onnx 1.16.1__cp39-cp39-macosx_11_0_universal2.whl → 1.16.2__cp39-cp39-macosx_11_0_universal2.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of onnx might be problematic. Click here for more details.

@@ -10,7 +10,6 @@ import os
10
10
  import re
11
11
  import shutil
12
12
  import sys
13
- import tarfile
14
13
  import tempfile
15
14
  import time
16
15
  import unittest
@@ -238,8 +237,7 @@ class Runner:
238
237
  )
239
238
  urlretrieve(model_test.url, download_file.name)
240
239
  print("Done")
241
- with tarfile.open(download_file.name) as t:
242
- t.extractall(models_dir)
240
+ onnx.utils._extract_model_safe(download_file.name, models_dir)
243
241
  except Exception as e:
244
242
  print(f"Failed to prepare data for model {model_test.model_name}: {e}")
245
243
  raise
onnx/common/version.h CHANGED
@@ -9,6 +9,6 @@
9
9
  namespace ONNX_NAMESPACE {
10
10
 
11
11
  // Represents the most recent release version. Updated with every release.
12
- constexpr const char* LAST_RELEASE_VERSION = "1.16.1";
12
+ constexpr const char* LAST_RELEASE_VERSION = "1.16.2";
13
13
 
14
14
  } // namespace ONNX_NAMESPACE
onnx/defs/math/old.cc CHANGED
@@ -2322,10 +2322,15 @@ ONNX_OPERATOR_SET_SCHEMA(
2322
2322
  auto transBAttr = ctx.getAttribute("transB");
2323
2323
  bool transB = transBAttr ? static_cast<int>(transBAttr->i()) != 0 : false;
2324
2324
 
2325
+ checkInputRank(ctx, 0, 2);
2326
+ checkInputRank(ctx, 1, 2);
2327
+
2328
+ auto& first_input_shape = getInputShape(ctx, 0);
2329
+ auto& second_input_shape = getInputShape(ctx, 1);
2325
2330
  *ctx.getOutputType(0)->mutable_tensor_type()->mutable_shape()->add_dim() =
2326
- ctx.getInputType(0)->tensor_type().shape().dim(transA ? 1 : 0);
2331
+ first_input_shape.dim(transA ? 1 : 0);
2327
2332
  *ctx.getOutputType(0)->mutable_tensor_type()->mutable_shape()->add_dim() =
2328
- ctx.getInputType(1)->tensor_type().shape().dim(transB ? 0 : 1);
2333
+ second_input_shape.dim(transB ? 0 : 1);
2329
2334
  } else if (
2330
2335
  hasInputShape(ctx, 2) &&
2331
2336
  (!ctx.getAttribute("broadcast") || static_cast<int>(ctx.getAttribute("broadcast")->i()) == 0)) {
onnx/defs/tensor/old.cc CHANGED
@@ -1380,7 +1380,7 @@ ONNX_OPERATOR_SET_SCHEMA(
1380
1380
 
1381
1381
  static const char* Slice_ver11_doc = R"DOC(
1382
1382
  Produces a slice of the input tensor along multiple axes. Similar to numpy:
1383
- https://docs.scipy.org/doc/numpy/reference/arrays.indexing.html
1383
+ https://numpy.org/doc/stable/reference/routines.indexing.html
1384
1384
  Slices uses `starts`, `ends`, `axes` and `steps` inputs to specify the start and end
1385
1385
  dimension and step for each axis in the list of axes, it uses this information to
1386
1386
  slice the input `data` tensor. If a negative value is passed for any of the
@@ -4443,7 +4443,7 @@ ONNX_OPERATOR_SET_SCHEMA(
4443
4443
 
