onnx 1.16.0__cp39-cp39-win32.whl → 1.16.2__cp39-cp39-win32.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of onnx might be problematic. Click here for more details.

@@ -202,7 +202,7 @@ class DequantizeLinear(Base):
202
202
  # scalar zero point and scale
203
203
  x = make_tensor("x", TensorProto.UINT4, [5], [0, 1, 7, 10, 15])
204
204
  x_scale = np.float32(2)
205
- x_zero_point = make_tensor("zero_point", TensorProto.UINT4, (1,), [1])
205
+ x_zero_point = make_tensor("x_zero_point", TensorProto.UINT4, (1,), [1])
206
206
  y = np.array([-2, 0, 12, 18, 28], dtype=np.float32)
207
207
 
208
208
  expect(
@@ -224,7 +224,7 @@ class DequantizeLinear(Base):
224
224
  # scalar zero point and scale
225
225
  x = make_tensor("x", TensorProto.INT4, [5], [0, 1, 7, -4, -8])
226
226
  x_scale = np.float32(2)
227
- x_zero_point = make_tensor("zero_point", TensorProto.INT4, (1,), [1])
227
+ x_zero_point = make_tensor("x_zero_point", TensorProto.INT4, (1,), [1])
228
228
  y = np.array([-2, 0, 12, -10, -18], dtype=np.float32)
229
229
 
230
230
  expect(
@@ -73,7 +73,7 @@ class QuantizeLinear(Base):
73
73
 
74
74
  x = np.array([0.0, 1.0, 2.0, 100000.0, 200.0]).astype(np.float32)
75
75
  y_scale = np.float32(2)
76
- y_zero_point = make_tensor("zero_point", TensorProto.FLOAT8E4M3FN, [1], [0])
76
+ y_zero_point = make_tensor("y_zero_point", TensorProto.FLOAT8E4M3FN, [1], [0])
77
77
  y = make_tensor("y", TensorProto.FLOAT8E4M3FN, [5], [0, 0.5, 1, 448, 96])
78
78
 
79
79
  expect(
@@ -93,7 +93,7 @@ class QuantizeLinear(Base):
93
93
 
94
94
  x = np.array([0.0, 1.0, 2.0, 100000.0, 200.0]).astype(np.float32)
95
95
  y_scale = np.float32(2)
96
- y_zero_point = make_tensor("zero_point", TensorProto.FLOAT8E5M2, [1], [0.0])
96
+ y_zero_point = make_tensor("y_zero_point", TensorProto.FLOAT8E5M2, [1], [0.0])
97
97
  y = make_tensor("y", TensorProto.FLOAT8E5M2, [5], [0, 0.5, 1, 49152, 96])
98
98
 
99
99
  expect(
@@ -230,7 +230,7 @@ class QuantizeLinear(Base):
230
230
 
231
231
  y_scale = np.asarray([2.0, 3.0, 4.0], dtype=np.float32)
232
232
  y_zero_point = make_tensor(
233
- "zero_point", TensorProto.UINT4, y_scale.shape, np.ones_like(y_scale)
233
+ "y_zero_point", TensorProto.UINT4, y_scale.shape, np.ones_like(y_scale)
234
234
  )
235
235
  y = make_tensor(
236
236
  "y", TensorProto.UINT4, x.shape, [1, 2, 3, 5, -1, -1, 3, 4, 4, 5, 5, 11]
@@ -262,7 +262,7 @@ class QuantizeLinear(Base):
262
262
 
263
263
  y_scale = np.asarray([2.0, 3.0, 4.0], dtype=np.float32)
264
264
  y_zero_point = make_tensor(
265
- "zero_point", TensorProto.INT4, y_scale.shape, np.ones_like(y_scale)
265
+ "y_zero_point", TensorProto.INT4, y_scale.shape, np.ones_like(y_scale)
266
266
  )
267
267
  y = make_tensor(
268
268
  "y", TensorProto.INT4, x.shape, [1, 2, 3, 5, -8, -6, 3, 4, 4, 5, 5, 7]
@@ -1,2 +1 @@
1
- *B
2
- zero_point
1
+ *B x_zero_point
@@ -1,2 +1 @@
1
- *B
2
- zero_point
1
+ *B x_zero_point
@@ -1,2 +1 @@
1
- *B
2
- zero_point
1
+ *B y_zero_point
@@ -1,2 +1 @@
1
- *B
2
- zero_point
1
+ *B y_zero_point
@@ -10,7 +10,6 @@ import os
10
10
  import re
11
11
  import shutil
12
12
  import sys
13
- import tarfile
14
13
  import tempfile
15
14
  import time
16
15
  import unittest
@@ -238,8 +237,7 @@ class Runner:
238
237
  )
239
238
  urlretrieve(model_test.url, download_file.name)
240
239
  print("Done")
241
- with tarfile.open(download_file.name) as t:
242
- t.extractall(models_dir)
240
+ onnx.utils._extract_model_safe(download_file.name, models_dir)
243
241
  except Exception as e:
244
242
  print(f"Failed to prepare data for model {model_test.model_name}: {e}")
245
243
  raise
onnx/common/version.h CHANGED
@@ -9,6 +9,6 @@
9
9
  namespace ONNX_NAMESPACE {
10
10
 
