -0
  1318. onnx/backend/test/data/node/test_rms_normalization_4d_axis0_expanded/model.onnx +0 -0
  1319. onnx/backend/test/data/node/test_rms_normalization_4d_axis0_expanded/test_data_set_0/input_0.pb +1 -0
  1320. onnx/backend/test/data/node/test_rms_normalization_4d_axis0_expanded/test_data_set_0/input_1.pb +0 -0
  1321. onnx/backend/test/data/node/test_rms_normalization_4d_axis0_expanded/test_data_set_0/output_0.pb +0 -0
  1322. onnx/backend/test/data/node/test_rms_normalization_4d_axis1/model.onnx +0 -0
  1323. onnx/backend/test/data/node/test_rms_normalization_4d_axis1/test_data_set_0/input_0.pb +1 -0
  1324. onnx/backend/test/data/node/test_rms_normalization_4d_axis1/test_data_set_0/input_1.pb +3 -0
  1325. onnx/backend/test/data/node/test_rms_normalization_4d_axis1/test_data_set_0/output_0.pb +1 -0
  1326. onnx/backend/test/data/node/test_rms_normalization_4d_axis1_expanded/model.onnx +0 -0
  1327. onnx/backend/test/data/node/test_rms_normalization_4d_axis1_expanded/test_data_set_0/input_0.pb +1 -0
  1328. onnx/backend/test/data/node/test_rms_normalization_4d_axis1_expanded/test_data_set_0/input_1.pb +3 -0
  1329. onnx/backend/test/data/node/test_rms_normalization_4d_axis1_expanded/test_data_set_0/output_0.pb +1 -0
  1330. onnx/backend/test/data/node/test_rms_normalization_4d_axis2/model.onnx +0 -0
  1331. onnx/backend/test/data/node/test_rms_normalization_4d_axis2/test_data_set_0/input_0.pb +1 -0
  1332. onnx/backend/test/data/node/test_rms_normalization_4d_axis2/test_data_set_0/input_1.pb +1 -0
  1333. onnx/backend/test/data/node/test_rms_normalization_4d_axis2/test_data_set_0/output_0.pb +0 -0
  1334. onnx/backend/test/data/node/test_rms_normalization_4d_axis2_expanded/model.onnx +0 -0
  1335. onnx/backend/test/data/node/test_rms_normalization_4d_axis2_expanded/test_data_set_0/input_0.pb +1 -0
  1336. onnx/backend/test/data/node/test_rms_normalization_4d_axis2_expanded/test_data_set_0/input_1.pb +1 -0
  1337. onnx/backend/test/data/node/test_rms_normalization_4d_axis2_expanded/test_data_set_0/output_0.pb +0 -0
  1338. onnx/backend/test/data/node/test_rms_normalization_4d_axis3/model.onnx +0 -0
  1339. onnx/backend/test/data/node/test_rms_normalization_4d_axis3/test_data_set_0/input_0.pb +1 -0
  1340. onnx/backend/test/data/node/test_rms_normalization_4d_axis3/test_data_set_0/input_1.pb +1 -0
  1341. onnx/backend/test/data/node/test_rms_normalization_4d_axis3/test_data_set_0/output_0.pb +2 -0
  1342. onnx/backend/test/data/node/test_rms_normalization_4d_axis3_expanded/model.onnx +0 -0
  1343. onnx/backend/test/data/node/test_rms_normalization_4d_axis3_expanded/test_data_set_0/input_0.pb +1 -0
  1344. onnx/backend/test/data/node/test_rms_normalization_4d_axis3_expanded/test_data_set_0/input_1.pb +1 -0
  1345. onnx/backend/test/data/node/test_rms_normalization_4d_axis3_expanded/test_data_set_0/output_0.pb +2 -0
  1346. onnx/backend/test/data/node/test_rms_normalization_4d_axis_negative_1/model.onnx +0 -0
  1347. onnx/backend/test/data/node/test_rms_normalization_4d_axis_negative_1/test_data_set_0/input_0.pb +1 -0
  1348. onnx/backend/test/data/node/test_rms_normalization_4d_axis_negative_1/test_data_set_0/input_1.pb +1 -0
  1349. onnx/backend/test/data/node/test_rms_normalization_4d_axis_negative_1/test_data_set_0/output_0.pb +0 -0
  1350. onnx/backend/test/data/node/test_rms_normalization_4d_axis_negative_1_expanded/model.onnx +0 -0
  1351. onnx/backend/test/data/node/test_rms_normalization_4d_axis_negative_1_expanded/test_data_set_0/input_0.pb +1 -0
  1352. onnx/backend/test/data/node/test_rms_normalization_4d_axis_negative_1_expanded/test_data_set_0/input_1.pb +1 -0
  1353. onnx/backend/test/data/node/test_rms_normalization_4d_axis_negative_1_expanded/test_data_set_0/output_0.pb +0 -0
  1354. onnx/backend/test/data/node/test_rms_normalization_4d_axis_negative_2/model.onnx +0 -0
  1355. onnx/backend/test/data/node/test_rms_normalization_4d_axis_negative_2/test_data_set_0/input_0.pb +1 -0
  1356. onnx/backend/test/data/node/test_rms_normalization_4d_axis_negative_2/test_data_set_0/input_1.pb +1 -0
  1357. onnx/backend/test/data/node/test_rms_normalization_4d_axis_negative_2/test_data_set_0/output_0.pb +0 -0
  1358. onnx/backend/test/data/node/test_rms_normalization_4d_axis_negative_2_expanded/model.onnx +0 -0
  1359. onnx/backend/test/data/node/test_rms_normalization_4d_axis_negative_2_expanded/test_data_set_0/input_0.pb +1 -0
  1360. onnx/backend/test/data/node/test_rms_normalization_4d_axis_negative_2_expanded/test_data_set_0/input_1.pb +1 -0
  1361. onnx/backend/test/data/node/test_rms_normalization_4d_axis_negative_2_expanded/test_data_set_0/output_0.pb +0 -0
  1362. onnx/backend/test/data/node/test_rms_normalization_4d_axis_negative_3/model.onnx +0 -0
  1363. onnx/backend/test/data/node/test_rms_normalization_4d_axis_negative_3/test_data_set_0/input_0.pb +1 -0
  1364. onnx/backend/test/data/node/test_rms_normalization_4d_axis_negative_3/test_data_set_0/input_1.pb +0 -0
  1365. onnx/backend/test/data/node/test_rms_normalization_4d_axis_negative_3/test_data_set_0/output_0.pb +4 -0
  1366. onnx/backend/test/data/node/test_rms_normalization_4d_axis_negative_3_expanded/model.onnx +0 -0
  1367. onnx/backend/test/data/node/test_rms_normalization_4d_axis_negative_3_expanded/test_data_set_0/input_0.pb +1 -0
  1368. onnx/backend/test/data/node/test_rms_normalization_4d_axis_negative_3_expanded/test_data_set_0/input_1.pb +0 -0
  1369. onnx/backend/test/data/node/test_rms_normalization_4d_axis_negative_3_expanded/test_data_set_0/output_0.pb +4 -0
  1370. onnx/backend/test/data/node/test_rms_normalization_4d_axis_negative_4/model.onnx +0 -0
  1371. onnx/backend/test/data/node/test_rms_normalization_4d_axis_negative_4/test_data_set_0/input_0.pb +1 -0
  1372. onnx/backend/test/data/node/test_rms_normalization_4d_axis_negative_4/test_data_set_0/input_1.pb +2 -0
  1373. onnx/backend/test/data/node/test_rms_normalization_4d_axis_negative_4/test_data_set_0/output_0.pb +0 -0
  1374. onnx/backend/test/data/node/test_rms_normalization_4d_axis_negative_4_expanded/model.onnx +0 -0
  1375. onnx/backend/test/data/node/test_rms_normalization_4d_axis_negative_4_expanded/test_data_set_0/input_0.pb +1 -0
  1376. onnx/backend/test/data/node/test_rms_normalization_4d_axis_negative_4_expanded/test_data_set_0/input_1.pb +2 -0
  1377. onnx/backend/test/data/node/test_rms_normalization_4d_axis_negative_4_expanded/test_data_set_0/output_0.pb +0 -0
  1378. onnx/backend/test/data/node/test_rms_normalization_default_axis/model.onnx +0 -0
  1379. onnx/backend/test/data/node/test_rms_normalization_default_axis/test_data_set_0/input_0.pb +1 -0
  1380. onnx/backend/test/data/node/test_rms_normalization_default_axis/test_data_set_0/input_1.pb +1 -0
  1381. onnx/backend/test/data/node/test_rms_normalization_default_axis/test_data_set_0/output_0.pb +0 -0
  1382. onnx/backend/test/data/node/test_rms_normalization_default_axis_expanded/model.onnx +0 -0
  1383. onnx/backend/test/data/node/test_rms_normalization_default_axis_expanded/test_data_set_0/input_0.pb +1 -0
  1384. onnx/backend/test/data/node/test_rms_normalization_default_axis_expanded/test_data_set_0/input_1.pb +1 -0
  1385. onnx/backend/test/data/node/test_rms_normalization_default_axis_expanded/test_data_set_0/output_0.pb +0 -0
  1386. onnx/backend/test/data/node/test_rnn_seq_length/model.onnx +0 -0
  1387. onnx/backend/test/data/node/test_roialign_aligned_false/model.onnx +0 -0
  1388. onnx/backend/test/data/node/test_roialign_aligned_true/model.onnx +0 -0
  1389. onnx/backend/test/data/node/test_roialign_mode_max/model.onnx +0 -0
  1390. onnx/backend/test/data/node/test_rotary_embedding/model.onnx +0 -0
  1391. onnx/backend/test/data/node/test_rotary_embedding/test_data_set_0/input_0.pb +0 -0
  1392. onnx/backend/test/data/node/test_rotary_embedding/test_data_set_0/input_1.pb +0 -0
  1393. onnx/backend/test/data/node/test_rotary_embedding/test_data_set_0/input_2.pb +0 -0
  1394. onnx/backend/test/data/node/test_rotary_embedding/test_data_set_0/input_3.pb +0 -0
  1395. onnx/backend/test/data/node/test_rotary_embedding/test_data_set_0/output_0.pb +0 -0
  1396. onnx/backend/test/data/node/test_rotary_embedding_3d_input/model.onnx +0 -0
  1397. onnx/backend/test/data/node/test_rotary_embedding_3d_input/test_data_set_0/input_0.pb +0 -0
  1398. onnx/backend/test/data/node/test_rotary_embedding_3d_input/test_data_set_0/input_1.pb +0 -0
  1399. onnx/backend/test/data/node/test_rotary_embedding_3d_input/test_data_set_0/input_2.pb +0 -0
  1400. onnx/backend/test/data/node/test_rotary_embedding_3d_input/test_data_set_0/input_3.pb +0 -0
  1401. onnx/backend/test/data/node/test_rotary_embedding_3d_input/test_data_set_0/output_0.pb +0 -0
  1402. onnx/backend/test/data/node/test_rotary_embedding_3d_input_expanded/model.onnx +0 -0
  1403. onnx/backend/test/data/node/test_rotary_embedding_3d_input_expanded/test_data_set_0/input_0.pb +0 -0
  1404. onnx/backend/test/data/node/test_rotary_embedding_3d_input_expanded/test_data_set_0/input_1.pb +0 -0
  1405. onnx/backend/test/data/node/test_rotary_embedding_3d_input_expanded/test_data_set_0/input_2.pb +0 -0
  1406. onnx/backend/test/data/node/test_rotary_embedding_3d_input_expanded/test_data_set_0/input_3.pb +0 -0
  1407. onnx/backend/test/data/node/test_rotary_embedding_3d_input_expanded/test_data_set_0/output_0.pb +0 -0
  1408. onnx/backend/test/data/node/test_rotary_embedding_expanded/model.onnx +0 -0
  1409. onnx/backend/test/data/node/test_rotary_embedding_expanded/test_data_set_0/input_0.pb +0 -0
  1410. onnx/backend/test/data/node/test_rotary_embedding_expanded/test_data_set_0/input_1.pb +0 -0
  1411. onnx/backend/test/data/node/test_rotary_embedding_expanded/test_data_set_0/input_2.pb +0 -0
  1412. onnx/backend/test/data/node/test_rotary_embedding_expanded/test_data_set_0/input_3.pb +0 -0
  1413. onnx/backend/test/data/node/test_rotary_embedding_expanded/test_data_set_0/output_0.pb +0 -0
  1414. onnx/backend/test/data/node/test_rotary_embedding_interleaved/model.onnx +0 -0
  1415. onnx/backend/test/data/node/test_rotary_embedding_interleaved/test_data_set_0/input_0.pb +0 -0
  1416. onnx/backend/test/data/node/test_rotary_embedding_interleaved/test_data_set_0/input_1.pb +0 -0
  1417. onnx/backend/test/data/node/test_rotary_embedding_interleaved/test_data_set_0/input_2.pb +0 -0
  1418. onnx/backend/test/data/node/test_rotary_embedding_interleaved/test_data_set_0/input_3.pb +0 -0
  1419. onnx/backend/test/data/node/test_rotary_embedding_interleaved/test_data_set_0/output_0.pb +0 -0
  1420. onnx/backend/test/data/node/test_rotary_embedding_interleaved_expanded/model.onnx +0 -0
  1421. onnx/backend/test/data/node/test_rotary_embedding_interleaved_expanded/test_data_set_0/input_0.pb +0 -0
  1422. onnx/backend/test/data/node/test_rotary_embedding_interleaved_expanded/test_data_set_0/input_1.pb +0 -0
  1423. onnx/backend/test/data/node/test_rotary_embedding_interleaved_expanded/test_data_set_0/input_2.pb +0 -0
  1424. onnx/backend/test/data/node/test_rotary_embedding_interleaved_expanded/test_data_set_0/input_3.pb +0 -0
  1425. onnx/backend/test/data/node/test_rotary_embedding_interleaved_expanded/test_data_set_0/output_0.pb +0 -0
  1426. onnx/backend/test/data/node/test_rotary_embedding_no_position_ids/model.onnx +0 -0
  1427. onnx/backend/test/data/node/test_rotary_embedding_no_position_ids/test_data_set_0/input_0.pb +0 -0
  1428. onnx/backend/test/data/node/test_rotary_embedding_no_position_ids/test_data_set_0/input_1.pb +1 -0
  1429. onnx/backend/test/data/node/test_rotary_embedding_no_position_ids/test_data_set_0/input_2.pb +1 -0
  1430. onnx/backend/test/data/node/test_rotary_embedding_no_position_ids/test_data_set_0/output_0.pb +0 -0
  1431. onnx/backend/test/data/node/test_rotary_embedding_no_position_ids_expanded/model.onnx +0 -0
  1432. onnx/backend/test/data/node/test_rotary_embedding_no_position_ids_expanded/test_data_set_0/input_0.pb +0 -0
  1433. onnx/backend/test/data/node/test_rotary_embedding_no_position_ids_expanded/test_data_set_0/input_1.pb +1 -0
  1434. onnx/backend/test/data/node/test_rotary_embedding_no_position_ids_expanded/test_data_set_0/input_2.pb +1 -0
  1435. onnx/backend/test/data/node/test_rotary_embedding_no_position_ids_expanded/test_data_set_0/output_0.pb +0 -0
  1436. onnx/backend/test/data/node/test_rotary_embedding_no_position_ids_interleaved/model.onnx +0 -0
  1437. onnx/backend/test/data/node/test_rotary_embedding_no_position_ids_interleaved/test_data_set_0/input_0.pb +0 -0
  1438. onnx/backend/test/data/node/test_rotary_embedding_no_position_ids_interleaved/test_data_set_0/input_1.pb +1 -0
  1439. onnx/backend/test/data/node/test_rotary_embedding_no_position_ids_interleaved/test_data_set_0/input_2.pb +1 -0
  1440. onnx/backend/test/data/node/test_rotary_embedding_no_position_ids_interleaved/test_data_set_0/output_0.pb +0 -0
  1441. onnx/backend/test/data/node/test_rotary_embedding_no_position_ids_interleaved_expanded/model.onnx +0 -0
  1442. onnx/backend/test/data/node/test_rotary_embedding_no_position_ids_interleaved_expanded/test_data_set_0/input_0.pb +0 -0
  1443. onnx/backend/test/data/node/test_rotary_embedding_no_position_ids_interleaved_expanded/test_data_set_0/input_1.pb +1 -0
  1444. onnx/backend/test/data/node/test_rotary_embedding_no_position_ids_interleaved_expanded/test_data_set_0/input_2.pb +1 -0
  1445. onnx/backend/test/data/node/test_rotary_embedding_no_position_ids_interleaved_expanded/test_data_set_0/output_0.pb +0 -0
  1446. onnx/backend/test/data/node/test_rotary_embedding_no_position_ids_rotary_dim/model.onnx +0 -0
  1447. onnx/backend/test/data/node/test_rotary_embedding_no_position_ids_rotary_dim/test_data_set_0/input_0.pb +0 -0
  1448. onnx/backend/test/data/node/test_rotary_embedding_no_position_ids_rotary_dim/test_data_set_0/input_1.pb +1 -0
  1449. onnx/backend/test/data/node/test_rotary_embedding_no_position_ids_rotary_dim/test_data_set_0/input_2.pb +1 -0
  1450. onnx/backend/test/data/node/test_rotary_embedding_no_position_ids_rotary_dim/test_data_set_0/output_0.pb +0 -0
  1451. onnx/backend/test/data/node/test_rotary_embedding_no_position_ids_rotary_dim_expanded/model.onnx +0 -0
  1452. onnx/backend/test/data/node/test_rotary_embedding_no_position_ids_rotary_dim_expanded/test_data_set_0/input_0.pb +0 -0
  1453. onnx/backend/test/data/node/test_rotary_embedding_no_position_ids_rotary_dim_expanded/test_data_set_0/input_1.pb +1 -0
  1454. onnx/backend/test/data/node/test_rotary_embedding_no_position_ids_rotary_dim_expanded/test_data_set_0/input_2.pb +1 -0
  1455. onnx/backend/test/data/node/test_rotary_embedding_no_position_ids_rotary_dim_expanded/test_data_set_0/output_0.pb +0 -0
  1456. onnx/backend/test/data/node/test_rotary_embedding_with_interleaved_rotary_dim/model.onnx +0 -0
  1457. onnx/backend/test/data/node/test_rotary_embedding_with_interleaved_rotary_dim/test_data_set_0/input_0.pb +0 -0
  1458. onnx/backend/test/data/node/test_rotary_embedding_with_interleaved_rotary_dim/test_data_set_0/input_1.pb +0 -0
  1459. onnx/backend/test/data/node/test_rotary_embedding_with_interleaved_rotary_dim/test_data_set_0/input_2.pb +0 -0
  1460. onnx/backend/test/data/node/test_rotary_embedding_with_interleaved_rotary_dim/test_data_set_0/input_3.pb +0 -0
  1461. onnx/backend/test/data/node/test_rotary_embedding_with_interleaved_rotary_dim/test_data_set_0/output_0.pb +0 -0