4444
4444
  static const char* Slice_ver1_doc = R"DOC(
4445
4445
  Produces a slice of the input tensor along multiple axes. Similar to numpy:
4446
- https://docs.scipy.org/doc/numpy/reference/arrays.indexing.html
4446
+ https://numpy.org/doc/stable/reference/routines.indexing.html
4447
4447
  Slices uses `axes`, `starts` and `ends` attributes to specify the start and end
4448
4448
  dimension for each axis in the list of axes, it uses this information to
4449
4449
  slice the input `data` tensor. If a negative value is passed for any of the
@@ -4559,7 +4559,7 @@ ONNX_OPERATOR_SET_SCHEMA(
4559
4559
 
4560
4560
  static const char* Slice_ver10_doc = R"DOC(
4561
4561
  Produces a slice of the input tensor along multiple axes. Similar to numpy:
4562
- https://docs.scipy.org/doc/numpy/reference/arrays.indexing.html
4562
+ https://numpy.org/doc/stable/reference/routines.indexing.html
4563
4563
  Slices uses `starts`, `ends`, `axes` and `steps` inputs to specify the start and end
4564
4564
  dimension and step for each axis in the list of axes, it uses this information to
4565
4565
  slice the input `data` tensor. If a negative value is passed for any of the
onnx/hub.py CHANGED
@@ -9,7 +9,6 @@ import hashlib
9
9
  import json
10
10
  import os
11
11
  import sys
12
- import tarfile
13
12
  from io import BytesIO
14
13
  from os.path import join
15
14
  from typing import IO, Any, Dict, List, Optional, Set, Tuple, cast
@@ -296,6 +295,7 @@ def download_model_with_test_data(
296
295
  silent: bool = False,
297
296
  ) -> Optional[str]:
298
297
  """Downloads a model along with test data by name from the onnx model hub and returns the directory to which the files have been extracted.
298
+ Users are responsible for making sure the model comes from a trusted source, and the data is safe to be extracted.
299
299
 
300
300
  Args:
301
301
  model: The name of the onnx model in the manifest. This field is
@@ -361,12 +361,14 @@ def download_model_with_test_data(
361
361
  "download the model from the model hub."
362
362
  )
363
363
 
364
- with tarfile.open(local_model_with_data_path) as model_with_data_zipped:
365
- # FIXME: Avoid index manipulation with magic numbers
366
- local_model_with_data_dir_path = local_model_with_data_path[
367
- 0 : len(local_model_with_data_path) - 7
368
- ]
369
- model_with_data_zipped.extractall(local_model_with_data_dir_path)
364
+ # FIXME: Avoid index manipulation with magic numbers,
365
+ # remove ".tar.gz"
366
+ local_model_with_data_dir_path = local_model_with_data_path[
367
+ 0 : len(local_model_with_data_path) - 7
368
+ ]
369
+ onnx.utils._extract_model_safe(
370
+ local_model_with_data_path, local_model_with_data_dir_path
371
+ )
370
372
  model_with_data_path = (
371
373
  local_model_with_data_dir_path
372
374
  + "/"
onnx/tools/net_drawer.py CHANGED
@@ -3,7 +3,7 @@
3
3
  # SPDX-License-Identifier: Apache-2.0
4
4
  # A library and utility for drawing ONNX nets. Most of this implementation has
5
5
  # been borrowed from the caffe2 implementation
6
- # https://github.com/pytorch/pytorch/blob/master/caffe2/python/net_drawer.py
6
+ # https://github.com/pytorch/pytorch/blob/v2.3.1/caffe2/python/net_drawer.py
7
7
  #
8
8
  # The script takes two required arguments:
9
9
  # -input: a path to a serialized ModelProto .pb file.
onnx/utils.py CHANGED
@@ -4,6 +4,7 @@
4
4
  from __future__ import annotations
5
5
 