11
11
  // Represents the most recent release version. Updated with every release.
12
- constexpr const char* LAST_RELEASE_VERSION = "1.16.0";
12
+ constexpr const char* LAST_RELEASE_VERSION = "1.16.2";
13
13
 
14
14
  } // namespace ONNX_NAMESPACE
onnx/defs/math/old.cc CHANGED
@@ -2322,10 +2322,15 @@ ONNX_OPERATOR_SET_SCHEMA(
2322
2322
  auto transBAttr = ctx.getAttribute("transB");
2323
2323
  bool transB = transBAttr ? static_cast<int>(transBAttr->i()) != 0 : false;
2324
2324
 
2325
+ checkInputRank(ctx, 0, 2);
2326
+ checkInputRank(ctx, 1, 2);
2327
+
2328
+ auto& first_input_shape = getInputShape(ctx, 0);
2329
+ auto& second_input_shape = getInputShape(ctx, 1);
2325
2330
  *ctx.getOutputType(0)->mutable_tensor_type()->mutable_shape()->add_dim() =
2326
- ctx.getInputType(0)->tensor_type().shape().dim(transA ? 1 : 0);
2331
+ first_input_shape.dim(transA ? 1 : 0);
2327
2332
  *ctx.getOutputType(0)->mutable_tensor_type()->mutable_shape()->add_dim() =
2328
- ctx.getInputType(1)->tensor_type().shape().dim(transB ? 0 : 1);
2333
+ second_input_shape.dim(transB ? 0 : 1);
2329
2334
  } else if (
2330
2335
  hasInputShape(ctx, 2) &&
2331
2336
  (!ctx.getAttribute("broadcast") || static_cast<int>(ctx.getAttribute("broadcast")->i()) == 0)) {
@@ -200,6 +200,9 @@ ONNX_OPERATOR_SET_SCHEMA(
200
200
  .SetDoc(DequantizeLinear_ver21_doc)
201
201
  .TypeAndShapeInferenceFunction([](ONNX_NAMESPACE::InferenceContext& ctx) {
202
202
  propagateElemTypeFromInputToOutput(ctx, 1, 0);
203
+ if (!hasInputShape(ctx, 0)) {
204
+ return;
205
+ }
203
206
  auto& input_shape = getInputShape(ctx, 0);
204
207
  updateOutputShape(ctx, 0, input_shape);
205
208
  }));
@@ -130,6 +130,9 @@ ONNX_OPERATOR_SET_SCHEMA(
130
130
  .SetDoc(DequantizeLinear_ver19_doc)
131
131
  .TypeAndShapeInferenceFunction([](ONNX_NAMESPACE::InferenceContext& ctx) {
132
132
  propagateElemTypeFromInputToOutput(ctx, 1, 0);
133
+ if (!hasInputShape(ctx, 0)) {
134
+ return;
135
+ }
133
136
  auto& input_shape = getInputShape(ctx, 0);
134
137
  updateOutputShape(ctx, 0, input_shape);
135
138
  }));
@@ -181,7 +184,6 @@ ONNX_OPERATOR_SET_SCHEMA(
181
184
  if (!hasInputShape(ctx, 0)) {
182
185
  return;
183
186
  }
184
-
185
187
  auto& input_shape = getInputShape(ctx, 0);
186
188
  updateOutputShape(ctx, 0, input_shape);
187
189
  }));
onnx/defs/tensor/old.cc CHANGED
@@ -1380,7 +1380,7 @@ ONNX_OPERATOR_SET_SCHEMA(
1380
1380
 