  1462. onnx/backend/test/data/node/test_rotary_embedding_with_interleaved_rotary_dim_expanded/model.onnx +0 -0
  1463. onnx/backend/test/data/node/test_rotary_embedding_with_interleaved_rotary_dim_expanded/test_data_set_0/input_0.pb +0 -0
  1464. onnx/backend/test/data/node/test_rotary_embedding_with_interleaved_rotary_dim_expanded/test_data_set_0/input_1.pb +0 -0
  1465. onnx/backend/test/data/node/test_rotary_embedding_with_interleaved_rotary_dim_expanded/test_data_set_0/input_2.pb +0 -0
  1466. onnx/backend/test/data/node/test_rotary_embedding_with_interleaved_rotary_dim_expanded/test_data_set_0/input_3.pb +0 -0
  1467. onnx/backend/test/data/node/test_rotary_embedding_with_interleaved_rotary_dim_expanded/test_data_set_0/output_0.pb +0 -0
  1468. onnx/backend/test/data/node/test_rotary_embedding_with_rotary_dim/model.onnx +0 -0
  1469. onnx/backend/test/data/node/test_rotary_embedding_with_rotary_dim/test_data_set_0/input_0.pb +0 -0
  1470. onnx/backend/test/data/node/test_rotary_embedding_with_rotary_dim/test_data_set_0/input_1.pb +0 -0
  1471. onnx/backend/test/data/node/test_rotary_embedding_with_rotary_dim/test_data_set_0/input_2.pb +0 -0
  1472. onnx/backend/test/data/node/test_rotary_embedding_with_rotary_dim/test_data_set_0/input_3.pb +0 -0
  1473. onnx/backend/test/data/node/test_rotary_embedding_with_rotary_dim/test_data_set_0/output_0.pb +0 -0
  1474. onnx/backend/test/data/node/test_rotary_embedding_with_rotary_dim_expanded/model.onnx +0 -0
  1475. onnx/backend/test/data/node/test_rotary_embedding_with_rotary_dim_expanded/test_data_set_0/input_0.pb +0 -0
  1476. onnx/backend/test/data/node/test_rotary_embedding_with_rotary_dim_expanded/test_data_set_0/input_1.pb +0 -0
  1477. onnx/backend/test/data/node/test_rotary_embedding_with_rotary_dim_expanded/test_data_set_0/input_2.pb +0 -0
  1478. onnx/backend/test/data/node/test_rotary_embedding_with_rotary_dim_expanded/test_data_set_0/input_3.pb +0 -0
  1479. onnx/backend/test/data/node/test_rotary_embedding_with_rotary_dim_expanded/test_data_set_0/output_0.pb +0 -0
  1480. onnx/backend/test/data/node/test_round/model.onnx +0 -0
  1481. onnx/backend/test/data/node/test_selu/model.onnx +0 -0
  1482. onnx/backend/test/data/node/test_selu_default/model.onnx +0 -0
  1483. onnx/backend/test/data/node/test_selu_example/model.onnx +0 -0
  1484. onnx/backend/test/data/node/test_shape/model.onnx +0 -0
  1485. onnx/backend/test/data/node/test_shape_clip_end/model.onnx +0 -0
  1486. onnx/backend/test/data/node/test_shape_clip_start/model.onnx +0 -0
  1487. onnx/backend/test/data/node/test_shape_end_1/model.onnx +0 -0
  1488. onnx/backend/test/data/node/test_shape_end_negative_1/model.onnx +0 -0
  1489. onnx/backend/test/data/node/test_shape_example/model.onnx +0 -0
  1490. onnx/backend/test/data/node/test_shape_start_1/model.onnx +0 -0
  1491. onnx/backend/test/data/node/test_shape_start_1_end_2/model.onnx +0 -0
  1492. onnx/backend/test/data/node/test_shape_start_1_end_negative_1/model.onnx +0 -0
  1493. onnx/backend/test/data/node/test_shape_start_negative_1/model.onnx +0 -0
  1494. onnx/backend/test/data/node/test_simple_rnn_batchwise/model.onnx +0 -0
  1495. onnx/backend/test/data/node/test_simple_rnn_defaults/model.onnx +0 -0
  1496. onnx/backend/test/data/node/test_simple_rnn_with_initial_bias/model.onnx +0 -0
  1497. onnx/backend/test/data/node/test_sin/model.onnx +0 -0
  1498. onnx/backend/test/data/node/test_sin_example/model.onnx +0 -0
  1499. onnx/backend/test/data/node/test_sinh/model.onnx +0 -0
  1500. onnx/backend/test/data/node/test_sinh_example/model.onnx +0 -0
  1501. onnx/backend/test/data/node/test_size/model.onnx +0 -0
  1502. onnx/backend/test/data/node/test_size_example/model.onnx +0 -0
  1503. onnx/backend/test/data/node/test_softplus/model.onnx +0 -0
  1504. onnx/backend/test/data/node/test_softplus_example/model.onnx +0 -0
  1505. onnx/backend/test/data/node/test_softsign/model.onnx +0 -0
  1506. onnx/backend/test/data/node/test_softsign_example/model.onnx +0 -0
  1507. onnx/backend/test/data/node/test_squeeze/model.onnx +0 -0
  1508. onnx/backend/test/data/node/test_squeeze_negative_axes/model.onnx +0 -0
  1509. onnx/backend/test/data/node/test_tan/model.onnx +0 -0
  1510. onnx/backend/test/data/node/test_tan_example/model.onnx +0 -0
  1511. onnx/backend/test/data/node/test_thresholdedrelu/model.onnx +0 -0
  1512. onnx/backend/test/data/node/test_thresholdedrelu_default/model.onnx +0 -0
  1513. onnx/backend/test/data/node/test_thresholdedrelu_example/model.onnx +0 -0
  1514. onnx/backend/test/data/node/test_top_k_same_values/model.onnx +0 -0
  1515. onnx/backend/test/data/node/test_top_k_same_values/test_data_set_0/input_0.pb +0 -0
  1516. onnx/backend/test/data/node/test_top_k_same_values/test_data_set_0/input_1.pb +0 -0
  1517. onnx/backend/test/data/node/test_top_k_same_values/test_data_set_0/output_0.pb +0 -0
  1518. onnx/backend/test/data/node/test_top_k_same_values/test_data_set_0/output_1.pb +0 -0
  1519. onnx/backend/test/data/node/test_top_k_same_values_2d/model.onnx +0 -0
  1520. onnx/backend/test/data/node/test_top_k_same_values_2d/test_data_set_0/input_0.pb +0 -0
  1521. onnx/backend/test/data/node/test_top_k_same_values_2d/test_data_set_0/input_1.pb +0 -0
  1522. onnx/backend/test/data/node/test_top_k_same_values_2d/test_data_set_0/output_0.pb +0 -0
  1523. onnx/backend/test/data/node/test_top_k_same_values_2d/test_data_set_0/output_1.pb +0 -0
  1524. onnx/backend/test/data/node/test_top_k_same_values_largest/model.onnx +0 -0
  1525. onnx/backend/test/data/node/test_top_k_same_values_largest/test_data_set_0/input_0.pb +0 -0
  1526. onnx/backend/test/data/node/test_top_k_same_values_largest/test_data_set_0/input_1.pb +0 -0
  1527. onnx/backend/test/data/node/test_top_k_same_values_largest/test_data_set_0/output_0.pb +0 -0
  1528. onnx/backend/test/data/node/test_top_k_same_values_largest/test_data_set_0/output_1.pb +0 -0
  1529. onnx/backend/test/data/node/test_top_k_uint64/model.onnx +0 -0
  1530. onnx/backend/test/data/node/test_top_k_uint64/test_data_set_0/input_0.pb +0 -0
  1531. onnx/backend/test/data/node/test_top_k_uint64/test_data_set_0/input_1.pb +0 -0
  1532. onnx/backend/test/data/node/test_top_k_uint64/test_data_set_0/output_0.pb +0 -0
  1533. onnx/backend/test/data/node/test_top_k_uint64/test_data_set_0/output_1.pb +0 -0
  1534. onnx/backend/test/data/node/test_training_dropout/model.onnx +0 -0
  1535. onnx/backend/test/data/node/test_training_dropout_default/model.onnx +0 -0
  1536. onnx/backend/test/data/node/test_training_dropout_default_mask/model.onnx +0 -0
  1537. onnx/backend/test/data/node/test_training_dropout_mask/model.onnx +0 -0
  1538. onnx/backend/test/data/node/test_training_dropout_zero_ratio/model.onnx +0 -0
  1539. onnx/backend/test/data/node/test_training_dropout_zero_ratio_mask/model.onnx +0 -0
  1540. onnx/backend/test/data/node/test_transpose_all_permutations_0/model.onnx +0 -0
  1541. onnx/backend/test/data/node/test_transpose_all_permutations_1/model.onnx +0 -0
  1542. onnx/backend/test/data/node/test_transpose_all_permutations_2/model.onnx +0 -0
  1543. onnx/backend/test/data/node/test_transpose_all_permutations_3/model.onnx +0 -0
  1544. onnx/backend/test/data/node/test_transpose_all_permutations_4/model.onnx +0 -0
  1545. onnx/backend/test/data/node/test_transpose_all_permutations_5/model.onnx +0 -0
  1546. onnx/backend/test/data/node/test_transpose_default/model.onnx +0 -0
  1547. onnx/backend/test/data/node/test_unique_length_1/model.onnx +0 -0
  1548. onnx/backend/test/data/node/test_unique_length_1/test_data_set_0/input_0.pb +0 -0
  1549. onnx/backend/test/data/node/test_unique_length_1/test_data_set_0/output_0.pb +0 -0
  1550. onnx/backend/test/data/node/test_unique_length_1/test_data_set_0/output_1.pb +0 -0
  1551. onnx/backend/test/data/node/test_unique_length_1/test_data_set_0/output_2.pb +0 -0
  1552. onnx/backend/test/data/node/test_unique_length_1/test_data_set_0/output_3.pb +0 -0
  1553. onnx/backend/test/data/node/test_unsqueeze_axis_0/model.onnx +0 -0
  1554. onnx/backend/test/data/node/test_unsqueeze_axis_1/model.onnx +0 -0
  1555. onnx/backend/test/data/node/test_unsqueeze_axis_2/model.onnx +0 -0
  1556. onnx/backend/test/data/node/test_unsqueeze_negative_axes/model.onnx +0 -0
  1557. onnx/backend/test/data/node/test_unsqueeze_three_axes/model.onnx +0 -0
  1558. onnx/backend/test/data/node/test_unsqueeze_two_axes/model.onnx +0 -0
  1559. onnx/backend/test/data/node/test_unsqueeze_unsorted_axes/model.onnx +0 -0
  1560. onnx/backend/test/data/node/test_wrap_pad/model.onnx +0 -0
  1561. onnx/backend/test/loader/__init__.py +11 -6
  1562. onnx/backend/test/report/__init__.py +11 -5
  1563. onnx/backend/test/report/base.py +1 -0
  1564. onnx/backend/test/report/coverage.py +27 -30
  1565. onnx/backend/test/runner/__init__.py +39 -33
  1566. onnx/backend/test/runner/item.py +5 -3
  1567. onnx/backend/test/stat_coverage.py +11 -7
  1568. onnx/bin/checker.py +1 -0
  1569. onnx/checker.cc +30 -30
  1570. onnx/checker.h +9 -6
  1571. onnx/checker.py +8 -7
  1572. onnx/common/array_ref.h +12 -8
  1573. onnx/common/assertions.h +1 -0
  1574. onnx/common/file_utils.h +9 -3
  1575. onnx/common/interned_strings.cc +3 -5
  1576. onnx/common/interned_strings.h +12 -7
  1577. onnx/common/ir.h +37 -60
  1578. onnx/common/ir_pb_converter.cc +18 -17
  1579. onnx/common/ir_pb_converter.h +0 -1
  1580. onnx/common/model_helpers.cc +3 -6
  1581. onnx/common/model_helpers.h +1 -1
  1582. onnx/common/path.h +40 -11
  1583. onnx/common/proto_util.h +3 -3
  1584. onnx/common/status.cc +14 -13
  1585. onnx/common/status.h +12 -10
  1586. onnx/common/tensor.h +30 -87
  1587. onnx/common/version.h +1 -1
  1588. onnx/common/visitor.h +2 -2
  1589. onnx/compose.py +88 -69
  1590. onnx/cpp2py_export.cc +29 -20
  1591. onnx/defs/__init__.py +10 -6
  1592. onnx/defs/controlflow/defs.cc +13 -13
  1593. onnx/defs/controlflow/old.cc +220 -39
  1594. onnx/defs/controlflow/utils.cc +3 -3
  1595. onnx/defs/data_propagators.h +10 -7
  1596. onnx/defs/data_type_utils.cc +14 -16
  1597. onnx/defs/data_type_utils.h +1 -2
  1598. onnx/defs/function.cc +5 -9
  1599. onnx/defs/function.h +36 -11
  1600. onnx/defs/gen_doc.py +12 -8
  1601. onnx/defs/gen_shape_inference_information.py +1 -0
  1602. onnx/defs/generator/defs.cc +46 -113
  1603. onnx/defs/generator/old.cc +498 -5
  1604. onnx/defs/generator/utils.cc +1 -1
  1605. onnx/defs/logical/defs.cc +3 -3
  1606. onnx/defs/logical/old.cc +4 -4
  1607. onnx/defs/math/defs.cc +328 -354
  1608. onnx/defs/math/old.cc +1041 -50
  1609. onnx/defs/math/utils.cc +14 -3
  1610. onnx/defs/math/utils.h +4 -0
  1611. onnx/defs/nn/defs.cc +1097 -105
  1612. onnx/defs/nn/old.cc +1608 -21
  1613. onnx/defs/object_detection/defs.cc +4 -7
  1614. onnx/defs/object_detection/old.cc +117 -0
  1615. onnx/defs/operator_sets.h +182 -22
  1616. onnx/defs/operator_sets_ml.h +5 -5
  1617. onnx/defs/operator_sets_preview.h +1 -1
  1618. onnx/defs/operator_sets_training.h +1 -1
  1619. onnx/defs/optional/defs.cc +0 -4
  1620. onnx/defs/optional/old.cc +0 -4
  1621. onnx/defs/parser.cc +70 -36
  1622. onnx/defs/parser.h +57 -31
  1623. onnx/defs/printer.cc +62 -21
  1624. onnx/defs/quantization/defs.cc +55 -21
  1625. onnx/defs/quantization/old.cc +200 -1
  1626. onnx/defs/reduction/defs.cc +6 -6
  1627. onnx/defs/reduction/old.cc +18 -15
  1628. onnx/defs/reduction/utils.cc +10 -10
  1629. onnx/defs/reduction/utils.h +1 -1
  1630. onnx/defs/rnn/defs.cc +12 -15
  1631. onnx/defs/rnn/old.cc +522 -7
  1632. onnx/defs/schema.cc +550 -100
  1633. onnx/defs/schema.h +106 -373
  1634. onnx/defs/sequence/defs.cc +16 -18
  1635. onnx/defs/shape_inference.cc +39 -32
  1636. onnx/defs/shape_inference.h +113 -46
  1637. onnx/defs/tensor/defs.cc +81 -66
  1638. onnx/defs/tensor/old.cc +802 -22
  1639. onnx/defs/tensor/utils.cc +10 -8
  1640. onnx/defs/tensor/utils.h +2 -3
  1641. onnx/defs/tensor_proto_util.cc +2 -2
  1642. onnx/defs/tensor_proto_util.h +2 -2
  1643. onnx/defs/tensor_util.cc +2 -2
  1644. onnx/defs/tensor_util.h +2 -2
  1645. onnx/defs/traditionalml/defs.cc +16 -4
  1646. onnx/defs/traditionalml/utils.h +1 -2
  1647. onnx/external_data_helper.py +38 -16
  1648. onnx/gen_proto.py +8 -4
  1649. onnx/helper.py +210 -116
  1650. onnx/hub.py +33 -32
  1651. onnx/inliner/inliner.cc +8 -10
  1652. onnx/mapping.py +11 -6
  1653. onnx/model_container.py +12 -8
  1654. onnx/numpy_helper.py +261 -66
  1655. onnx/onnx-ml.proto +116 -10
  1656. onnx/onnx.in.proto +116 -10
  1657. onnx/onnx.proto +116 -10
  1658. onnx/onnx_cpp2py_export/defs.pyi +3 -4
  1659. onnx/onnx_cpp2py_export/inliner.pyi +0 -4
  1660. onnx/onnx_cpp2py_export/parser.pyi +0 -4
  1661. onnx/onnx_cpp2py_export.cp312-win_amd64.pyd +0 -0
  1662. onnx/onnx_data_pb2.py +17 -16
  1663. onnx/onnx_data_pb2.pyi +82 -142
  1664. onnx/onnx_ml_pb2.py +84 -71
  1665. onnx/onnx_ml_pb2.pyi +483 -645
  1666. onnx/onnx_operators_ml_pb2.py +11 -10
  1667. onnx/onnx_operators_ml_pb2.pyi +38 -64
  1668. onnx/parser.py +2 -0
  1669. onnx/printer.py +2 -3
  1670. onnx/py_utils.h +1 -1
  1671. onnx/reference/__init__.py +1 -0
  1672. onnx/reference/custom_element_types.py +80 -9
  1673. onnx/reference/op_run.py +25 -67
  1674. onnx/reference/ops/__init__.py +1 -0
  1675. onnx/reference/ops/_helpers.py +7 -4
  1676. onnx/reference/ops/_op.py +19 -6
  1677. onnx/reference/ops/_op_common_indices.py +1 -1
  1678. onnx/reference/ops/_op_common_pool.py +38 -29
  1679. onnx/reference/ops/_op_common_random.py +1 -1
  1680. onnx/reference/ops/_op_common_window.py +2 -2
  1681. onnx/reference/ops/_op_list.py +22 -18
  1682. onnx/reference/ops/aionnx_preview_training/__init__.py +1 -0
  1683. onnx/reference/ops/aionnx_preview_training/_op_list.py +10 -17
  1684. onnx/reference/ops/aionnx_preview_training/_op_run_training.py +1 -1
  1685. onnx/reference/ops/aionnx_preview_training/op_adagrad.py +14 -5
  1686. onnx/reference/ops/aionnx_preview_training/op_adam.py +2 -2
  1687. onnx/reference/ops/aionnx_preview_training/op_momentum.py +14 -2
  1688. onnx/reference/ops/aionnxml/__init__.py +1 -0
  1689. onnx/reference/ops/aionnxml/_common_classifier.py +1 -0
  1690. onnx/reference/ops/aionnxml/_op_list.py +9 -14
  1691. onnx/reference/ops/aionnxml/_op_run_aionnxml.py +1 -1
  1692. onnx/reference/ops/aionnxml/op_array_feature_extractor.py +1 -1
  1693. onnx/reference/ops/aionnxml/op_binarizer.py +1 -1
  1694. onnx/reference/ops/aionnxml/op_dict_vectorizer.py +11 -20
  1695. onnx/reference/ops/aionnxml/op_feature_vectorizer.py +1 -1
  1696. onnx/reference/ops/aionnxml/op_imputer.py +3 -3
  1697. onnx/reference/ops/aionnxml/op_label_encoder.py +1 -1
  1698. onnx/reference/ops/aionnxml/op_linear_classifier.py +2 -2
  1699. onnx/reference/ops/aionnxml/op_linear_regressor.py +1 -1
  1700. onnx/reference/ops/aionnxml/op_normalizer.py +1 -1
  1701. onnx/reference/ops/aionnxml/op_one_hot_encoder.py +1 -1
  1702. onnx/reference/ops/aionnxml/op_scaler.py +1 -1
  1703. onnx/reference/ops/aionnxml/op_svm_classifier.py +11 -9
  1704. onnx/reference/ops/aionnxml/op_svm_helper.py +2 -2
  1705. onnx/reference/ops/aionnxml/op_svm_regressor.py +1 -1
  1706. onnx/reference/ops/aionnxml/op_tree_ensemble.py +3 -3
  1707. onnx/reference/ops/aionnxml/op_tree_ensemble_classifier.py +1 -1
  1708. onnx/reference/ops/aionnxml/op_tree_ensemble_helper.py +4 -3
  1709. onnx/reference/ops/aionnxml/op_tree_ensemble_regressor.py +5 -3
  1710. onnx/reference/ops/experimental/__init__.py +1 -0