6
6
  import os
7
+ import tarfile
7
8
 
8
9
  import onnx.checker
9
10
  import onnx.helper
@@ -212,3 +213,65 @@ def extract_model(
212
213
  onnx.save(extracted, output_path)
213
214
  if check_model:
214
215
  onnx.checker.check_model(output_path)
216
+
217
+
218
+ def _tar_members_filter(
219
+ tar: tarfile.TarFile, base: str | os.PathLike
220
+ ) -> list[tarfile.TarInfo]:
221
+ """Check that the content of ``tar`` will be extracted safely
222
+
223
+ Args:
224
+ tar: The tarball file
225
+ base: The directory where the tarball will be extracted
226
+
227
+ Returns:
228
+ list of tarball members
229
+ """
230
+ result = []
231
+ for member in tar:
232
+ member_path = os.path.join(base, member.name)
233
+ abs_base = os.path.abspath(base)
234
+ abs_member = os.path.abspath(member_path)
235
+ if not abs_member.startswith(abs_base):
236
+ raise RuntimeError(
237
+ f"The tarball member {member_path} in downloading model contains "
238
+ f"directory traversal sequence which may contain harmful payload."
239
+ )
240
+ elif member.issym() or member.islnk():
241
+ raise RuntimeError(
242
+ f"The tarball member {member_path} in downloading model contains "
243
+ f"symbolic links which may contain harmful payload."
244
+ )
245
+ result.append(member)
246
+ return result
247
+
248
+
249
+ def _extract_model_safe(
250
+ model_tar_path: str | os.PathLike, local_model_with_data_dir_path: str | os.PathLike
251
+ ) -> None:
252
+ """Safely extracts a tar file to a specified directory.
253
+
254
+ This function ensures that the extraction process mitigates against
255
+ directory traversal vulnerabilities by validating or sanitizing paths
256
+ within the tar file. It also provides compatibility for different versions
257
+ of the tarfile module by checking for the availability of certain attributes
258
+ or methods before invoking them.
259
+
260
+ Args:
261
+ model_tar_path: The path to the tar file to be extracted.
262
+ local_model_with_data_dir_path: The directory path where the tar file
263
+ contents will be extracted to.
264
+ """
265
+ with tarfile.open(model_tar_path) as model_with_data_zipped:
266
+ # Mitigate tarball directory traversal risks
267
+ if hasattr(tarfile, "data_filter"):
268
+ model_with_data_zipped.extractall(
269
+ path=local_model_with_data_dir_path, filter="data"
270
+ )
271
+ else:
272
+ model_with_data_zipped.extractall(
273
+ path=local_model_with_data_dir_path,
274
+ members=_tar_members_filter(
275
+ model_with_data_zipped, local_model_with_data_dir_path
276
+ ),
277
+ )
onnx/version.py CHANGED
@@ -1,5 +1,5 @@
1
1
  # This file is generated by setup.py. DO NOT EDIT!
2
2
 
3
3
 
4
- version = "1.16.1"
5
- git_version = "595228d99e3977ac27cb79d5963adda262af99ad"
4
+ version = "1.16.2"
5
+ git_version = "3bf92c03a9f27eba3bda1e5b9e63ea20ec213557"
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: onnx
3
- Version: 1.16.1
3
+ Version: 1.16.2
4
4
  Summary: Open Neural Network Exchange
5
5
  Author-email: ONNX Contributors <onnx-technical-discuss@lists.lfaidata.foundation>
6
6
  License: Apache License v2.0
@@ -14,7 +14,7 @@ Requires-Dist: numpy >=1.20
14
14
  Requires-Dist: protobuf >=3.20.2
15
15
  Provides-Extra: reference
16
16
  Requires-Dist: google-re2 ; extra == 'reference'
17
- Requires-Dist: Pillow ; extra == 'reference'
17
+ Requires-Dist: pillow ; extra == 'reference'
18
18
 