1381
1381
  static const char* Slice_ver11_doc = R"DOC(
1382
1382
  Produces a slice of the input tensor along multiple axes. Similar to numpy:
1383
- https://docs.scipy.org/doc/numpy/reference/arrays.indexing.html
1383
+ https://numpy.org/doc/stable/reference/routines.indexing.html
1384
1384
  Slices uses `starts`, `ends`, `axes` and `steps` inputs to specify the start and end
1385
1385
  dimension and step for each axis in the list of axes, it uses this information to
1386
1386
  slice the input `data` tensor. If a negative value is passed for any of the
@@ -4443,7 +4443,7 @@ ONNX_OPERATOR_SET_SCHEMA(
4443
4443
 
4444
4444
  static const char* Slice_ver1_doc = R"DOC(
4445
4445
  Produces a slice of the input tensor along multiple axes. Similar to numpy:
4446
- https://docs.scipy.org/doc/numpy/reference/arrays.indexing.html
4446
+ https://numpy.org/doc/stable/reference/routines.indexing.html
4447
4447
  Slices uses `axes`, `starts` and `ends` attributes to specify the start and end
4448
4448
  dimension for each axis in the list of axes, it uses this information to
4449
4449
  slice the input `data` tensor. If a negative value is passed for any of the
@@ -4559,7 +4559,7 @@ ONNX_OPERATOR_SET_SCHEMA(
4559
4559
 
4560
4560
  static const char* Slice_ver10_doc = R"DOC(
4561
4561
  Produces a slice of the input tensor along multiple axes. Similar to numpy:
4562
- https://docs.scipy.org/doc/numpy/reference/arrays.indexing.html
4562
+ https://numpy.org/doc/stable/reference/routines.indexing.html
4563
4563
  Slices uses `starts`, `ends`, `axes` and `steps` inputs to specify the start and end
4564
4564
  dimension and step for each axis in the list of axes, it uses this information to
4565
4565
  slice the input `data` tensor. If a negative value is passed for any of the
onnx/hub.py CHANGED
@@ -9,7 +9,6 @@ import hashlib
9
9
  import json
10
10
  import os
11
11
  import sys
12
- import tarfile
13
12
  from io import BytesIO
14
13
  from os.path import join
15
14
  from typing import IO, Any, Dict, List, Optional, Set, Tuple, cast
@@ -296,6 +295,7 @@ def download_model_with_test_data(
296
295
  silent: bool = False,
297
296
  ) -> Optional[str]:
298
297
  """Downloads a model along with test data by name from the onnx model hub and returns the directory to which the files have been extracted.
298
+ Users are responsible for making sure the model comes from a trusted source, and the data is safe to be extracted.
299
299
 
300
300
  Args:
301
301
  model: The name of the onnx model in the manifest. This field is
@@ -361,12 +361,14 @@ def download_model_with_test_data(
361
361
  "download the model from the model hub."
362
362
  )
363
363
 