  1711. onnx/reference/ops/experimental/_op_list.py +24 -41
  1712. onnx/reference/ops/experimental/_op_run_experimental.py +1 -1
  1713. onnx/reference/ops/experimental/op_im2col.py +1 -1
  1714. onnx/reference/ops/op_abs.py +1 -1
  1715. onnx/reference/ops/op_acos.py +1 -1
  1716. onnx/reference/ops/op_acosh.py +1 -1
  1717. onnx/reference/ops/op_add.py +1 -1
  1718. onnx/reference/ops/op_affine_grid.py +4 -4
  1719. onnx/reference/ops/op_and.py +1 -1
  1720. onnx/reference/ops/op_argmax.py +1 -1
  1721. onnx/reference/ops/op_argmin.py +1 -1
  1722. onnx/reference/ops/op_asin.py +1 -1
  1723. onnx/reference/ops/op_asinh.py +1 -1
  1724. onnx/reference/ops/op_atan.py +1 -1
  1725. onnx/reference/ops/op_atanh.py +1 -1
  1726. onnx/reference/ops/op_attention.py +211 -0
  1727. onnx/reference/ops/op_attribute_has_value.py +15 -15
  1728. onnx/reference/ops/op_average_pool.py +1 -1
  1729. onnx/reference/ops/op_batch_normalization.py +13 -2
  1730. onnx/reference/ops/op_bernoulli.py +1 -1
  1731. onnx/reference/ops/op_bitshift.py +1 -1
  1732. onnx/reference/ops/op_bitwise_and.py +1 -1
  1733. onnx/reference/ops/op_bitwise_not.py +1 -1
  1734. onnx/reference/ops/op_bitwise_or.py +1 -1
  1735. onnx/reference/ops/op_bitwise_xor.py +1 -1
  1736. onnx/reference/ops/op_blackman_window.py +1 -1
  1737. onnx/reference/ops/op_cast.py +27 -10
  1738. onnx/reference/ops/op_cast_like.py +4 -1
  1739. onnx/reference/ops/op_ceil.py +1 -1
  1740. onnx/reference/ops/op_celu.py +1 -1
  1741. onnx/reference/ops/op_center_crop_pad.py +1 -1
  1742. onnx/reference/ops/op_clip.py +1 -1
  1743. onnx/reference/ops/op_col2im.py +10 -4
  1744. onnx/reference/ops/op_compress.py +1 -1
  1745. onnx/reference/ops/op_concat.py +1 -1
  1746. onnx/reference/ops/op_concat_from_sequence.py +9 -5
  1747. onnx/reference/ops/op_constant.py +5 -3
  1748. onnx/reference/ops/op_constant_of_shape.py +1 -1
  1749. onnx/reference/ops/op_conv.py +24 -23
  1750. onnx/reference/ops/op_conv_integer.py +1 -1
  1751. onnx/reference/ops/op_conv_transpose.py +35 -6
  1752. onnx/reference/ops/op_cos.py +1 -1
  1753. onnx/reference/ops/op_cosh.py +1 -1
  1754. onnx/reference/ops/op_cum_sum.py +3 -8
  1755. onnx/reference/ops/op_deform_conv.py +1 -1
  1756. onnx/reference/ops/op_depth_to_space.py +1 -1
  1757. onnx/reference/ops/op_dequantize_linear.py +37 -11
  1758. onnx/reference/ops/op_det.py +1 -1
  1759. onnx/reference/ops/op_dft.py +16 -2
  1760. onnx/reference/ops/op_div.py +1 -1
  1761. onnx/reference/ops/op_dropout.py +9 -8
  1762. onnx/reference/ops/op_dynamic_quantize_linear.py +1 -1
  1763. onnx/reference/ops/op_einsum.py +1 -1
  1764. onnx/reference/ops/op_elu.py +1 -1
  1765. onnx/reference/ops/op_equal.py +1 -1
  1766. onnx/reference/ops/op_erf.py +1 -1
  1767. onnx/reference/ops/op_exp.py +1 -1
  1768. onnx/reference/ops/op_expand.py +1 -1
  1769. onnx/reference/ops/op_eyelike.py +2 -2
  1770. onnx/reference/ops/op_flatten.py +1 -1
  1771. onnx/reference/ops/op_floor.py +1 -1
  1772. onnx/reference/ops/op_gather.py +1 -1
  1773. onnx/reference/ops/op_gather_elements.py +3 -3
  1774. onnx/reference/ops/op_gathernd.py +2 -4
  1775. onnx/reference/ops/op_gemm.py +12 -2
  1776. onnx/reference/ops/op_global_average_pool.py +1 -1
  1777. onnx/reference/ops/op_global_max_pool.py +1 -1
  1778. onnx/reference/ops/op_greater.py +1 -1
  1779. onnx/reference/ops/op_greater_or_equal.py +1 -1
  1780. onnx/reference/ops/op_grid_sample.py +2 -3
  1781. onnx/reference/ops/op_gru.py +7 -7
  1782. onnx/reference/ops/op_hamming_window.py +1 -1
  1783. onnx/reference/ops/op_hann_window.py +1 -1
  1784. onnx/reference/ops/op_hard_sigmoid.py +1 -1
  1785. onnx/reference/ops/op_hardmax.py +5 -2
  1786. onnx/reference/ops/op_identity.py +3 -3
  1787. onnx/reference/ops/op_if.py +6 -3
  1788. onnx/reference/ops/op_instance_normalization.py +1 -1
  1789. onnx/reference/ops/op_isinf.py +1 -1
  1790. onnx/reference/ops/op_isnan.py +1 -1
  1791. onnx/reference/ops/op_layer_normalization.py +2 -4
  1792. onnx/reference/ops/op_leaky_relu.py +5 -2
  1793. onnx/reference/ops/op_less.py +1 -1
  1794. onnx/reference/ops/op_less_or_equal.py +1 -1
  1795. onnx/reference/ops/op_log.py +1 -1
  1796. onnx/reference/ops/op_log_softmax.py +1 -1
  1797. onnx/reference/ops/op_loop.py +5 -3
  1798. onnx/reference/ops/op_lp_normalization.py +1 -1
  1799. onnx/reference/ops/op_lp_pool.py +4 -2
  1800. onnx/reference/ops/op_lrn.py +1 -1
  1801. onnx/reference/ops/op_lstm.py +9 -11
  1802. onnx/reference/ops/op_matmul.py +1 -1
  1803. onnx/reference/ops/op_matmul_integer.py +1 -1
  1804. onnx/reference/ops/op_max.py +1 -1
  1805. onnx/reference/ops/op_max_pool.py +8 -8
  1806. onnx/reference/ops/op_max_unpool.py +5 -3
  1807. onnx/reference/ops/op_mean.py +1 -1
  1808. onnx/reference/ops/op_mel_weight_matrix.py +1 -1
  1809. onnx/reference/ops/op_min.py +1 -1
  1810. onnx/reference/ops/op_mod.py +1 -1
  1811. onnx/reference/ops/op_mul.py +1 -1
  1812. onnx/reference/ops/op_neg.py +1 -1
  1813. onnx/reference/ops/op_negative_log_likelihood_loss.py +4 -2
  1814. onnx/reference/ops/op_non_max_suppression.py +16 -19
  1815. onnx/reference/ops/op_non_zero.py +1 -1
  1816. onnx/reference/ops/op_not.py +1 -1
  1817. onnx/reference/ops/op_one_hot.py +1 -1
  1818. onnx/reference/ops/op_optional.py +1 -1
  1819. onnx/reference/ops/op_optional_get_element.py +1 -1
  1820. onnx/reference/ops/op_optional_has_element.py +1 -1
  1821. onnx/reference/ops/op_or.py +1 -1
  1822. onnx/reference/ops/op_pad.py +1 -1
  1823. onnx/reference/ops/op_pool_common.py +52 -34
  1824. onnx/reference/ops/op_pow.py +1 -1
  1825. onnx/reference/ops/op_prelu.py +3 -3
  1826. onnx/reference/ops/op_qlinear_conv.py +14 -1
  1827. onnx/reference/ops/op_qlinear_matmul.py +1 -1
  1828. onnx/reference/ops/op_quantize_linear.py +57 -13
  1829. onnx/reference/ops/op_random_normal.py +1 -1
  1830. onnx/reference/ops/op_random_normal_like.py +1 -1
  1831. onnx/reference/ops/op_random_uniform.py +1 -1
  1832. onnx/reference/ops/op_random_uniform_like.py +1 -1
  1833. onnx/reference/ops/op_range.py +1 -1
  1834. onnx/reference/ops/op_reciprocal.py +1 -1
  1835. onnx/reference/ops/op_reduce_l1.py +1 -1
  1836. onnx/reference/ops/op_reduce_l2.py +1 -1
  1837. onnx/reference/ops/op_reduce_log_sum.py +1 -1
  1838. onnx/reference/ops/op_reduce_log_sum_exp.py +1 -1
  1839. onnx/reference/ops/op_reduce_max.py +1 -1
  1840. onnx/reference/ops/op_reduce_mean.py +2 -2
  1841. onnx/reference/ops/op_reduce_min.py +1 -1
  1842. onnx/reference/ops/op_reduce_prod.py +1 -1
  1843. onnx/reference/ops/op_reduce_sum.py +2 -2
  1844. onnx/reference/ops/op_reduce_sum_square.py +1 -1
  1845. onnx/reference/ops/op_regex_full_match.py +1 -1
  1846. onnx/reference/ops/op_relu.py +1 -1
  1847. onnx/reference/ops/op_reshape.py +1 -1
  1848. onnx/reference/ops/op_reverse_sequence.py +1 -1
  1849. onnx/reference/ops/op_rms_normalization.py +49 -0
  1850. onnx/reference/ops/op_rnn.py +10 -8
  1851. onnx/reference/ops/op_roi_align.py +5 -5
  1852. onnx/reference/ops/op_rotary_embedding.py +117 -0
  1853. onnx/reference/ops/op_round.py +1 -1
  1854. onnx/reference/ops/op_scan.py +12 -13
  1855. onnx/reference/ops/op_scatter_elements.py +19 -50
  1856. onnx/reference/ops/op_scatternd.py +1 -1
  1857. onnx/reference/ops/op_selu.py +1 -1
  1858. onnx/reference/ops/op_sequence_at.py +1 -1
  1859. onnx/reference/ops/op_sequence_construct.py +1 -1
  1860. onnx/reference/ops/op_sequence_empty.py +2 -2
  1861. onnx/reference/ops/op_sequence_erase.py +1 -1
  1862. onnx/reference/ops/op_sequence_insert.py +6 -6
  1863. onnx/reference/ops/op_sequence_length.py +1 -1
  1864. onnx/reference/ops/op_sequence_map.py +1 -1
  1865. onnx/reference/ops/op_shape.py +2 -6
  1866. onnx/reference/ops/op_shrink.py +1 -1
  1867. onnx/reference/ops/op_sigmoid.py +1 -1
  1868. onnx/reference/ops/op_sign.py +1 -1
  1869. onnx/reference/ops/op_sin.py +1 -1
  1870. onnx/reference/ops/op_sinh.py +1 -1
  1871. onnx/reference/ops/op_size.py +1 -1
  1872. onnx/reference/ops/op_slice.py +3 -5
  1873. onnx/reference/ops/op_softmax.py +1 -1
  1874. onnx/reference/ops/op_softmax_cross_entropy_loss.py +1 -1
  1875. onnx/reference/ops/op_softplus.py +1 -1
  1876. onnx/reference/ops/op_softsign.py +1 -1
  1877. onnx/reference/ops/op_space_to_depth.py +1 -1
  1878. onnx/reference/ops/op_split.py +1 -1
  1879. onnx/reference/ops/op_split_to_sequence.py +12 -11
  1880. onnx/reference/ops/op_sqrt.py +1 -1
  1881. onnx/reference/ops/op_squeeze.py +1 -1
  1882. onnx/reference/ops/op_stft.py +3 -2
  1883. onnx/reference/ops/op_string_concat.py +1 -1
  1884. onnx/reference/ops/op_string_normalizer.py +8 -8
  1885. onnx/reference/ops/op_string_split.py +4 -4
  1886. onnx/reference/ops/op_sub.py +1 -1
  1887. onnx/reference/ops/op_sum.py +1 -1
  1888. onnx/reference/ops/op_tan.py +1 -1
  1889. onnx/reference/ops/op_tanh.py +1 -1
  1890. onnx/reference/ops/op_tfidf_vectorizer.py +11 -12
  1891. onnx/reference/ops/op_thresholded_relu.py +1 -1
  1892. onnx/reference/ops/op_tile.py +1 -1
  1893. onnx/reference/ops/op_topk.py +13 -23
  1894. onnx/reference/ops/op_transpose.py +1 -1
  1895. onnx/reference/ops/op_trilu.py +1 -1
  1896. onnx/reference/ops/op_unique.py +3 -1
  1897. onnx/reference/ops/op_unsqueeze.py +2 -2
  1898. onnx/reference/ops/op_upsample.py +1 -1
  1899. onnx/reference/ops/op_where.py +1 -1
  1900. onnx/reference/ops/op_xor.py +1 -1
  1901. onnx/reference/ops_optimized/__init__.py +1 -0
  1902. onnx/reference/ops_optimized/op_conv_optimized.py +1 -1
  1903. onnx/reference/reference_evaluator.py +35 -27
  1904. onnx/serialization.py +5 -2
  1905. onnx/shape_inference/attribute_binder.h +1 -1
  1906. onnx/shape_inference/implementation.cc +25 -12
  1907. onnx/shape_inference/implementation.h +51 -19
  1908. onnx/shape_inference.py +8 -5
  1909. onnx/subbyte.py +134 -12
  1910. onnx/test/basic_test.py +1 -0
  1911. onnx/test/checker_test.py +41 -3
  1912. onnx/test/compose_test.py +15 -11
  1913. onnx/test/cpp/data_propagation_test.cc +19 -7
  1914. onnx/test/cpp/function_context_test.cc +18 -19
  1915. onnx/test/cpp/function_verify_test.cc +33 -29
  1916. onnx/test/cpp/parser_test.cc +97 -0
  1917. onnx/test/cpp/schema_registration_test.cc +3 -3
  1918. onnx/test/cpp/shape_inference_test.cc +48 -11
  1919. onnx/test/cpp/test_main.cc +1 -1
  1920. onnx/test/cpp/utf8_conversion_test.cc +27 -0
  1921. onnx/test/data_propagation_test.py +116 -2
  1922. onnx/test/function_inference_test.py +6 -1
  1923. onnx/test/function_test.py +2 -1
  1924. onnx/test/helper_test.py +140 -112
  1925. onnx/test/hub_test.py +1 -1
  1926. onnx/test/inference_function_test.py +31 -9
  1927. onnx/test/inliner_test.py +2 -0
  1928. onnx/test/model_container_refeval_test.py +2 -1
  1929. onnx/test/model_container_test.py +2 -1
  1930. onnx/test/model_inference_test.py +2 -0
  1931. onnx/test/numpy_helper_test.py +64 -12
  1932. onnx/test/parser_test.py +71 -2
  1933. onnx/test/printer_test.py +2 -0
  1934. onnx/test/reference_evaluator_ml_test.py +2 -3
  1935. onnx/test/reference_evaluator_model_test.py +2 -0
  1936. onnx/test/reference_evaluator_test.py +417 -56
  1937. onnx/test/schema_test.py +7 -2
  1938. onnx/test/serialization_test.py +2 -0
  1939. onnx/test/shape_inference_test.py +920 -160
  1940. onnx/test/symbolic_shape_test.py +3 -3
  1941. onnx/test/test_backend_reference.py +33 -3
  1942. onnx/test/test_backend_test.py +12 -10
  1943. onnx/test/test_external_data.py +99 -4
  1944. onnx/test/tools_test.py +15 -14
  1945. onnx/test/training_tool_test.py +1 -0
  1946. onnx/test/utils_test.py +2 -1
  1947. onnx/test/version_converter/automatic_conversion_test_base.py +6 -3
  1948. onnx/test/version_converter/automatic_downgrade_test.py +2 -0
  1949. onnx/test/version_converter/automatic_upgrade_test.py +176 -2
  1950. onnx/test/version_converter_test.py +43 -9
  1951. onnx/test/version_utils.py +8 -0
  1952. onnx/tools/net_drawer.py +6 -5
  1953. onnx/tools/replace_constants.py +11 -11
  1954. onnx/tools/update_model_dims.py +8 -7
  1955. onnx/utils.py +109 -72
  1956. onnx/version.py +2 -2
  1957. onnx/version_converter/BaseConverter.h +2 -7
  1958. onnx/version_converter/adapters/adapter.h +6 -3
  1959. onnx/version_converter/adapters/axes_attribute_to_input.h +1 -1
  1960. onnx/version_converter/adapters/axes_input_to_attribute.h +4 -4
  1961. onnx/version_converter/adapters/axis_attribute_to_input.h +2 -2
  1962. onnx/version_converter/adapters/axis_input_to_attribute.h +4 -6
  1963. onnx/version_converter/adapters/broadcast_backward_compatibility.h +1 -1
  1964. onnx/version_converter/adapters/broadcast_forward_compatibility.h +2 -2
  1965. onnx/version_converter/adapters/cast_9_8.h +1 -1
  1966. onnx/version_converter/adapters/clip_10_11.h +4 -2
  1967. onnx/version_converter/adapters/dropout_11_12.h +5 -2
  1968. onnx/version_converter/adapters/extend_supported_types.h +3 -3
  1969. onnx/version_converter/adapters/gemm_6_7.h +1 -1
  1970. onnx/version_converter/adapters/gemm_7_6.h +1 -1
  1971. onnx/version_converter/adapters/gridsample_19_20.h +3 -1
  1972. onnx/version_converter/adapters/group_normalization_20_21.h +2 -2
  1973. onnx/version_converter/adapters/maxpool_8_7.h +1 -1
  1974. onnx/version_converter/adapters/pad_10_11.h +3 -1
  1975. onnx/version_converter/adapters/q_dq_21_20.h +2 -2
  1976. onnx/version_converter/adapters/reshape_4_5.h +1 -1
  1977. onnx/version_converter/adapters/reshape_5_4.h +5 -5
  1978. onnx/version_converter/adapters/resize_10_11.h +3 -1
  1979. onnx/version_converter/adapters/scan_8_9.h +3 -3
  1980. onnx/version_converter/adapters/scan_9_8.h +2 -2
  1981. onnx/version_converter/adapters/scatter_10_11.h +3 -1
  1982. onnx/version_converter/adapters/slice_9_10.h +4 -2
  1983. onnx/version_converter/adapters/softmax_12_13.h +2 -2
  1984. onnx/version_converter/adapters/softmax_13_12.h +66 -0
  1985. onnx/version_converter/adapters/split_12_13.h +1 -1
  1986. onnx/version_converter/adapters/split_13_12.h +4 -4
  1987. onnx/version_converter/adapters/split_17_18.h +2 -2
  1988. onnx/version_converter/adapters/sum_8_7.h +1 -1
  1989. onnx/version_converter/adapters/topk_9_10.h +3 -1
  1990. onnx/version_converter/adapters/transformers.h +6 -5
  1991. onnx/version_converter/adapters/type_restriction.h +4 -4
  1992. onnx/version_converter/adapters/upsample_6_7.h +1 -1
  1993. onnx/version_converter/adapters/upsample_8_9.h +1 -1
  1994. onnx/version_converter/adapters/upsample_9_10.h +4 -1
  1995. onnx/version_converter/adapters/upsample_9_8.h +11 -11
  1996. onnx/version_converter/convert.cc +14 -11
  1997. onnx/version_converter/convert.h +160 -5
  1998. onnx/version_converter/helper.cc +4 -9
  1999. onnx/version_converter.py +4 -2
  2000. onnx-1.18.0.dist-info/METADATA +134 -0
  2001. {onnx-1.16.2.dist-info → onnx-1.18.0.dist-info}/RECORD +2005 -1042
  2002. {onnx-1.16.2.dist-info → onnx-1.18.0.dist-info}/WHEEL +1 -1
  2003. onnx/test/elu_test.py +0 -17
  2004. onnx/test/relu_test.py +0 -16
  2005. onnx/test/test_backend_onnxruntime.py +0 -328
  2006. onnx/test/test_with_ort.py +0 -50
  2007. onnx-1.16.2.dist-info/METADATA +0 -353
  2008. {onnx-1.16.2.dist-info → onnx-1.18.0.dist-info}/entry_points.txt +0 -0
  2009. {onnx-1.16.2.dist-info → onnx-1.18.0.dist-info/licenses}/LICENSE +0 -0
  2010. {onnx-1.16.2.dist-info → onnx-1.18.0.dist-info}/top_level.txt +0 -0
onnx/defs/math/old.cc CHANGED
@@ -11,7 +11,979 @@
11
11
 