19
19
  <!--
20
20
  Copyright (c) ONNX Project Contributors
@@ -7,7 +7,7 @@ onnx/cpp2py_export.cc,sha256=QB2xA1Ubt51MIonzmLk8kUbhzw5kxU1BVaSuyzz0S8I,30520
7
7
  onnx/external_data_helper.py,sha256=_ccDOOeE08Rp80KnyqO4z6rmcV8pWVKQGYaEJ_7qihM,11602
8
8
  onnx/gen_proto.py,sha256=xg6KDpD5GGXMWojpZwkzITmkFYIm4H_v59V_K_U83Ms,8621
9
9
  onnx/helper.py,sha256=Vu_YDHSwiqZV3i9tYpsXPgNf5GamkzbmyZtqz-wEhAM,54045
10
- onnx/hub.py,sha256=b0urBSABDZ1hYhGtjO2IpQu1nAyUdJjjhlsqzL9Peg0,17848
10
+ onnx/hub.py,sha256=NhmntjdsHvO9_g5zBRETgLTezdKtCTYYVzl5e0g2-HE,17918
11
11
  onnx/inliner.py,sha256=81Mpijh9KQ--wyUUmas2AHsBAwzmWsKy9TBba5sZ2eM,1722
12
12
  onnx/mapping.py,sha256=K6dkPQYww8YhVfcZ25-Br7p7vNuf-CabjEqooMYugxI,8234
13
13
  onnx/model_container.py,sha256=K7QcFqMfy48QsN9g-QSMPivpXtvqkDm18oQa6vZtOwE,12758
@@ -22,7 +22,7 @@ onnx/onnx-operators.proto,sha256=vvkYjfZ1oXnmtBYhP3mbq0ae5XAIfjKDecp9e6uSQ1E,530
22
22
  onnx/onnx-operators_pb.h,sha256=-iF6vkmdSP1k5XXMgnfI3H_kqPzBqqLgd9ZU7Ekie3k,190
23
23
  onnx/onnx.in.proto,sha256=OoKnvm_Kjiu5H4YnkWaI7xyVW_Z2JmmUOK2HM4iMm1M,37641
24
24
  onnx/onnx.proto,sha256=ECPH85pWjzCf3QtEWoGnoNkPdARuWWfC6BfU5OBqXxs,37244
25
- onnx/onnx_cpp2py_export.cpython-39-darwin.so,sha256=i1cmdcqL_mPfh8xy_9x04qytUf6NALt5QTICByuQRl4,11720488
25
+ onnx/onnx_cpp2py_export.cpython-39-darwin.so,sha256=iR9BbTrkXd-UXi9gkktIeFKyADptGnIFJrK9q7lGkLQ,11679320
26
26
  onnx/onnx_data_pb.py,sha256=cBcegQEm2iiYrfhwmebhiSWp1RB6mNf3MYS6uz57EO0,90
27
27
  onnx/onnx_data_pb2.py,sha256=YuJmAGmOGE_ClfmD9Gbbc1qn9_FzOMDH61e7ay9t5xw,2894
28
28
  onnx/onnx_data_pb2.pyi,sha256=VTSip9Evt2RqdKpntIo6G9LVASJVfc6zJ-yy-T4kW_o,4682
@@ -42,8 +42,8 @@ onnx/serialization.py,sha256=b69qhq7Os5coLIhEdABgNSnnL-9h9xcELhICqoVhFck,7860
42
42
  onnx/shape_inference.py,sha256=-CzKEZ6tmK05uAMpTr4Cf-LUi0sFvxCuyj7BEax81Jo,5780
43
43
  onnx/string_utils.h,sha256=m39GW7Gu2rr3RgFov0vXCi-wdACOyuRrnTbWf8UFC4s,1276
44
44
  onnx/subbyte.py,sha256=PjO3tOrbQlQkev80bQ3dQo2trojm5wugquUl3NQkxp4,2289
45
- onnx/utils.py,sha256=ZSzxnE2Elbs4v7BHY-Yjq1WwL-VFUzmryKHfK3FcJ90,8386
46
- onnx/version.py,sha256=U8rogWn5YQCBWCM2SlN4FUQTcpb74_oc5b72IM20c2Q,129
45