364
- with tarfile.open(local_model_with_data_path) as model_with_data_zipped:
365
- # FIXME: Avoid index manipulation with magic numbers
366
- local_model_with_data_dir_path = local_model_with_data_path[
367
- 0 : len(local_model_with_data_path) - 7
368
- ]
369
- model_with_data_zipped.extractall(local_model_with_data_dir_path)
364
+ # FIXME: Avoid index manipulation with magic numbers,
365
+ # remove ".tar.gz"
366
+ local_model_with_data_dir_path = local_model_with_data_path[
367
+ 0 : len(local_model_with_data_path) - 7
368
+ ]
369
+ onnx.utils._extract_model_safe(
370
+ local_model_with_data_path, local_model_with_data_dir_path
371
+ )
370
372
  model_with_data_path = (
371
373
  local_model_with_data_dir_path
372
374
  + "/"
Binary file
@@ -488,29 +488,29 @@ class ShapeInferenceImplBase {
488
488
  ProcessCall(n, *(iter->second), ctx);
489
489
  } else {
490
490
  has_unsupported_op = true;
491
+ return;
491
492
  }
492
493
  } else {
493
494
  has_unsupported_op = true;
495
+ return;
494
496
  }
495
- if (!has_unsupported_op) {
496
- for (int i = 0; i < n.output_size(); ++i) {
497
- // skip type and shape propagation for missing optional outputs.
498
- if (!n.output(i).empty())
499
- UpdateType(n.output(i), ctx.getOutputType(i));
500
- }
501
- // Constant values are tracked to improve inference/checking for subsequent nodes.
502
- ProcessConstant(n);
503
- // If data-propagation is enabled, partial-evaluation (aka data-propagation) is performed
504
- // to improve inference/checking for subsequent nodes.
505
- if (options.enable_data_propagation && schema && schema->has_data_propagation_function()) {
506
- if (generated_shape_data_by_name == nullptr) {
507
- fail_shape_inference(
508
- "Container for generated shape data cannot be nullptr when enable_data_propagation option is set.");
509
- }
510
- DataPropagationContextImpl data_propagation_ctx(
511
- n, value_types_by_name, input_data_by_name, *generated_shape_data_by_name);
512
- schema->GetDataPropagationFunction()(data_propagation_ctx);
497
+ for (int i = 0; i < n.output_size(); ++i) {
498
+ // skip type and shape propagation for missing optional outputs.
499
+ if (!n.output(i).empty())
500
+ UpdateType(n.output(i), ctx.getOutputType(i));
501
+ }
502
+ // Constant values are tracked to improve inference/checking for subsequent nodes.
503
+ ProcessConstant(n);
504
+ // If data-propagation is enabled, partial-evaluation (aka data-propagation) is performed
505
+ // to improve inference/checking for subsequent nodes.
506
+ if (options.enable_data_propagation && schema && schema->has_data_propagation_function()) {
507
+ if (generated_shape_data_by_name == nullptr) {
508
+ fail_shape_inference(
509
+ "Container for generated shape data cannot be nullptr when enable_data_propagation option is set.");
513
510
  }
511
+ DataPropagationContextImpl data_propagation_ctx(
512
+ n, value_types_by_name, input_data_by_name, *generated_shape_data_by_name);
513
+ schema->GetDataPropagationFunction()(data_propagation_ctx);
514
514
  }
515
515
  }
516
516
  ONNX_CATCH(const ONNX_NAMESPACE::InferenceError& ex) {
onnx/tools/net_drawer.py CHANGED
@@ -3,7 +3,7 @@
3
3
  # SPDX-License-Identifier: Apache-2.0
4
4
  # A library and utility for drawing ONNX nets. Most of this implementation has
5
5
  # been borrowed from the caffe2 implementation
6
- # https://github.com/pytorch/pytorch/blob/master/caffe2/python/net_drawer.py
6
+ # https://github.com/pytorch/pytorch/blob/v2.3.1/caffe2/python/net_drawer.py
7
7
  #
8
8
  # The script takes two required arguments:
9
9
  # -input: a path to a serialized ModelProto .pb file.
onnx/utils.py CHANGED
@@ -4,6 +4,7 @@
4
4
  from __future__ import annotations
5
5
 
6
6
  import os
7
+ import tarfile
7
8
 
8
9
  import onnx.checker
9
10
  import onnx.helper
@@ -212,3 +213,65 @@ def extract_model(
212
213
  onnx.save(extracted, output_path)
213
214
  if check_model:
214
215
  onnx.checker.check_model(output_path)
216
+
217
+
218
+ def _tar_members_filter(
219
+ tar: tarfile.TarFile, base: str | os.PathLike
220
+ ) -> list[tarfile.TarInfo]:
221
+ """Check that the content of ``tar`` will be extracted safely
222
+
223
+ Args:
224
+ tar: The tarball file
225
+ base: The directory where the tarball will be extracted
226
+
227
+ Returns:
228
+ list of tarball members
229
+ """
230
+ result = []
231
+ for member in tar:
232
+ member_path = os.path.join(base, member.name)
233
+ abs_base = os.path.abspath(base)
234
+ abs_member = os.path.abspath(member_path)
235
+ if not abs_member.startswith(abs_base):
236
+ raise RuntimeError(
237
+ f"The tarball member {member_path} in downloading model contains "
238
+ f"directory traversal sequence which may contain harmful payload."
239
+ )
240
+ elif member.issym() or member.islnk():
241
+ raise RuntimeError(
242
+ f"The tarball member {member_path} in downloading model contains "
243
+ f"symbolic links which may contain harmful payload."
244
+ )
245
+ result.append(member)
246
+ return result
247
+
248
+
249
+ def _extract_model_safe(
250
+ model_tar_path: str | os.PathLike, local_model_with_data_dir_path: str | os.PathLike
251
+ ) -> None:
252
+ """Safely extracts a tar file to a specified directory.
253
+
254
+ This function ensures that the extraction process mitigates against
255
+ directory traversal vulnerabilities by validating or sanitizing paths
256
+ within the tar file. It also provides compatibility for different versions
257
+ of the tarfile module by checking for the availability of certain attributes
258
+ or methods before invoking them.
259
+
260
+ Args:
261
+ model_tar_path: The path to the tar file to be extracted.
262
+ local_model_with_data_dir_path: The directory path where the tar file
263
+ contents will be extracted to.
264
+ """
265
+ with tarfile.open(model_tar_path) as model_with_data_zipped:
266
+ # Mitigate tarball directory traversal risks
267
+ if hasattr(tarfile, "data_filter"):
268
+ model_with_data_zipped.extractall(
269
+ path=local_model_with_data_dir_path, filter="data"
270
+ )
271
+ else:
272
+ model_with_data_zipped.extractall(
273
+ path=local_model_with_data_dir_path,
274
+ members=_tar_members_filter(
275
+ model_with_data_zipped, local_model_with_data_dir_path
276
+ ),
277
+ )
onnx/version.py CHANGED
@@ -1,5 +1,5 @@
1
1
  # This file is generated by setup.py. DO NOT EDIT!
2
2
 