12
12
  namespace ONNX_NAMESPACE {
13
13
 
14
- std::function<void(OpSchema&)> MathDocGenerator_opset13(const char* name) {
14
+ static bool BuildContextDependentFunctionBody_opset13(
15
+ const FunctionBodyBuildContext& ctx,
16
+ const OpSchema& schema,
17
+ FunctionProto& functionProto) {
18
+ if (ctx.getInputType(0) == nullptr) {
19
+ // we cannot create a correct function body without knowing the input type
20
+ return false;
21
+ }
22
+ auto input_type = ctx.getInputType(0)->tensor_type().elem_type();
23
+ bool float_input = input_type == TensorProto_DataType_FLOAT;
24
+ auto reduction_attr_proto = ctx.getAttribute("reduction");
25
+ std::string reduction_attr =
26
+ reduction_attr_proto != nullptr && reduction_attr_proto->has_s() ? reduction_attr_proto->s() : "mean";
27
+
28
+ FunctionBuilder builder(functionProto);
29
+ builder.Const1D("const_zero", int64_t(0))
30
+ .Const1D("const_one", int64_t(1))
31
+ .Const1D("axes", int64_t(1))
32
+ .Add("expanded_target = Unsqueeze (target, axes)");
33
+
34
+ if (ctx.getAttribute("ignore_index") == nullptr) {
35
+ builder.Add(R"(
36
+ input_gather_element = GatherElements <axis = 1> (input, expanded_target)
37
+ loss_NCdd = Neg (input_gather_element)
38
+ loss_N1dd = Slice (loss_NCdd, const_zero, const_one, const_one)
39
+ )");
40
+
41
+ if (!ctx.hasInput(2)) {
42
+ if (reduction_attr == "none") {
43
+ builder.Add("loss = Squeeze (loss_N1dd, axes)");
44
+ } else {
45
+ builder.Add("loss_Ndd = Squeeze (loss_N1dd, axes)");
46
+ if (reduction_attr == "mean") {
47
+ builder.Add("loss = ReduceMean <keepdims = 0> (loss_Ndd)");
48
+ } else {
49
+ builder.Add("loss = ReduceSum <keepdims = 0> (loss_Ndd)");
50
+ }
51
+ }
52
+ } else {
53
+ builder.Add("weight_gather = Gather (weight, target)");
54
+ builder.Add("loss_unweighted = Squeeze (loss_N1dd, axes)");
55
+ if (reduction_attr == "none") {
56
+ builder.Add("loss = Mul (loss_unweighted, weight_gather)");
57
+ } else {
58
+ builder.Add("loss_Ndd = Mul (loss_unweighted, weight_gather)");
59
+ if (reduction_attr == "mean") {
60
+ builder.Add(R"(
61
+ loss_sum = ReduceSum <keepdims = 0> (loss_Ndd)
62
+ weight_gather_sum = ReduceSum <keepdims = 0> (weight_gather)
63
+ loss = Div (loss_sum, weight_gather_sum)
64
+ )");
65
+ } else {
66
+ builder.Add("loss = ReduceSum <keepdims = 0> (loss_Ndd)");
67
+ }
68
+ }
69
+ }
70
+ } else {
71
+ builder.Const1D("const_ignore_index", ctx.getAttribute("ignore_index")->i());
72
+ builder.Add(R"(
73
+ const_zero_target_typed = Sub (expanded_target, expanded_target)
74
+ expanded_target_int64 = Cast <to = 7> (expanded_target)
75
+ mask = Equal (expanded_target_int64, const_ignore_index)
76
+ transform_targets = Where (mask, const_zero_target_typed, expanded_target)
77
+ )");
78
+ builder.Add("input_gather_element = GatherElements <axis = 1> (input, transform_targets)");
79
+ builder.Const1D("const_zero_float", 0.0f);
80
+ if (!float_input) {
81
+ builder.Add("const_zero_casted = Cast (const_zero_float)", "to", static_cast<int64_t>(input_type))
82
+ .Add("input_gather_element_transform = Where (mask, const_zero_casted, input_gather_element)");
83
+ } else
84
+ builder.Add("input_gather_element_transform = Where (mask, const_zero_float, input_gather_element)");
85
+ builder.Add("loss_NCdd = Neg (input_gather_element_transform)");
86
+ builder.Add("loss_N1dd = Slice (loss_NCdd, const_zero, const_one, const_one)");
87
+
88
+ if (!ctx.hasInput(2)) {
89
+ builder.Add("squeeze_mask = Squeeze (mask, axes)");
90
+ builder.Const1D("const_one_float", 1.0f);
91
+ if (!float_input) {
92
+ builder.Add("const_one_casted = Cast (const_one_float)", "to", static_cast<int64_t>(input_type))
93
+ .Add("weight_gather = Where (squeeze_mask, const_zero_casted, const_one_casted)");
94
+ } else
95
+ builder.Add("weight_gather = Where (squeeze_mask, const_zero_float, const_one_float)");
96
+
97
+ } else {
98
+ builder.Add("weight_gather_temp = Gather (weight, transform_targets)");
99
+ builder.Add(
100
+ float_input ? "weight_gather_temp_1 = Where (mask, const_zero_float, weight_gather_temp)"
101
+ : "weight_gather_temp_1 = Where (mask, const_zero_casted, weight_gather_temp)");
102
+ builder.Add("weight_gather = Squeeze (weight_gather_temp_1, axes)");
103
+ }
104
+
105
+ builder.Add("loss_unweighted = Squeeze (loss_N1dd, axes)");
106
+ if (reduction_attr == "none") {
107
+ builder.Add("loss = Mul (loss_unweighted, weight_gather)");
108
+ } else {
109
+ builder.Add("loss_Ndd = Mul (loss_unweighted, weight_gather)");
110
+ if (reduction_attr == "mean") {
111
+ builder.Add(R"(
112
+ loss_sum = ReduceSum <keepdims = 0> (loss_Ndd)
113
+ weight_gather_sum = ReduceSum <keepdims = 0> (weight_gather)
114
+ loss = Div (loss_sum, weight_gather_sum)
115
+ )");
116
+ } else {
117
+ builder.Add("loss = ReduceSum <keepdims = 0> (loss_Ndd)");
118
+ }
119
+ }
120
+ }
121
+
122
+ schema.BuildFunction(functionProto);
123
+ return true;
124
+ }
125
+
126
+ static const char* NegativeLogLikelihoodLoss_ver13_doc = R"DOC(
127
+ A NegativeLogLikelihoodLoss operator computes (weighted) negative log likelihood loss.
128
+ Its "input" tensor has the shape of (N, C, d1, d2, ..., dk) where k >= 0.
129
+ The "input" tensor contains log-probabilities for input[n, :, d_1, d_2,..., d_k] being in a class of [0, C).
130
+ The operator's "target" input tensor has the shape of (N, d1, d2, ..., dk). It encodes class labels (one of C classes)
131
+ or it may contain a special value (indicated by an attribute ignore_index) for N x d1 x d2 x ... x dk samples.
132
+ The loss value for input[n, :, d_1, d_2,...d_k] being classified as class c = target[n][d_1][d_2]...[d_k] is computed as:
133
+
134
+ ```
135
+ loss[n][d_1][d_2]...[d_k] = -input[n][c][d_1][d_2]...[d_k].
136
+ ```
137
+
138
+ When an optional "weight" is provided, the sample loss is calculated as:
139
+
140
+ ```
141
+ loss[n][d_1][d_2]...[d_k] = -input[n][c][d_1][d_2]...[d_k] * weight[c].
142
+ ```
143
+
144
+ loss is zero for the case when target-value equals ignore_index.
145
+
146
+ ```
147
+ loss[n][d_1][d_2]...[d_k] = 0, when target[n][d_1][d_2]...[d_k] = ignore_index
148
+ ```
149
+
150
+ If "reduction" attribute is set to "none", the operator's output will be the above loss with shape (N, d1, d2, ..., dk).
151
+ If "reduction" attribute is set to "mean" (the default attribute value), the output loss is (weight) averaged:
152
+
153
+ ```
154
+ mean(loss), if "weight" is not provided,
155
+ ```
156
+
157
+ or if weight is provided,
158
+
159
+ ```
160
+ sum(loss) / sum(weight[target[n][d_1][d_2]...[d_k]]]), for all samples.
161
+ ```
162
+
163
+ If "reduction" attribute is set to "sum", the output is a scalar: `sum(loss)`.
164
+
165
+ See also https://pytorch.org/docs/stable/nn.html#torch.nn.NLLLoss.
166
+
167
+ Example 1:
168
+
169
+ ```
170
+ // negative log likelihood loss, "none" reduction
171
+ N, C, d1 = 2, 3, 2
172
+ input = [[[1.0, 2.0], [2.0, 2.0], [3.0, 2.0]],
173
+ [[0.0, 1.0], [2.0, 2.0], [1.0, 2]]]
174
+ target = [[2, 1], [0, 2]]
175
+
176
+ loss = np.zeros((N, d1))
177
+ for n in range(N):
178
+ for d_1 in range(d1):
179
+ c = target[n][d_1]
180
+ loss[n][d_1] = -input[n][c][d_1]
181
+
182
+ // print(loss)
183
+ // [[-3. -2.]
184
+ // [-0. -2.]]
185
+ ```
186
+
187
+ Example 2:
188
+
189
+ ```
190
+ // weighted negative log likelihood loss, sum reduction
191
+ N, C, d1 = 2, 3, 2
192
+ input = [[[1.0, 2.0], [2.0, 2.0], [3.0, 2.0]],
193
+ [[0.0, 1.0], [2.0, 2.0], [1.0, 2]]]
194
+ target = [[2, 1], [0, 2]]
195
+ weight = [0.2, 0.3, 0.1]
196
+ loss = np.zeros((N, d1))
197
+ for n in range(N):
198
+ for d_1 in range(d1):
199
+ c = target[n][d_1]
200
+ loss[n][d_1] = -input[n][c][d_1] * weight[c]
201
+
202
+ loss = np.sum(loss)
203
+ // print(loss)
204
+ // -1.1
205
+ ```
206
+
207
+ Example 3:
208
+
209
+ ```
210
+ // weighted negative log likelihood loss, mean reduction
211
+ N, C, d1 = 2, 3, 2
212
+ input = [[[1.0, 2.0], [2.0, 2.0], [3.0, 2.0]],
213
+ [[0.0, 1.0], [2.0, 2.0], [1.0, 2]]]
214
+ target = [[2, 1], [0, 2]]
215
+ weight = [0.2, 0.3, 0.1]
216
+ loss = np.zeros((N, d1))
217
+ weight_total = 0
218
+ for n in range(N):
219
+ for d_1 in range(d1):
220
+ c = target[n][d_1]
221
+ loss[n][d_1] = -input[n][c][d_1] * weight[c]
222
+ weight_total = weight_total + weight[c]
223
+
224
+ loss = np.sum(loss) / weight_total
225
+ // print(loss)
226
+ // -1.57
227
+ ```
228
+ )DOC";
229
+
230
+ ONNX_OPERATOR_SET_SCHEMA(
231
+ NegativeLogLikelihoodLoss,
232
+ 13,
233
+ OpSchema()
234
+ .SetDoc(NegativeLogLikelihoodLoss_ver13_doc)
235
+ .Input(
236
+ 0,
237
+ "input",
238
+ "Input tensor of shape (N, C) or (N, C, d1, d2, ..., dk).",
239
+ "T",
240
+ OpSchema::Single,
241
+ true,
242
+ 1,
243
+ OpSchema::Differentiable)
244
+ .Input(
245
+ 1,
246
+ "target",
247
+ "Target tensor of shape (N) or (N, d1, d2, ..., dk). Target element value shall be in range of [0, C). "
248
+ "If ignore_index is specified, it may have a value outside [0, C) and the target values should either be "
249
+ "in the range [0, C) or have the value ignore_index.",
250
+ "Tind",
251
+ OpSchema::Single,
252
+ true,
253
+ 1,
254
+ OpSchema::NonDifferentiable)
255
+ .Input(
256
+ 2,
257
+ "weight",
258
+ "Optional rescaling weight tensor. "
259
+ "If given, it has to be a tensor of size C. Otherwise, it is treated as if having all ones.",
260
+ "T",
261
+ OpSchema::Optional,
262
+ true,
263
+ 1,
264
+ OpSchema::NonDifferentiable)
265
+ .Output(0, "loss", "The negative log likelihood loss", "T", OpSchema::Single, true, 1, OpSchema::Differentiable)
266
+ .Attr(
267
+ "reduction",
268
+ "Type of reduction to apply to loss: none, sum, mean (default). "
269
+ "'none': the output is the loss for each sample. "
270
+ "'sum': the output will be summed. "
271
+ "'mean': the sum of the output will be divided by the sum of applied weights.",
272
+ AttributeProto::STRING,
273
+ std::string("mean"))
274
+ .Attr(
275
+ "ignore_index",
276
+ "Specifies a target value that is ignored and does not contribute to the input gradient. It's an optional value.",
277
+ AttributeProto::INT,
278
+ false)
279
+ .TypeConstraint(
280
+ "T",
281
+ {"tensor(float16)", "tensor(float)", "tensor(double)"},
282
+ "Constrain input, weight, and output types to floating-point tensors.")
283
+ .TypeConstraint("Tind", {"tensor(int32)", "tensor(int64)"}, "Constrain target to integer types")
284
+ .SetContextDependentFunctionBodyBuilder(BuildContextDependentFunctionBody_opset13)
285
+ .TypeAndShapeInferenceFunction([](InferenceContext& ctx) {
286
+ // Type inference
287
+ propagateElemTypeFromInputToOutput(ctx, 0, 0);
288
+
289
+ // Shape inference
290
+ if (hasNInputShapes(ctx, 2)) {
291
+ const TensorShapeProto& input_shape = ctx.getInputType(0)->tensor_type().shape();
292
+ const TensorShapeProto& target_shape = ctx.getInputType(1)->tensor_type().shape();
293
+
294
+ const int input_rank = static_cast<int>(input_shape.dim_size());
295
+ const int target_rank = static_cast<int>(target_shape.dim_size());
296
+
297
+ if (input_rank < 2) {
298
+ fail_shape_inference("Input rank must be >= 2.");
299
+ }
300
+ if (target_rank != input_rank - 1) {
301
+ fail_shape_inference("Target rank must be 1 less than the input rank.");
302
+ }
303
+
304
+ // match input dimensions (N, C, d1, ..., dk) with target
305
+ // dimensions of (C, d1, ..., dk)
306
+ for (int dim = 0; dim < target_rank; dim++) {
307
+ const auto input_dim = dim == 0 ? input_shape.dim(dim) : input_shape.dim(dim + 1);
308
+ const auto target_dim = target_shape.dim(dim);
309
+ if (input_dim.has_dim_value() && target_dim.has_dim_value() &&
310
+ input_dim.dim_value() != target_dim.dim_value())
311
+ fail_shape_inference("Input and target dimension value mismatch.");
312
+ }
313
+
314