+ onnx/utils.py,sha256=tR1I0qis28orjvqrOIyJNeTrZp-EEv7oLrPRlprnS74,10756
46
+ onnx/version.py,sha256=Ij-Ni-gE350NxzxJQTwdYZ2SWlQ_8jaNOqdw8ean0WM,129
47
47
  onnx/version_converter.py,sha256=0_njujBv5XsPv6RreUnJ8Tjan1TKwq_pxi4bjAz1ZLY,1233
48
48
  onnx/backend/__init__.py,sha256=x6thC2ykdnq7G6hJ-ENaxiRV3WfttWPcBYskup5sjig,82
49
49
  onnx/backend/base.py,sha256=OITLHSneACUKz0cbJpcPU5NallMK0IN_ZMwPtbUmBqk,4543
@@ -6037,7 +6037,7 @@ onnx/backend/test/loader/__init__.py,sha256=4Xk0fTvT0nxdENsWzT5Bqq-CneAS9PY-xZis
6037
6037
  onnx/backend/test/report/__init__.py,sha256=Msh-fHxNvLeo52_o9ZNE3F26MGnPydRwfFM07DtCDZs,1217
6038
6038
  onnx/backend/test/report/base.py,sha256=cZ5yWMhqmWm7wfYkV1sBmIe7QhWvxXbPDgoave3qrPg,112
6039
6039
  onnx/backend/test/report/coverage.py,sha256=mYi2vfOXpbJ1VBPnzfL_fMuPP5M9GXvF3SI2CqeMA2Q,10994
6040
- onnx/backend/test/runner/__init__.py,sha256=efPuT6gyR_bVCL5PLSTA8x1C9AK8kUfOEfot0CZ5ZZU,21362
6040
+ onnx/backend/test/runner/__init__.py,sha256=Q4Pam7q6BG1wVXRJAAX7vu-aNX1ySBHgO3lgPiC8TnQ,21325
6041
6041
  onnx/backend/test/runner/item.py,sha256=jVL26TcrDzW7V5BxfUNDU2lvHpXY1A_Y9nLOTqsqDFc,412
6042
6042
  onnx/bin/__init__.py,sha256=x6thC2ykdnq7G6hJ-ENaxiRV3WfttWPcBYskup5sjig,82
6043
6043
  onnx/bin/checker.py,sha256=NG1moFNAgyvzQk9Oudgw3AT4o0GYJUFFxvYhrB9SxUw,658
@@ -6062,7 +6062,7 @@ onnx/common/proto_util.h,sha256=N5gmA2_6_uzlCsrfjafYawK0GwemOezaAKnXdhCOmGY,1430
6062
6062
  onnx/common/status.cc,sha256=1Y-Fsd3M1BF29FSyZ3ISWrP7dyxIbWyTeTp4QTDbd-s,1892
6063
6063
  onnx/common/status.h,sha256=hKOESDi7s_1wAAcP5OkA0ybIaF9GIVcJ4f1WR7CE700,1912
6064
6064
  onnx/common/tensor.h,sha256=9OMnKOS6ZDGlfH-8JjzI5lCSYb-Bm2OiqGXIh6roLik,7428
6065
- onnx/common/version.h,sha256=sBvIHkN3ZKei3dqMRxvUREOv1tjYCAiIAnebw2V0cL8,294
6065
+ onnx/common/version.h,sha256=2BEongl2Z9p7ygXob9UMv_Kqi9geUGQvlJc44CY2-V0,294
6066
6066
  onnx/common/visitor.h,sha256=Lbu4Wdk7UyTT1J5q1rD5NjGB7-ruU-uLUYeKuDr7fvc,3086
6067
6067
  onnx/defs/__init__.py,sha256=sAw-GngDd97is5tuwaNAh9bv_7ohDJS-S_1nnfM2qUw,4140
6068
6068
  onnx/defs/attr_proto_util.cc,sha256=BcU_HbG4jgz0___2RSj9U7XDr8dk-oO8CvlxD1tbChE,3587