3
3
 
4
- version = "1.16.0"
5
- git_version = "990217f043af7222348ca8f0301e17fa7b841781"
4
+ version = "1.16.2"
5
+ git_version = "3bf92c03a9f27eba3bda1e5b9e63ea20ec213557"
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: onnx
3
- Version: 1.16.0
3
+ Version: 1.16.2
4
4
  Summary: Open Neural Network Exchange
5
5
  Author-email: ONNX Contributors <onnx-technical-discuss@lists.lfaidata.foundation>
6
6
  License: Apache License v2.0
@@ -14,7 +14,7 @@ Requires-Dist: numpy >=1.20
14
14
  Requires-Dist: protobuf >=3.20.2
15
15
  Provides-Extra: reference
16
16
  Requires-Dist: google-re2 ; extra == 'reference'
17
- Requires-Dist: Pillow ; extra == 'reference'
17
+ Requires-Dist: pillow ; extra == 'reference'
18
18
 
19
19
  <!--
20
20
  Copyright (c) ONNX Project Contributors
@@ -7,7 +7,7 @@ onnx/cpp2py_export.cc,sha256=ffp_Z2wm5ABVrMi3OLIg086E1y1RRuN5rnOSqghIR-E,31228
7
7
  onnx/external_data_helper.py,sha256=teW0FLi_knNys0oA7pNL2znlUuD_cftOPVvwxqQ89qg,11910
8
8
  onnx/gen_proto.py,sha256=s21pPEC_HKO2_A0B0QPvcPHt7D-L3vr9n9LNexMuQYs,8887
9
9
  onnx/helper.py,sha256=ZlBHegNB76eElEjzbHZeLWOtj7IE52MQql90JzaOF5E,55671
10
- onnx/hub.py,sha256=Kv7Wly22sYxAxXTllGzOsvs9_6uKAQ5I4Uo9eBdquzs,18326
10
+ onnx/hub.py,sha256=j7LiqxwN_guK3AlU_e-8RCfcZYPnI73USkCbf6WlQ-Y,18398
11
11
  onnx/inliner.py,sha256=Ukl3lPP9lC-lUNr2jQzwNZt6g0MPPcNUlxjEHKZbYPk,1772
12
12
  onnx/mapping.py,sha256=EEOhJsiUtONiin34fkMInjdOjtqTm3R_wsoNeDeC-W4,8457
13
13
  onnx/model_container.py,sha256=aXpLqFjZF2RbjbUni04xYtwVLxG1pr6YYXWx_zz_Pko,13104
@@ -22,7 +22,7 @@ onnx/onnx-operators.proto,sha256=JQbdYTnvJhfQrFk82zzzEKpokcOUujZ4QBKqvSJNBLU,543
22
22
  onnx/onnx-operators_pb.h,sha256=vlw2jzH5sZfKNzs6x4f34-riKuXPy9PjXbo8ZvOx068,202
23
23
  onnx/onnx.in.proto,sha256=XTWpwFI3cPFVEn4owXCId3oK6s6wdIIUB4TQCzyzgJE,38526
24
24
  onnx/onnx.proto,sha256=mej19HPF15gUvT_6r6hbxI3x7Mxc9pR-Crm7rR9cvnA,38116
25
- onnx/onnx_cpp2py_export.cp39-win32.pyd,sha256=EU9-H81qfxCkv_aG9VchwO18fNflU0XUGgfGMNCViFg,2503168
25
+ onnx/onnx_cpp2py_export.cp39-win32.pyd,sha256=Oylk613rru2wE3FcAX8aajbaLvDpOfMggLRerwE8kWo,2505216
26
26