+ if (ctx.getNumInputs() == 3 && hasInputShape(ctx, 2)) {
315
+ const TensorShapeProto& weight_shape = ctx.getInputType(2)->tensor_type().shape();
316
+ if (weight_shape.dim_size() != 1) {
317
+ fail_shape_inference("Weight rank must be 1.");
318
+ }
319
+ }
320
+
321
+ TensorShapeProto* output_shape = ctx.getOutputType(0)->mutable_tensor_type()->mutable_shape();
322
+
323
+ if (getAttribute(ctx, "reduction", "mean") == "none") {
324
+ // output tensor is of shape (N, d1, d2, ..., dk) if
325
+ // reduction attribute is "none".
326
+ for (int i = 0; i < input_rank - 1; i++) {
327
+ auto* dim = output_shape->add_dim();
328
+ if (i == 0)
329
+ *dim = input_shape.dim(i);
330
+ else
331
+ *dim = input_shape.dim(i + 1);
332
+ }
333
+ }
334
+ // otherwise output is a scalar.
335
+ }
336
+ }));
337
+
338
+ static const char* Det_ver11_doc = R"DOC(
339
+ Det calculates determinant of a square matrix or batches of square matrices.
340
+ Det takes one input tensor of shape `[*, M, M]`, where `*` is zero or more batch dimensions,
341
+ and the inner-most 2 dimensions form square matrices.
342
+ The output is a tensor of shape `[*]`, containing the determinants of all input submatrices.
343
+ e.g., When the input is 2-D, the output is a scalar(shape is empty: `[]`).
344
+ )DOC";
345
+
346
+ ONNX_OPERATOR_SET_SCHEMA(
347
+ Det,
348
+ 11,
349
+ OpSchema()
350
+ .SetDoc(Det_ver11_doc)
351
+ .Input(0, "X", "Input tensor", "T", OpSchema::Single, true, 1, OpSchema::Differentiable)
352
+ .Output(0, "Y", "Output tensor", "T", OpSchema::Single, true, 1, OpSchema::Differentiable)
353
+ .TypeConstraint(
354
+ "T",
355
+ {"tensor(float16)", "tensor(float)", "tensor(double)"},
356
+ "Constrain input and output types to floating-point tensors.")
357
+ .TypeAndShapeInferenceFunction([](InferenceContext& ctx) {
358
+ // Type inference
359
+ propagateElemTypeFromInputToOutput(ctx, 0, 0);
360
+
361
+ // Shape inference
362
+ if (hasInputShape(ctx, 0)) {
363
+ const TensorShapeProto& input_shape = ctx.getInputType(0)->tensor_type().shape();
364
+ TensorShapeProto* output_shape = ctx.getOutputType(0)->mutable_tensor_type()->mutable_shape();
365
+ const int rank = static_cast<int>(input_shape.dim_size());
366
+
367
+ if (rank < 2) {
368
+ fail_shape_inference("Input rank must be >= 2.");
369
+ }
370
+
371
+ const auto mat_w = input_shape.dim(rank - 1);
372
+ const auto mat_h = input_shape.dim(rank - 2);
373
+ if (mat_w.has_dim_value() && mat_h.has_dim_value() && (mat_w.dim_value() != mat_h.dim_value())) {
374
+ fail_shape_inference(
375
+ "The inner-most 2 dimensions must have the same size (mat_w:",
376
+ mat_w.dim_value(),
377
+ " != mat_h:",
378
+ mat_h.dim_value(),
379
+ ").");
380
+ }
381
+
382
+ for (int i = 0; i < rank - 2; ++i) {
383
+ auto* dim = output_shape->add_dim();
384
+ *dim = input_shape.dim(i);
385
+ }
386
+ }
387
+ }));
388
+
389
+ static const char* Round_ver11_doc = R"DOC(
390
+ Round takes one input Tensor and rounds the values, element-wise, meaning
391
+ it finds the nearest integer for each value.
392
+ In case of halves, the rule is to round them to the nearest even integer.
393
+ If input x is integral, +0, -0, NaN, or infinite, x itself is returned.
394
+ The output tensor has the same shape and type as the input.
395
+
396
+ Examples:
397
+ ```
398
+ round([0.9]) = [1.0]
399
+ round([2.5]) = [2.0]
400
+ round([2.3]) = [2.0]
401
+ round([1.5]) = [2.0]
402
+ round([-4.5]) = [-4.0]
403
+ ```
404
+ )DOC";
405
+
406
+ ONNX_OPERATOR_SET_SCHEMA(
407
+ Round,
408
+ 11,
409
+ OpSchema()
410
+ .SetDoc(Round_ver11_doc)
411
+ .Input(0, "X", "Input tensor", "T", OpSchema::Single, true, 1, OpSchema::NonDifferentiable)
412
+ .Output(0, "Y", "Output tensor", "T", OpSchema::Single, true, 1, OpSchema::NonDifferentiable)
413
+ .TypeConstraint(
414
+ "T",
415
+ {"tensor(float16)", "tensor(float)", "tensor(double)"},
416
+ "Constrain input and output types to float tensors.")
417
+ .TypeAndShapeInferenceFunction(propagateShapeAndTypeFromFirstInput));
418
+
419
+ static const char* Atanh_ver9_doc = R"DOC(
420
+ Calculates the hyperbolic arctangent of the given input tensor element-wise.
421
+ )DOC";
422
+
423
+ ONNX_OPERATOR_SET_SCHEMA(
424
+ Atanh,
425
+ 9,
426
+ OpSchema()
427
+ .SetDoc(Atanh_ver9_doc)
428
+ .Input(0, "input", "Input tensor", "T", OpSchema::Single, true, 1, OpSchema::Differentiable)
429
+ .Output(
430
+ 0,
431
+ "output",
432
+ "The hyperbolic arctangent values of the input tensor "
433
+ "computed element-wise",
434
+ "T",
435
+ OpSchema::Single,
436
+ true,
437
+ 1,
438
+ OpSchema::Differentiable)
439
+ .TypeConstraint(
440
+ "T",
441
+ {"tensor(float16)", "tensor(float)", "tensor(double)"},
442
+ "Constrain input and output types to float tensors.")
443
+ .TypeAndShapeInferenceFunction(propagateShapeAndTypeFromFirstInput));
444
+
445
+ static const char* Acosh_ver9_doc = R"DOC(
446
+ Calculates the hyperbolic arccosine of the given input tensor element-wise.
447
+ )DOC";
448
+
449
+ ONNX_OPERATOR_SET_SCHEMA(
450
+ Acosh,
451
+ 9,
452
+ OpSchema()
453
+ .SetDoc(Acosh_ver9_doc)
454
+ .Input(0, "input", "Input tensor", "T", OpSchema::Single, true, 1, OpSchema::Differentiable)
455
+ .Output(
456
+ 0,
457
+ "output",
458
+ "The hyperbolic arccosine values of the input tensor "
459
+ "computed element-wise",
460
+ "T",
461
+ OpSchema::Single,
462
+ true,
463
+ 1,
464
+ OpSchema::Differentiable)
465
+ .TypeConstraint(
466
+ "T",
467
+ {"tensor(float16)", "tensor(float)", "tensor(double)"},
468
+ "Constrain input and output types to float tensors.")
469
+ .TypeAndShapeInferenceFunction(propagateShapeAndTypeFromFirstInput));
470
+
471
+ static const char* Asinh_ver9_doc = R"DOC(
472
+ Calculates the hyperbolic arcsine of the given input tensor element-wise.
473
+ )DOC";
474
+
475
+ ONNX_OPERATOR_SET_SCHEMA(
476
+ Asinh,
477
+ 9,
478
+ OpSchema()
479
+ .SetDoc(Asinh_ver9_doc)
480
+ .Input(0, "input", "Input tensor", "T", OpSchema::Single, true, 1, OpSchema::Differentiable)
481
+ .Output(
482
+ 0,
483
+ "output",
484
+ "The hyperbolic arcsine values of the input tensor "
485
+ "computed element-wise",
486
+ "T",
487
+ OpSchema::Single,
488
+ true,
489
+ 1,
490
+ OpSchema::Differentiable)
491
+ .TypeConstraint(
492
+ "T",
493
+ {"tensor(float16)", "tensor(float)", "tensor(double)"},
494
+ "Constrain input and output types to float tensors.")
495
+ .TypeAndShapeInferenceFunction(propagateShapeAndTypeFromFirstInput));
496
+
497
+ static const char* Cosh_ver9_doc = R"DOC(
498
+ Calculates the hyperbolic cosine of the given input tensor element-wise.
499
+ )DOC";
500
+
501
+ ONNX_OPERATOR_SET_SCHEMA(
502
+ Cosh,
503
+ 9,
504
+ OpSchema()
505
+ .SetDoc(Cosh_ver9_doc)
506
+ .Input(0, "input", "Input tensor", "T", OpSchema::Single, true, 1, OpSchema::Differentiable)
507
+ .Output(
508
+ 0,
509
+ "output",
510
+ "The hyperbolic cosine values of the input tensor "
511
+ "computed element-wise",
512
+ "T",
513
+ OpSchema::Single,
514
+ true,
515
+ 1,
516
+ OpSchema::Differentiable)
517
+ .TypeConstraint(
518
+ "T",
519
+ {"tensor(float16)", "tensor(float)", "tensor(double)"},
520
+ "Constrain input and output types to float tensors.")
521
+ .TypeAndShapeInferenceFunction(propagateShapeAndTypeFromFirstInput));
522
+
523
+ static const char* Sinh_ver9_doc = R"DOC(
524
+ Calculates the hyperbolic sine of the given input tensor element-wise.
525
+ )DOC";
526
+
527
+ ONNX_OPERATOR_SET_SCHEMA(
528
+ Sinh,
529
+ 9,
530
+ OpSchema()
531
+ .SetDoc(Sinh_ver9_doc)
532
+ .Input(0, "input", "Input tensor", "T", OpSchema::Single, true, 1, OpSchema::Differentiable)
533
+ .Output(
534
+ 0,
535
+ "output",
536
+ "The hyperbolic sine values of the input tensor "
537
+ "computed element-wise",
538
+ "T",
539
+ OpSchema::Single,
540
+ true,
541
+ 1,
542
+ OpSchema::Differentiable)
543
+ .TypeConstraint(
544
+ "T",
545
+ {"tensor(float16)", "tensor(float)", "tensor(double)"},
546
+ "Constrain input and output types to float tensors.")
547
+ .TypeAndShapeInferenceFunction(propagateShapeAndTypeFromFirstInput));
548
+
549
+ static const char* Atan_ver7_doc = R"DOC(
550
+ Calculates the arctangent (inverse of tangent) of the given input tensor, element-wise.
551
+ )DOC";
552
+
553
+ ONNX_OPERATOR_SET_SCHEMA(
554
+ Atan,
555
+ 7,
556
+ OpSchema()
557
+ .SetDoc(Atan_ver7_doc)
558
+ .Input(0, "input", "Input tensor", "T", OpSchema::Single, true, 1, OpSchema::Differentiable)
559
+ .Output(
560
+ 0,
561
+ "output",
562
+ "The arctangent of the input tensor computed "
563
+ "element-wise",
564
+ "T",
565
+ OpSchema::Single,
566
+ true,
567
+ 1,
568
+ OpSchema::Differentiable)
569
+ .TypeConstraint(
570
+ "T",
571
+ {"tensor(float16)", "tensor(float)", "tensor(double)"},
572
+ "Constrain input and output types to float tensors.")
573
+ .TypeAndShapeInferenceFunction(propagateShapeAndTypeFromFirstInput));
574
+
575
+ static const char* Acos_ver7_doc = R"DOC(
576
+ Calculates the arccosine (inverse of cosine) of the given input tensor, element-wise.
577
+ )DOC";
578
+
579
+ ONNX_OPERATOR_SET_SCHEMA(
580
+ Acos,
581
+ 7,
582
+ OpSchema()
583
+ .SetDoc(Acos_ver7_doc)
584
+ .Input(0, "input", "Input tensor", "T", OpSchema::Single, true, 1, OpSchema::Differentiable)
585
+ .Output(
586
+ 0,
587
+ "output",
588
+ "The arccosine of the input tensor computed "
589
+ "element-wise",
590
+ "T",
591
+ OpSchema::Single,
592
+ true,
593
+ 1,
594
+ OpSchema::Differentiable)
595
+ .TypeConstraint(
596
+ "T",
597
+ {"tensor(float16)", "tensor(float)", "tensor(double)"},
598
+ "Constrain input and output types to float tensors.")
599
+ .TypeAndShapeInferenceFunction(propagateShapeAndTypeFromFirstInput));
600
+
601
+ static const char* Asin_ver7_doc = R"DOC(
602
+ Calculates the arcsine (inverse of sine) of the given input tensor, element-wise.
603
+ )DOC";
604
+
605
+ ONNX_OPERATOR_SET_SCHEMA(
606
+ Asin,
607
+ 7,
608
+ OpSchema()
609
+ .SetDoc(Asin_ver7_doc)
610
+ .Input(0, "input", "Input tensor", "T", OpSchema::Single, true, 1, OpSchema::Differentiable)
611
+ .Output(
612
+ 0,
613
+ "output",
614
+ "The arcsine of the input tensor computed "
615
+ "element-wise",
616
+ "T",
617
+ OpSchema::Single,
618
+ true,
619
+ 1,
620
+ OpSchema::Differentiable)
621
+ .TypeConstraint(
622
+ "T",
623
+ {"tensor(float16)", "tensor(float)", "tensor(double)"},
624
+ "Constrain input and output types to float tensors.")
625
+ .TypeAndShapeInferenceFunction(propagateShapeAndTypeFromFirstInput));
626
+
627
+ static const char* Tan_ver7_doc = R"DOC(
628
+ Calculates the tangent of the given input tensor, element-wise.
629
+ )DOC";
630
+
631
+ ONNX_OPERATOR_SET_SCHEMA(
632
+ Tan,
633
+ 7,
634
+ OpSchema()
635
+ .SetDoc(Tan_ver7_doc)
636
+ .Input(0, "input", "Input tensor", "T", OpSchema::Single, true, 1, OpSchema::Differentiable)
637
+ .Output(
638
+ 0,
639
+ "output",
640
+ "The tangent of the input tensor computed "
641
+ "element-wise",
642
+ "T",
643
+ OpSchema::Single,
644
+ true,
645
+ 1,
646
+ OpSchema::Differentiable)
647
+ .TypeConstraint(
648
+ "T",
649
+ {"tensor(float16)", "tensor(float)", "tensor(double)"},
650
+ "Constrain input and output types to float tensors.")
651
+ .TypeAndShapeInferenceFunction(propagateShapeAndTypeFromFirstInput));
652
+
653
+ static const char* Cos_ver7_doc = R"DOC(
654
+ Calculates the cosine of the given input tensor, element-wise.
655
+ )DOC";
656
+
657
+ ONNX_OPERATOR_SET_SCHEMA(
658
+ Cos,
659
+ 7,
660
+ OpSchema()
661
+ .SetDoc(Cos_ver7_doc)
662
+ .Input(0, "input", "Input tensor", "T", OpSchema::Single, true, 1, OpSchema::Differentiable)
663
+ .Output(
664
+ 0,
665
+ "output",
666
+ "The cosine of the input tensor computed "
667
+ "element-wise",
668
+ "T",
669
+ OpSchema::Single,
670
+ true,
671
+ 1,
672
+ OpSchema::Differentiable)
673
+ .TypeConstraint(