@@ -6102,7 +6102,7 @@ onnx/defs/image/defs.cc,sha256=RVZaMaup5zGdtsdsvLYnm9WS1wkR6CCk9AdcVk_vIn8,2765
6102
6102
  onnx/defs/logical/defs.cc,sha256=jk8Fk5lLB-3PeoxwEhgMmETIcg6SJiRaWfNk2OyxIWs,11824
6103
6103
  onnx/defs/logical/old.cc,sha256=oCYtSU4Lh4VedRkXmb6q2Y7d4Vu6OxYE7KxLmOw2Y4I,10060
6104
6104
  onnx/defs/math/defs.cc,sha256=6UUbM-chrWandiefC6fkx-LFepBLd6pG2aeKBOV2SXs,141673
6105
- onnx/defs/math/old.cc,sha256=wjFir0ejl2Of8boIgIhdDzHrIzlz6ZVgl6RWd_xQE2g,130526
6105
+ onnx/defs/math/old.cc,sha256=qma8OR8afnqeXOVtUg6uuNQKDKvFIscuyNdyy2YEldM,130679
6106
6106
  onnx/defs/math/utils.cc,sha256=46aFqwX5Yh55kaN8H6FQVP3pLpOe_nmvzZxzvV8GHGc,4854
6107
6107
  onnx/defs/math/utils.h,sha256=16eLg7f0OgU_lQiTCE3agLPAdIoeTMxEuKNBa5QZE_0,1301
6108
6108
  onnx/defs/nn/defs.cc,sha256=YIkGGe1epSPWVrW54aVvG1fvoHofaLlAIhVHst6AKow,125492
@@ -6121,7 +6121,7 @@ onnx/defs/rnn/defs.cc,sha256=033m0uf5sSPKsnFgpjwy_5Zy4s6gq4Qo8r4nFZwmcRQ,19570
6121
6121
  onnx/defs/rnn/old.cc,sha256=PHrK1DmZpaDujjEQ2_dHgeqltS7WO6t6Kk-nfBJGemk,39020
6122
6122
  onnx/defs/sequence/defs.cc,sha256=kUt_x-T9dvCDT5CCvnqxyjkszC6kc8aS7zbTnE5FXJA,34034
6123
6123
  onnx/defs/tensor/defs.cc,sha256=QPQpkPdY_9hDF4iPO3uPNGw5lETca9E-H9V3fKme47g,162757
6124
- onnx/defs/tensor/old.cc,sha256=jnwutjZk8UNPDiDTuDKMdV2CEwgGbzuHxqOzjJYTZMU,265482
6124
+ onnx/defs/tensor/old.cc,sha256=mtAtztIddvLXnaNb19g15x_HqfabFvEf4JwiKhlB9xY,265476
6125
6125
  onnx/defs/tensor/utils.cc,sha256=rXFhyFwCUALlYn3GUwdokS-VS5lawOcd-u0WlKfYtv0,18799
6126
6126
  onnx/defs/tensor/utils.h,sha256=Ivv5xZ-F4rtRK9cn1smspBFnY3eFGMhH3MkoSOpdRaQ,1796
6127
6127
  onnx/defs/text/defs.cc,sha256=oAYX8mcB23X5dR700n1N8U-Alnm9rW-x77h_Zj9tOtY,10376
@@ -6427,7 +6427,7 @@ onnx/test/version_converter/automatic_conversion_test_base.py,sha256=iY8gsSHHKQH
6427
6427
  onnx/test/version_converter/automatic_downgrade_test.py,sha256=EG-iqBGJwplgl_DNJ_eNjJy6-UgL91pH0MW1f5WQ5wA,3268
6428
6428
  onnx/test/version_converter/automatic_upgrade_test.py,sha256=CeedCTT42AOAcP-G7tp25kog3kVZIbWwKUzv_8cYqXo,54247
6429
6429
  onnx/tools/__init__.py,sha256=x6thC2ykdnq7G6hJ-ENaxiRV3WfttWPcBYskup5sjig,82
6430
- onnx/tools/net_drawer.py,sha256=s7lttZqBxlsk9Gs1Yb5y5wWFCn_oWYOU7Lg5p9MH5uY,4901
6430
+ onnx/tools/net_drawer.py,sha256=2VUhO4krsZmX3MvQaOSxThaqUjWW_8ZKoMYw6reb8eg,4901
6431
6431
  onnx/tools/replace_constants.py,sha256=mstaW9gZ_FtaDj6CGFhUHmhkqZpwFIjvtRsTl7832MQ,14847
6432
6432
  onnx/tools/update_model_dims.py,sha256=_GuCbuwFumG07ME5rPk8UGmnKjbe5lHnIGN15uOAcZw,3431
6433
6433
  onnx/version_converter/BaseConverter.h,sha256=Rr_9d0VLZOMhMDMrXwvYlJXRmMeGoEId73EXf8GrnLU,3757
@@ -6476,9 +6476,9 @@ onnx/version_converter/adapters/upsample_6_7.h,sha256=Q2-6lQEK0AaH7BvaB6NSM3KOdr
6476
6476
  onnx/version_converter/adapters/upsample_8_9.h,sha256=lvchztwbnzj58pI334a46wTaa5BDENwRPcvnp6mzTaM,1284
6477
6477
  onnx/version_converter/adapters/upsample_9_10.h,sha256=X2pSzTUdOE9KsV5K3sbVsC04rUdeyUWy_Ez7qBnmjjw,1070
6478
6478
  onnx/version_converter/adapters/upsample_9_8.h,sha256=kNSLYSQgVmIBun4ZsvUyziMQp7MTeeQcM6SVN4yOsFM,2519
6479
- onnx-1.16.1.dist-info/LICENSE,sha256=z8d0m5b2O9McPEK1xHG_dWgUBT6EfBDz6wA0F7xSPTA,11358
6480
- onnx-1.16.1.dist-info/METADATA,sha256=s5v66cYax5ndcdVuqAJXuPHi1mXOnQnKcArAVHxKRZg,16489
6481
- onnx-1.16.1.dist-info/WHEEL,sha256=Yi30S9gFpWByzoxzZe6Y-IOJw4sQzXdus8xNQyAA0WY,113
6482
- onnx-1.16.1.dist-info/entry_points.txt,sha256=kI2A5Kl3HXkb7WkSIlcynOx46XYhwXcFVJlmwL58mPk,156
6483
- onnx-1.16.1.dist-info/top_level.txt,sha256=fok5iu7rojicZZye7lCMdLme_jvte9jjDqYyhL0Kg6E,5
6484
- onnx-1.16.1.dist-info/RECORD,,
6479
+ onnx-1.16.2.dist-info/LICENSE,sha256=z8d0m5b2O9McPEK1xHG_dWgUBT6EfBDz6wA0F7xSPTA,11358
6480
+ onnx-1.16.2.dist-info/METADATA,sha256=YS3pTnK3mdvLqdJGjHVdsIRvasyOaELXGkEmWpt6kaY,16489
6481
+ onnx-1.16.2.dist-info/WHEEL,sha256=TCmcGEM53MgrsHN1k3YkRx_LptlGjuLz5HjH-27UBOk,112
6482
+ onnx-1.16.2.dist-info/entry_points.txt,sha256=kI2A5Kl3HXkb7WkSIlcynOx46XYhwXcFVJlmwL58mPk,156
6483
+ onnx-1.16.2.dist-info/top_level.txt,sha256=fok5iu7rojicZZye7lCMdLme_jvte9jjDqYyhL0Kg6E,5
6484
+ onnx-1.16.2.dist-info/RECORD,,
@@ -1,5 +1,5 @@
1
1
  Wheel-Version: 1.0
2
- Generator: bdist_wheel (0.43.0)
2
+ Generator: setuptools (72.1.0)
3
3
  Root-Is-Purelib: false
4
4
  Tag: cp39-cp39-macosx_11_0_universal2
5
5
 
File without changes