674
+ "T",
675
+ {"tensor(float16)", "tensor(float)", "tensor(double)"},
676
+ "Constrain input and output types to float tensors.")
677
+ .TypeAndShapeInferenceFunction(propagateShapeAndTypeFromFirstInput));
678
+
679
+ static const char* Sin_ver7_doc = R"DOC(
680
+ Calculates the sine of the given input tensor, element-wise.
681
+ )DOC";
682
+
683
+ ONNX_OPERATOR_SET_SCHEMA(
684
+ Sin,
685
+ 7,
686
+ OpSchema()
687
+ .SetDoc(Sin_ver7_doc)
688
+ .Input(0, "input", "Input tensor", "T", OpSchema::Single, true, 1, OpSchema::Differentiable)
689
+ .Output(
690
+ 0,
691
+ "output",
692
+ "The sine of the input tensor computed "
693
+ "element-wise",
694
+ "T",
695
+ OpSchema::Single,
696
+ true,
697
+ 1,
698
+ OpSchema::Differentiable)
699
+ .TypeConstraint(
700
+ "T",
701
+ {"tensor(float16)", "tensor(float)", "tensor(double)"},
702
+ "Constrain input and output types to float tensors.")
703
+ .TypeAndShapeInferenceFunction(propagateShapeAndTypeFromFirstInput));
704
+
705
+ static const char* Softplus_ver1_doc = R"DOC(
706
+ Softplus takes one input data (Tensor<T>) and produces one output data
707
+ (Tensor<T>) where the softplus function, y = ln(exp(x) + 1), is applied to
708
+ the tensor elementwise.
709
+ )DOC";
710
+
711
+ ONNX_OPERATOR_SET_SCHEMA(
712
+ Softplus,
713
+ 1,
714
+ OpSchema()
715
+ .SetDoc(Softplus_ver1_doc)
716
+ .Input(0, "X", "1D input tensor", "T", OpSchema::Single, true, 1, OpSchema::Differentiable)
717
+ .Output(0, "Y", "1D input tensor", "T", OpSchema::Single, true, 1, OpSchema::Differentiable)
718
+ .TypeConstraint(
719
+ "T",
720
+ {"tensor(float16)", "tensor(float)", "tensor(double)"},
721
+ "Constrain input and output types to float tensors.")
722
+ .TypeAndShapeInferenceFunction(propagateShapeAndTypeFromFirstInput)
723
+ .FunctionBody(
724
+ R"ONNX(
725
+ {
726
+ exp_x = Exp (X)
727
+ one = Constant <value = float {1.0}>()
728
+ one_cast = CastLike (one, X)
729
+ exp_x_add_one = Add (exp_x, one_cast)
730
+ Y = Log (exp_x_add_one)
731
+ }
732
+ )ONNX",
733
+ 18));
734
+
735
+ static const char* Softsign_ver1_doc = R"DOC(
736
+ Calculates the softsign (x/(1+|x|)) of the given input tensor element-wise.
737
+ )DOC";
738
+
739
+ ONNX_OPERATOR_SET_SCHEMA(
740
+ Softsign,
741
+ 1,
742
+ OpSchema()
743
+ .SetDoc(Softsign_ver1_doc)
744
+ .Input(0, "input", "Input tensor", "T", OpSchema::Single, true, 1, OpSchema::Differentiable)
745
+ .Output(
746
+ 0,
747
+ "output",
748
+ "The softsign (x/(1+|x|)) values of the input tensor computed element-wise",
749
+ "T",
750
+ OpSchema::Single,
751
+ true,
752
+ 1,
753
+ OpSchema::Differentiable)
754
+ .TypeConstraint(
755
+ "T",
756
+ {"tensor(float16)", "tensor(float)", "tensor(double)"},
757
+ "Constrain input and output types to float tensors.")
758
+ .TypeAndShapeInferenceFunction(propagateShapeAndTypeFromFirstInput)
759
+ .FunctionBody(
760
+ R"ONNX(
761
+ {
762
+ One = Constant <value = float {1.0}>()
763
+ OneCast = CastLike (One, input)
764
+ AbsInput = Abs(input)
765
+ OneAddAbsInput = Add (OneCast, AbsInput)
766
+ output = Div(input, OneAddAbsInput)
767
+ }
768
+ )ONNX",
769
+ 18));
770
+
771
+ static const char* HardSwish_ver14_doc = R"DOC(
772
+ HardSwish takes one input data (Tensor<T>) and produces one output data (Tensor<T>) where
773
+ the HardSwish function, y = x * max(0, min(1, alpha * x + beta)) = x * HardSigmoid<alpha, beta>(x),
774
+ where alpha = 1/6 and beta = 0.5, is applied to the tensor elementwise.
775
+ )DOC";
776
+
777
+ ONNX_OPERATOR_SET_SCHEMA(
778
+ HardSwish,
779
+ 14,
780
+ OpSchema()
781
+ .SetDoc(HardSwish_ver14_doc)
782
+ .Input(0, "X", "Input tensor", "T", OpSchema::Single, true, 1, OpSchema::Differentiable)
783
+ .Output(0, "Y", "Output tensor", "T", OpSchema::Single, true, 1, OpSchema::Differentiable)
784
+ .TypeConstraint(
785
+ "T",
786
+ {"tensor(float16)", "tensor(float)", "tensor(double)"},
787
+ "Constrain input and output types to float tensors.")
788
+ .TypeAndShapeInferenceFunction(propagateShapeAndTypeFromFirstInput)
789
+ .FunctionBody(R"ONNX(
790
+ {
791
+ HS_X = HardSigmoid<alpha = 0.16666667163372, beta = 0.5>(X)
792
+ Y = Mul (X, HS_X)
793
+ }
794
+ )ONNX"));
795
+
796
+ static const char* HardSigmoid_ver6_doc = R"DOC(
797
+ HardSigmoid takes one input data (Tensor<T>) and produces one output data
798
+ (Tensor<T>) where the HardSigmoid function, y = max(0, min(1, alpha * x + beta)),
799
+ is applied to the tensor elementwise.
800
+ )DOC";
801
+
802
+ ONNX_OPERATOR_SET_SCHEMA(
803
+ HardSigmoid,
804
+ 6,
805
+ OpSchema()
806
+ .Attr("alpha", "Value of alpha.", AttributeProto::FLOAT, 0.2f)
807
+ .Attr("beta", "Value of beta.", AttributeProto::FLOAT, 0.5f)
808
+ .SetDoc(HardSigmoid_ver6_doc)
809
+ .Input(0, "X", "Input tensor", "T", OpSchema::Single, true, 1, OpSchema::Differentiable)
810
+ .Output(0, "Y", "Output tensor", "T", OpSchema::Single, true, 1, OpSchema::Differentiable)
811
+ .TypeConstraint(
812
+ "T",
813
+ {"tensor(float16)", "tensor(float)", "tensor(double)"},
814
+ "Constrain input and output types to float tensors.")
815
+ .TypeAndShapeInferenceFunction(propagateShapeAndTypeFromFirstInput)
816
+ .FunctionBody(
817
+ R"ONNX(
818
+ {
819
+ Alpha = Constant <value_float: float = @alpha>()
820
+ AlphaCast = CastLike (Alpha, X)
821
+ Beta = Constant <value_float: float = @beta>()
822
+ BetaCast = CastLike (Beta, X)
823
+ Zero = Constant <value = float {0.0}>()
824
+ ZeroCast = CastLike (Zero, X)
825
+ One = Constant <value = float {1.0}>()
826
+ OneCast = CastLike (One, X)
827
+ AlphaMulX = Mul (X, AlphaCast)
828
+ AlphaMulXAddBeta = Add (AlphaMulX, BetaCast)
829
+ MinOneOrAlphaMulXAddBeta = Min (AlphaMulXAddBeta, OneCast)
830
+ Y = Max(MinOneOrAlphaMulXAddBeta, ZeroCast)
831
+ }
832
+ )ONNX",
833
+ 18));
834
+
835
+ static const char* mish_ver18_doc = R"DOC(
836
+ Mish: A Self Regularized Non-Monotonic Neural Activation Function.
837
+
838
+ Perform the linear unit element-wise on the input tensor X using formula:
839
+
840
+ ```
841
+ mish(x) = x * tanh(softplus(x)) = x * tanh(ln(1 + e^{x}))
842
+ ```
843
+ )DOC";
844
+
845
+ ONNX_OPERATOR_SET_SCHEMA(
846
+ Mish,
847
+ 18,
848
+ OpSchema()
849
+ .SetDoc(mish_ver18_doc)
850
+ .Input(0, "X", "Input tensor", "T", OpSchema::Single, true, 1, OpSchema::Differentiable)
851
+ .Output(0, "Y", "Output tensor", "T", OpSchema::Single, true, 1, OpSchema::Differentiable)
852
+ .TypeConstraint(
853
+ "T",
854
+ {"tensor(float16)", "tensor(float)", "tensor(double)"},
855
+ "Constrain input X and output types to float tensors.")
856
+ .FunctionBody(R"ONNX(
857
+ {
858
+ Softplus_X = Softplus (X)
859
+ TanHSoftplusX = Tanh (Softplus_X)
860
+ Y = Mul (X, TanHSoftplusX)
861
+ }
862
+ )ONNX")
863
+ .TypeAndShapeInferenceFunction(propagateShapeAndTypeFromFirstInput));
864
+
865
+ static const char* Elu_ver6_doc = R"DOC(
866
+ Elu takes one input data (Tensor<T>) and produces one output data
867
+ (Tensor<T>) where the function `f(x) = alpha * (exp(x) - 1.) for x <
868
+ 0`, `f(x) = x for x >= 0`., is applied to the tensor elementwise.
869
+
870
+ )DOC";
871
+
872
+ ONNX_OPERATOR_SET_SCHEMA(
873
+ Elu,
874
+ 6,
875
+ OpSchema()
876
+ .Attr("alpha", "Coefficient of ELU.", AttributeProto::FLOAT, 1.0f)
877
+ .SetDoc(Elu_ver6_doc)
878
+ .Input(0, "X", "1D input tensor", "T", OpSchema::Single, true, 1, OpSchema::Differentiable)
879
+ .Output(0, "Y", "1D output tensor", "T", OpSchema::Single, true, 1, OpSchema::Differentiable)
880
+ .TypeConstraint(
881
+ "T",
882
+ {"tensor(float16)", "tensor(float)", "tensor(double)"},
883
+ "Constrain input and output types to float tensors.")
884
+ .TypeAndShapeInferenceFunction(propagateShapeAndTypeFromFirstInput)
885
+ .FunctionBody(
886
+ R"ONNX(
887
+ {
888
+ Alpha = Constant <value_float: float = @alpha>()
889
+ AlphaCast = CastLike (Alpha, X)
890
+ Zero = Constant <value = float {0.0}>()
891
+ ZeroCast = CastLike (Zero, X)
892
+ One = Constant <value = float {1.0}>()
893
+ OneCast = CastLike (One, X)
894
+ XLessThanZero = Less (X, ZeroCast)
895
+ ExpX = Exp (X)
896
+ ExpXSubOne = Sub (ExpX, OneCast)
897
+ AlphaMulExpXSubOne = Mul (AlphaCast, ExpXSubOne)
898
+ Y = Where(XLessThanZero, AlphaMulExpXSubOne, X)
899
+ }
900
+ )ONNX",
901
+ 18));
902
+
903
+ static const char* Selu_ver6_doc = R"DOC(
904
+ Selu takes one input data (Tensor<T>) and produces one output data
905
+ (Tensor<T>) where the scaled exponential linear unit function,
906
+ `y = gamma * (alpha * e^x - alpha) for x <= 0`, `y = gamma * x for x > 0`,
907
+ is applied to the tensor elementwise.
908
+ )DOC";
909
+
910
+ ONNX_OPERATOR_SET_SCHEMA(
911
+ Selu,
912
+ 6,
913
+ OpSchema()
914
+ .Attr(
915
+ "alpha",
916
+ "Coefficient of SELU default to 1.67326319217681884765625 "
917
+ "(i.e., float32 approximation of 1.6732632423543772848170429916717).",
918
+ AttributeProto::FLOAT,
919
+ 1.67326319217681884765625f)
920
+ .Attr(
921
+ "gamma",
922
+ "Coefficient of SELU default to 1.05070102214813232421875 "
923
+ "(i.e., float32 approximation of 1.0507009873554804934193349852946).",
924
+ AttributeProto::FLOAT,
925
+ 1.05070102214813232421875f)
926
+ .SetDoc(Selu_ver6_doc)
927
+ .Input(0, "X", "Input tensor", "T", OpSchema::Single, true, 1, OpSchema::Differentiable)
928
+ .Output(0, "Y", "Output tensor", "T", OpSchema::Single, true, 1, OpSchema::Differentiable)
929
+ .TypeConstraint(
930
+ "T",
931
+ {"tensor(float16)", "tensor(float)", "tensor(double)"},
932
+ "Constrain input and output types to float tensors.")
933
+ .TypeAndShapeInferenceFunction(propagateShapeAndTypeFromFirstInput)
934
+ .FunctionBody(
935
+ R"ONNX(
936
+ {
937
+ Alpha = Constant <value_float: float = @alpha>()
938
+ AlphaCast = CastLike (Alpha, X)
939
+ Gamma = Constant <value_float: float = @gamma>()
940
+ GammaCast = CastLike (Gamma, X)
941
+ Zero = Constant <value = float {0.0}>()
942
+ ZeroCast = CastLike (Zero, X)
943
+ ExpX = Exp (X)
944
+ AlphaMulExpX = Mul(AlphaCast, ExpX)
945
+ AlphaMulExpXSubAlpha = Sub (AlphaMulExpX, AlphaCast)
946
+ Neg = Mul (GammaCast, AlphaMulExpXSubAlpha)
947
+ Pos = Mul (GammaCast, X)
948
+ XLessThanZero = Less (X, ZeroCast)
949
+ Y = Where(XLessThanZero, Neg, Pos)
950
+ }
951
+ )ONNX",
952
+ 18));
953
+
954
+ static const char* ThresholdedRelu_ver10_doc = R"DOC(
955
+ ThresholdedRelu takes one input data (Tensor<T>) and produces one output data
956
+ (Tensor<T>) where the rectified linear function, y = x for x > alpha, y = 0 otherwise,
957
+ is applied to the tensor elementwise.
958
+ )DOC";
959
+
960
+ ONNX_OPERATOR_SET_SCHEMA(
961
+ ThresholdedRelu,
962
+ 10,
963
+ OpSchema()
964
+ .SetDoc(ThresholdedRelu_ver10_doc)
965
+ .Attr("alpha", "Threshold value", AttributeProto::FLOAT, 1.0f)
966
+ .Input(0, "X", "Input tensor", "T", OpSchema::Single, true, 1, OpSchema::Differentiable)
967
+ .Output(0, "Y", "Output tensor", "T", OpSchema::Single, true, 1, OpSchema::Differentiable)
968
+ .TypeConstraint(
969
+ "T",
970
+ {"tensor(float16)", "tensor(float)", "tensor(double)"},
971
+ "Constrain input and output types to float tensors.")
972
+ .TypeAndShapeInferenceFunction(propagateShapeAndTypeFromFirstInput)
973
+ .FunctionBody(
974
+ R"ONNX(
975
+ {
976
+ Alpha = Constant <value_float: float = @alpha>()
977
+ AlphaCast = CastLike (Alpha, X)
978
+ Zero = Constant <value = float {0.0}>()
979
+ ZeroCast = CastLike (Zero, X)
980
+ AlphaLessThanX = Less(AlphaCast, X)
981
+ Y = Where(AlphaLessThanX, X, ZeroCast)
982
+ }
983
+ )ONNX",
984
+ 18));
985
+
986
+ static std::function<void(OpSchema&)> MathDocGenerator_opset13(const char* name) {
15
987
  return [=](OpSchema& schema) {
16
988
  std::string doc;
17
989
  POPULATE_OP_DOC_STR(doc = R"DOC(
@@ -56,7 +1028,7 @@ ONNX_OPERATOR_SET_SCHEMA(Mul, 13, OpSchema().FillUsing(MathDocGenerator_opset13(
56
1028
 
57
1029
  ONNX_OPERATOR_SET_SCHEMA(Div, 13, OpSchema().FillUsing(MathDocGenerator_opset13("division")));
58
1030
 
59
- std::function<void(OpSchema&)> MathDocGenerator_opset_7(const char* name) {
1031
+ static std::function<void(OpSchema&)> MathDocGenerator_opset_7(const char* name) {
60
1032
  return [=](OpSchema& schema) {
61
1033
  std::string doc;
62
1034
  POPULATE_OP_DOC_STR(doc = R"DOC(
@@ -93,7 +1065,7 @@ ONNX_OPERATOR_SET_SCHEMA(Mul, 7, OpSchema().FillUsing(MathDocGenerator_opset_7("
93
1065
 
94
1066
  ONNX_OPERATOR_SET_SCHEMA(Div, 7, OpSchema().FillUsing(MathDocGenerator_opset_7("division")));
95
1067
 
96
- std::function<void(OpSchema&)> SoftmaxFamilyDocGenerator_opset_11(const char* name, const char* description) {
1068
+ static std::function<void(OpSchema&)> SoftmaxFamilyDocGenerator_opset_11(const char* name, const char* description) {
97
1069
  return [=](OpSchema& schema) {
98
1070
  std::string doc;
99
1071
  POPULATE_OP_DOC_STR(doc = R"DOC(
@@ -557,7 +1529,7 @@ ONNX_OPERATOR_SET_SCHEMA(
557
1529
 
558
1530
  // Generate opschema for element-wise ops. Leaves type constraint "T"
559
1531
  // unspecified.
560
- std::function<void(OpSchema&)> ElementwiseMultiOpDocGenerator_opset8(const char* name) {
1532
+ static std::function<void(OpSchema&)> ElementwiseMultiOpDocGenerator_opset8(const char* name) {
561
1533
  return [=](OpSchema& schema) {
562
1534
  std::string doc;
563
1535
  POPULATE_OP_DOC_STR(doc = R"DOC(
@@ -572,9 +1544,9 @@ All inputs and outputs must have the same data type.
572
1544
  schema.Output(0, name, "Output tensor.", "T");
573
1545
  schema.TypeAndShapeInferenceFunction([](InferenceContext& ctx) {
574
1546
  propagateElemTypeFromInputToOutput(ctx, 0, 0);
575
- int num_inputs = static_cast<int>(ctx.getNumInputs());
1547
+ auto num_inputs = ctx.getNumInputs();
576
1548
  std::vector<const TensorShapeProto*> shapes;
577
- for (int i = 0; i < num_inputs; ++i) {
1549
+ for (size_t i = 0; i < num_inputs; ++i) {
578
1550
  auto input_type = ctx.getInputType(i);
579
1551
  if (nullptr == input_type || !input_type->has_tensor_type() || !input_type->tensor_type().has_shape()) {
580
1552
  return;
@@ -727,7 +1699,7 @@ ONNX_OPERATOR_SET_SCHEMA(
727
1699
  }
728
1700
  }));
729
1701
 
730
- void matmulShapeInference_opset_9(ONNX_NAMESPACE::InferenceContext& ctx, int input1Idx, int input2Idx) {
1702
+ static void matmulShapeInference_opset_9(ONNX_NAMESPACE::InferenceContext& ctx, size_t input1Idx, size_t input2Idx) {
731
1703
  if (!hasInputShape(ctx, input1Idx) || !hasInputShape(ctx, input2Idx)) {
732
1704
  return;
733
1705
  }
@@ -760,8 +1732,8 @@ void matmulShapeInference_opset_9(ONNX_NAMESPACE::InferenceContext& ctx, int inp
760
1732
 
761
1733
  // Check for compatible matrix multiply dimensions
762
1734
  {
763
- auto dimL = shapeL.dim(shapeL.dim_size() - 1);
764
- auto dimR = shapeR.dim(shapeR.dim_size() - 2);
1735
+ const auto& dimL = shapeL.dim(shapeL.dim_size() - 1);
1736
+ const auto& dimR = shapeR.dim(shapeR.dim_size() - 2);
765
1737
  if (dimL.has_dim_value() && dimR.has_dim_value() && dimL.dim_value() != dimR.dim_value()) {
766
1738
  fail_shape_inference("Incompatible dimensions for matrix multiplication");
767
1739
  }
@@ -796,7 +1768,7 @@ void matmulShapeInference_opset_9(ONNX_NAMESPACE::InferenceContext& ctx, int inp
796
1768
  }
797
1769
 
798
1770
  static const char* MatMul_ver9_doc = R"DOC(
799
- Matrix product that behaves like numpy.matmul: https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.matmul.html
1771
+ Matrix product that behaves like [numpy.matmul](https://numpy.org/doc/stable/reference/generated/numpy.matmul.html).
800
1772
  )DOC";
801
1773
 
802
1774
  ONNX_OPERATOR_SET_SCHEMA(
@@ -862,7 +1834,7 @@ ONNX_OPERATOR_SET_SCHEMA(
862
1834
  const auto& input_shape = ctx.getInputType(0)->tensor_type().shape();
863
1835
  TensorShapeProto second_shape;
864
1836
  if (nullptr != shape_initializer) {
865
- const auto& shape_data = ParseData<int64_t>(shape_initializer);
1837
+ const auto shape_data = ParseData<int64_t>(shape_initializer);
866
1838
 
867
1839
  for (const auto& e : shape_data) {
868
1840
  auto* dim = second_shape.add_dim();
@@ -1063,31 +2035,31 @@ Example 3:
1063
2035
  // -1.57
1064
2036
  )DOC";
1065
2037
 
1066
- TensorProto ToDimensionOneFloatTensor_old(float value) {
2038
+ static TensorProto ToDimensionOneFloatTensor_old(float value) {
1067
2039
  auto t = ToTensor(std::vector<float>({value}));
1068
2040
  t.add_dims(1);
1069
2041
  return t;
1070
2042
  }
1071
2043
 
1072
- TensorProto ToDimensionOneTensor_old(int32_t value) {
2044
+ static TensorProto ToDimensionOneTensor_old(int32_t value) {
1073
2045
  auto t = ToTensor(std::vector<int32_t>({value}));
1074
2046
  t.add_dims(1);
1075
2047
  return t;
1076
2048
  }
1077
2049
 
1078
- TensorProto ToDimensionOneInt64Tensor_old(int64_t value) {
2050
+ static TensorProto ToDimensionOneInt64Tensor_old(int64_t value) {
1079
2051
  auto t = ToTensor(std::vector<int64_t>({value}));
1080
2052
  t.add_dims(1);
1081
2053
  return t;
1082
2054
  }
1083
2055
 
1084
- TensorProto ToDimensionOneInt64Tensor_old(std::vector<int64_t> value) {
2056
+ static TensorProto ToDimensionOneInt64Tensor_old(const std::vector<int64_t>& value) {
1085
2057
  auto t = ToTensor(value);
1086
- t.add_dims(value.size());
2058
+ t.add_dims(static_cast<int64_t>(value.size()));
1087
2059
  return t;
1088
2060
  }
1089
2061
 
1090
- bool BuildContextDependentFunctionBody_opset12(
2062
+ static bool BuildContextDependentFunctionBody_opset12(
1091
2063
  const FunctionBodyBuildContext& ctx,
1092
2064
  const OpSchema& schema,
1093
2065
  FunctionProto& functionProto) {
@@ -1101,6 +2073,7 @@ bool BuildContextDependentFunctionBody_opset12(
1101
2073
  std::string reduction_attr =
1102
2074
  reduction_attr_proto != nullptr && reduction_attr_proto->has_s() ? reduction_attr_proto->s() : "mean";
1103
2075
  std::vector<FunctionBodyHelper::NodeDef> body;
2076
+ body.reserve(23);
1104
2077
  body.push_back({{"const_zero"}, "Constant", {}, {MakeAttribute("value", ToDimensionOneTensor_old(0))}});
1105
2078
 
1106
2079
  body.push_back({{"const_one"}, "Constant", {}, {MakeAttribute("value", ToDimensionOneTensor_old(1))}});
@@ -1112,7 +2085,7 @@ bool BuildContextDependentFunctionBody_opset12(
1112
2085
  {{"input_gather_element"},
1113
2086
  "GatherElements",
1114
2087
  {"input", "expanded_target"},
1115
- {MakeAttribute("axis", (int64_t)1)}});
2088
+ {MakeAttribute("axis", static_cast<int64_t>(1))}});
1116
2089
 
1117
2090
  body.push_back({{"loss_NCdd"}, "Neg", {"input_gather_element"}});
1118
2091
 
@@ -1124,9 +2097,9 @@ bool BuildContextDependentFunctionBody_opset12(
1124
2097
  } else {
1125
2098
  body.push_back({{"loss_Ndd"}, "Squeeze", {"loss_N1dd"}, {MakeAttribute("axes", std::vector<int64_t>({1}))}});
1126
2099
  if (reduction_attr == "mean") {
1127
- body.push_back({{"loss"}, "ReduceMean", {"loss_Ndd"}, {MakeAttribute("keepdims", (int64_t)0)}});
2100
+ body.push_back({{"loss"}, "ReduceMean", {"loss_Ndd"}, {MakeAttribute("keepdims", static_cast<int64_t>(0))}});
1128
2101
  } else {
1129
- body.push_back({{"loss"}, "ReduceSum", {"loss_Ndd"}, {MakeAttribute("keepdims", (int64_t)0)}});
2102
+ body.push_back({{"loss"}, "ReduceSum", {"loss_Ndd"}, {MakeAttribute("keepdims", static_cast<int64_t>(0))}});
1130
2103
  }
1131
2104
  }
1132
2105
  } else {
@@ -1138,12 +2111,16 @@ bool BuildContextDependentFunctionBody_opset12(
1138
2111
  } else {
1139
2112
  body.push_back({{"loss_Ndd"}, "Mul", {"loss_unweighted", "weight_gather"}});
1140
2113
  if (reduction_attr == "mean") {
1141
- body.push_back({{"loss_sum"}, "ReduceSum", {"loss_Ndd"}, {MakeAttribute("keepdims", (int64_t)0)}});
1142
2114
  body.push_back(
1143
- {{"weight_gather_sum"}, "ReduceSum", {"weight_gather"}, {MakeAttribute("keepdims", (int64_t)0)}});
2115
+ {{"loss_sum"}, "ReduceSum", {"loss_Ndd"}, {MakeAttribute("keepdims", static_cast<int64_t>(0))}});
2116
+ body.push_back(
2117
+ {{"weight_gather_sum"},
2118
+ "ReduceSum",
2119
+ {"weight_gather"},
2120
+ {MakeAttribute("keepdims", static_cast<int64_t>(0))}});
1144
2121
  body.push_back({{"loss"}, "Div", {"loss_sum", "weight_gather_sum"}});
1145
2122
  } else {
1146
- body.push_back({{"loss"}, "ReduceSum", {"loss_Ndd"}, {MakeAttribute("keepdims", (int64_t)0)}});
2123
+ body.push_back({{"loss"}, "ReduceSum", {"loss_Ndd"}, {MakeAttribute("keepdims", static_cast<int64_t>(0))}});
1147
2124
  }
1148
2125
  }
1149
2126
  }
@@ -1167,7 +2144,7 @@ bool BuildContextDependentFunctionBody_opset12(
1167
2144
  {{"input_gather_element"},
1168
2145
  "GatherElements",
1169
2146
  {"input", "transform_targets"},
1170
- {MakeAttribute("axis", (int64_t)1)}});
2147
+ {MakeAttribute("axis", static_cast<int64_t>(1))}});
1171
2148
  body.push_back(
1172
2149
  {{"const_zero_float"}, "Constant", {}, {MakeAttribute("value", ToDimensionOneFloatTensor_old(0.0f))}});
1173
2150
  if (!float_input) {
@@ -1221,12 +2198,15 @@ bool BuildContextDependentFunctionBody_opset12(
1221
2198
  } else {
1222
2199
  body.push_back({{"loss_Ndd"}, "Mul", {"loss_unweighted", "weight_gather"}});
1223
2200
  if (reduction_attr == "mean") {
1224
- body.push_back({{"loss_sum"}, "ReduceSum", {"loss_Ndd"}, {MakeAttribute("keepdims", (int64_t)0)}});
2201
+ body.push_back({{"loss_sum"}, "ReduceSum", {"loss_Ndd"}, {MakeAttribute("keepdims", static_cast<int64_t>(0))}});
1225
2202
  body.push_back(
1226
- {{"weight_gather_sum"}, "ReduceSum", {"weight_gather"}, {MakeAttribute("keepdims", (int64_t)0)}});
2203
+ {{"weight_gather_sum"},
2204
+ "ReduceSum",
2205
+ {"weight_gather"},
2206
+ {MakeAttribute("keepdims", static_cast<int64_t>(0))}});
1227
2207
  body.push_back({{"loss"}, "Div", {"loss_sum", "weight_gather_sum"}});
1228
2208
  } else {
1229
- body.push_back({{"loss"}, "ReduceSum", {"loss_Ndd"}, {MakeAttribute("keepdims", (int64_t)0)}});
2209
+ body.push_back({{"loss"}, "ReduceSum", {"loss_Ndd"}, {MakeAttribute("keepdims", static_cast<int64_t>(0))}});
1230
2210
  }
1231
2211
  }
1232
2212
  }
@@ -1294,10 +2274,14 @@ ONNX_OPERATOR_SET_SCHEMA(
1294
2274
  const int target_rank = static_cast<int>(target_shape.dim_size());
1295
2275
 
1296
2276
  if (input_rank < 2) {
1297
- fail_shape_inference("Input rank must be >= 2.");
2277
+ fail_shape_inference("Input rank must be >= 2. input_rank=", input_rank);
1298
2278
  }
1299
2279
  if (target_rank != input_rank - 1) {
1300
- fail_shape_inference("Target rank must be 1 less than the input rank.");
2280
+ fail_shape_inference(
2281
+ "Target rank must be 1 less than the input rank. input_rank=",
2282
+ input_rank,
2283
+ ", target_rank=",
2284
+ target_rank);
1301
2285
  }
1302
2286
 
1303
2287
  // match input dimensions (N, C, d1, ..., dk) with target
@@ -1307,13 +2291,18 @@ ONNX_OPERATOR_SET_SCHEMA(
1307
2291
  const auto target_dim = target_shape.dim(dim);
1308
2292
  if (input_dim.has_dim_value() && target_dim.has_dim_value() &&
1309
2293
  input_dim.dim_value() != target_dim.dim_value())
1310
- fail_shape_inference("Input and target dimension value mismatch.");
2294
+ fail_shape_inference(
2295
+ "Input and target dimension value mismatch. input_dim_value=",
2296
+ input_dim.dim_value(),
2297
+ " target_dim_value=",
2298
+ target_dim.dim_value());
1311
2299
  }
1312
2300
 
1313
2301
  if (ctx.getNumInputs() == 3 && hasInputShape(ctx, 2)) {
1314
2302
  const TensorShapeProto& weight_shape = ctx.getInputType(2)->tensor_type().shape();
1315
- if (weight_shape.dim_size() != 1) {
1316
- fail_shape_inference("Weight rank must be 1.");
2303
+ const auto weight_rank = weight_shape.dim_size();
2304
+ if (weight_rank != 1) {
2305
+ fail_shape_inference("Weight rank must be 1. weight_rank=", weight_rank);
1317
2306
  }
1318
2307
  }
1319
2308
 
@@ -1333,7 +2322,7 @@ ONNX_OPERATOR_SET_SCHEMA(
1333
2322
  }
1334
2323
  }));
1335
2324
 
1336
- const char* reduction_doc_sce_opset12 =
2325
+ const static char* reduction_doc_sce_opset12 =
1337
2326
  "Type of reduction to apply to loss: none, sum, mean(default). "
1338
2327
  "'none': no reduction will be applied, "
1339
2328
  "'sum': the output will be summed. "
@@ -1374,17 +2363,18 @@ If reduction = 'mean', the output is scalar: ReduceMean(L), or if weight is prov
1374
2363
  where tensor W is of shape (N, D1, D2, ..., Dk) and W[n][d1][d2]...[dk] = weights[labels[i][d1][d2]...[dk]].
1375
2364
  )DOC";
1376
2365
 
1377
- bool BuildContextDependentFunctionBodySCE_opset12(
2366
+ static bool BuildContextDependentFunctionBodySCE_opset12(
1378
2367
  const FunctionBodyBuildContext& ctx,
1379
2368
  const OpSchema& schema,
1380
2369
  FunctionProto& functionProto) {
1381
2370
  std::vector<FunctionBodyHelper::NodeDef> body;
2371
+ body.reserve(9);
1382
2372
 
1383
2373
  // Using stable implementation of LogSoftmax
1384
2374
  body.push_back({{"Shape3D"}, "Constant", {}, {MakeAttribute("value", ToDimensionOneInt64Tensor_old({0, 0, -1}))}});
1385
2375
  body.push_back({{"X_NCD"}, "Reshape", {"scores", "Shape3D"}});
1386
2376
  body.push_back({{"X_NDC"}, "Transpose", {"X_NCD"}, {MakeAttribute("perm", std::vector<int64_t>({0, 2, 1}))}});
1387
- body.push_back({{"X_LogSM"}, "LogSoftmax", {"X_NDC"}, {MakeAttribute("axis", (int64_t)2)}});
2377
+ body.push_back({{"X_LogSM"}, "LogSoftmax", {"X_NDC"}, {MakeAttribute("axis", static_cast<int64_t>(2))}});
1388
2378
  body.push_back({{"X_LogSM_NCD"}, "Transpose", {"X_LogSM"}, {MakeAttribute("perm", std::vector<int64_t>({0, 2, 1}))}});
1389
2379
  body.push_back({{"X_shape"}, "Shape", {"scores"}});
1390
2380
  body.push_back({{"X_Log"}, "Reshape", {"X_LogSM_NCD", "X_shape"}});
@@ -1405,12 +2395,12 @@ bool BuildContextDependentFunctionBodySCE_opset12(
1405
2395
  MakeRefAttribute("reduction", AttributeProto::STRING)};
1406
2396
  // Add weights as input if needed.
1407
2397
  if (ctx.hasInput(2)) {
1408
- input_tensor_names.push_back("weights");
2398
+ input_tensor_names.emplace_back("weights");
1409
2399
  }
1410
2400
 
1411
2401
  // add ignore_index attributes if needed.
1412
2402
  if (ctx.getAttribute("ignore_index") != nullptr) {
1413
- attributes.push_back(MakeRefAttribute("ignore_index", AttributeProto::INT));
2403
+ attributes.emplace_back(MakeRefAttribute("ignore_index", AttributeProto::INT));
1414
2404
  }
1415
2405
 
1416
2406
  body.push_back({{"output"}, "NegativeLogLikelihoodLoss", input_tensor_names, attributes});
@@ -1481,7 +2471,7 @@ ONNX_OPERATOR_SET_SCHEMA(
1481
2471
  .TypeAndShapeInferenceFunction([](InferenceContext& ctx) {
1482
2472
  propagateElemTypeFromInputToOutput(ctx, 0, 0);
1483
2473
  std::string reduction = getAttribute(ctx, "reduction", "mean");
1484
- if (reduction.compare("none") == 0) {
2474
+ if (reduction == "none") {
1485
2475
  if (hasInputShape(ctx, 1)) {
1486
2476
  propagateShapeFromInputToOutput(ctx, 1, 0);
1487
2477
  }
@@ -1495,7 +2485,7 @@ ONNX_OPERATOR_SET_SCHEMA(
1495
2485
  }
1496
2486
  }));
1497
2487
 
1498
- std::function<void(OpSchema&)> SoftmaxFamilyDocGenerator_opset1(const char* name, const char* description) {
2488
+ static std::function<void(OpSchema&)> SoftmaxFamilyDocGenerator_opset1(const char* name, const char* description) {
1499
2489
  return [=](OpSchema& schema) {
1500
2490
  std::string doc;
1501
2491
  POPULATE_OP_DOC_STR(doc = R"DOC(
@@ -1561,7 +2551,7 @@ ONNX_OPERATOR_SET_SCHEMA(
1561
2551
  OpSchema().FillUsing(
1562
2552
  SoftmaxFamilyDocGenerator_opset1("hardmax", "1 for the first maximum value, and 0 for all others")));
1563
2553
 
1564
- const char* kBroadcastDoc_old = R"DOC(
2554
+ const static char* kBroadcastDoc_old = R"DOC(
1565
2555
  If necessary the right-hand-side argument will be broadcasted to match the
1566
2556
  shape of left-hand-side argument. When broadcasting is specified, the second
1567
2557
  tensor can either be of element size 1 (including a scalar tensor and any
@@ -1582,7 +2572,7 @@ For example, the following tensor shapes are supported (with broadcast=1):
1582
2572
  Attribute `broadcast=1` needs to be passed to enable broadcasting.
1583
2573
  )DOC";
1584
2574
 
1585
- std::function<void(OpSchema&)> MathDocGenerator_old(const char* name) {
2575
+ static std::function<void(OpSchema&)> MathDocGenerator_old(const char* name) {
1586
2576
  return [=](OpSchema& schema) {
1587
2577
  std::string doc;
1588
2578
  POPULATE_OP_DOC_STR(doc = R"DOC(
@@ -1614,7 +2604,7 @@ Performs element-wise binary {name} (with limited broadcast support).
1614
2604
  };
1615
2605
  }
1616
2606
 
1617
- std::function<void(OpSchema&)> MathDocGenerator_old_opset6(const char* name) {
2607
+ static std::function<void(OpSchema&)> MathDocGenerator_old_opset6(const char* name) {
1618
2608
  return [=](OpSchema& schema) {
1619
2609
  std::string doc;
1620
2610
  POPULATE_OP_DOC_STR(doc = R"DOC(
@@ -2549,7 +3539,7 @@ ONNX_OPERATOR_SET_SCHEMA(
2549
3539
  .TypeAndShapeInferenceFunction(propagateShapeAndTypeFromFirstInput));
2550
3540
 
2551
3541
  static const char* MatMul_ver1_doc = R"DOC(
2552
- Matrix product that behaves like numpy.matmul: https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.matmul.html
3542
+ Matrix product that behaves like [numpy.matmul](https://numpy.org/doc/stable/reference/generated/numpy.matmul.html).
2553
3543
  )DOC";
2554
3544
 
2555
3545
  ONNX_OPERATOR_SET_SCHEMA(
@@ -2598,8 +3588,8 @@ ONNX_OPERATOR_SET_SCHEMA(
2598
3588
 
2599
3589
  // Check for compatible matrix multiply dimensions
2600
3590
  {
2601
- auto dimL = shapeL.dim(shapeL.dim_size() - 1);
2602
- auto dimR = shapeR.dim(shapeR.dim_size() - 2);
3591
+ auto const& dimL = shapeL.dim(shapeL.dim_size() - 1);
3592
+ auto const& dimR = shapeR.dim(shapeR.dim_size() - 2);
2603
3593
  if (dimL.has_dim_value() && dimR.has_dim_value() && dimL.dim_value() != dimR.dim_value()) {
2604
3594
  fail_shape_inference("Incompatible dimensions for matrix multiplication");
2605
3595
  ;
@@ -2775,7 +3765,7 @@ ONNX_OPERATOR_SET_SCHEMA(
2775
3765
  }
2776
3766
 
2777
3767
  if (k->data_type() == TensorProto::INT64) {
2778
- const auto& data = ParseData<int64_t>(k);
3768
+ const auto data = ParseData<int64_t>(k);
2779
3769
  k_value = data[0];
2780
3770
  } else {
2781
3771
  fail_shape_inference("K input must be of type int64.");
@@ -2867,7 +3857,7 @@ ONNX_OPERATOR_SET_SCHEMA(
2867
3857
  "Constrain input and output types to float tensors.")
2868
3858
  .TypeAndShapeInferenceFunction(propagateShapeAndTypeFromFirstInput));
2869
3859
 
2870
- std::function<void(OpSchema&)> ElementwiseMultiOpDocGenerator_old(const char* name) {
3860
+ static std::function<void(OpSchema&)> ElementwiseMultiOpDocGenerator_old(const char* name) {
2871
3861
  return [=](OpSchema& schema) {
2872
3862
  std::string doc;
2873
3863
  POPULATE_OP_DOC_STR(doc = R"DOC(
@@ -2886,9 +3876,9 @@ All inputs and outputs must have the same data type.
2886
3876
  "Constrain input and output types to float tensors.");
2887
3877
  schema.TypeAndShapeInferenceFunction([](InferenceContext& ctx) {
2888
3878
  propagateElemTypeFromInputToOutput(ctx, 0, 0);
2889
- int num_inputs = static_cast<int>(ctx.getNumInputs());
3879
+ auto num_inputs = ctx.getNumInputs();
2890
3880
  std::vector<const TensorShapeProto*> shapes;
2891
- for (int i = 0; i < num_inputs; ++i) {
3881
+ for (size_t i = 0; i < num_inputs; ++i) {
2892
3882
  auto input_type = ctx.getInputType(i);
2893
3883
  if (nullptr == input_type || !input_type->has_tensor_type() || !input_type->tensor_type().has_shape()) {
2894
3884
  return;
@@ -3056,6 +4046,7 @@ ONNX_OPERATOR_SET_SCHEMA(
3056
4046
  if (rank < 2) {
3057
4047
  fail_shape_inference("input tensor must have rank >= 2, including the complex dimension.");
3058
4048
  }
4049
+ // NOLINTNEXTLINE(readability-simplify-boolean-expr)
3059
4050
  if (!(-rank <= axis && axis != -1 && axis < rank - 1)) {
3060
4051
  fail_shape_inference(
3061
4052
  "axis attribute value ",
@@ -3065,7 +4056,7 @@ ONNX_OPERATOR_SET_SCHEMA(
3065
4056
  ". Valid values are '-rank <= axis && axis != -1 && axis < rank - 1'");
3066
4057
  }
3067
4058
 
3068
- auto axis_idx = (axis >= 0 ? axis : axis + rank);
4059
+ int axis_idx = static_cast<int>(axis >= 0 ? axis : axis + rank);
3069
4060
 
3070
4061
  // If dft_length is specified, then we should honor the shape.
3071
4062
  // Set the output dimension to match the dft_length on the axis.