  onnx/onnx_data_pb.py,sha256=Czjgcf0pv2Vk_mBsch2sG4bYkzRpNG1efzhhdEilN8I,94
27
27
  onnx/onnx_data_pb2.py,sha256=YuJmAGmOGE_ClfmD9Gbbc1qn9_FzOMDH61e7ay9t5xw,2894
28
28
  onnx/onnx_data_pb2.pyi,sha256=VTSip9Evt2RqdKpntIo6G9LVASJVfc6zJ-yy-T4kW_o,4682
@@ -42,8 +42,8 @@ onnx/serialization.py,sha256=kDFNFRgel53rW0V9ZS-tG5G0PV9Rms60TsOxbNOs1IM,8069
42
42
  onnx/shape_inference.py,sha256=eiCtyo0v5MR2JQIIe5lTk1E6pwxKgH-hhhpkbLJASrw,5951
43
43
  onnx/string_utils.h,sha256=jAFGm8XyB3PwvijH-0Cni_83gu1rfXQ7v16OGyPeuMU,1337
44
44
  onnx/subbyte.py,sha256=wYA14-QUhRWD829f-8cxPviSjffUb19rCJSuXIDdIfg,2361
45
- onnx/utils.py,sha256=OYvWSG_ulwV6e_h6udGrTPnHCbBnMns_y6G_mrDY0t4,8600
46
- onnx/version.py,sha256=zSedOo-BDfd9yHK95hMSLCTW_lDrdmV1oltOZWvHLtU,134
45
+ onnx/utils.py,sha256=9ZbcvkYF9r849WoN4OSW55D6g4aNts9hcpKsLlPnT-o,11033
46
+ onnx/version.py,sha256=V0os880BSkJTppWygfb6v6uUXpl0OrHRwpYMhDQ6GYQ,134
47
47
  onnx/version_converter.py,sha256=Qi0hGuU45xf8rD8E7W8f9MVgZiGIrPU5lzl2bOX6gG4,1274
48
48
  onnx/backend/__init__.py,sha256=HiuD-U6YHJwWikkemKJqBq-35U8KJ9LDdAwdisi7OlQ,85
49
49
  onnx/backend/base.py,sha256=myXeAXXVI31c_lcqxeAJNK3dRFncuJox2N55rTGANZ4,4680
@@ -109,7 +109,7 @@ onnx/backend/test/case/node/cosh.py,sha256=paohiM1-bYV3Uq5AeXM1MCXW_kPPabXA6vG7h
109
109
  onnx/backend/test/case/node/cumsum.py,sha256=dtoV_Rg1opPwMpx-jW6ItihP8roPkn5Ymp0brSt5jOQ,3482
110
110
  onnx/backend/test/case/node/deformconv.py,sha256=0kKFJlA45N3OE4YuSr_abaYqIXyDYEAnoEmiO1SyTKw,5647
111
111
  onnx/backend/test/case/node/depthtospace.py,sha256=UEryt7YdGewSq0dD5yzN5EVul5yOBkjaUFna9bt2h2Q,3632
112
- onnx/backend/test/case/node/dequantizelinear.py,sha256=6e5DqcT0bU4CVu6oUWCTI-yrC_6BkgBqMlJ3OTRA194,9404
112
+ onnx/backend/test/case/node/dequantizelinear.py,sha256=0J7b5SaFatZoc6GaNVtLg1pIMhAm1Ly1KPiU7Vad68k,9408
113
113
  onnx/backend/test/case/node/det.py,sha256=aYZlgjZu0qmYUuuv6-6lZ4tW9CHr2PS6VU3wAL9KJ-U,1012
114
114
  onnx/backend/test/case/node/dft.py,sha256=tGoOa57NJWSJk8i6BFs1tQk-1YPp5xFVha-TNqYR0iE,3407
115
115
  onnx/backend/test/case/node/div.py,sha256=ae1QwxAnnhDkISGSWNDVNsScveoTTYDkqSRSYLWuro0,1475
@@ -184,7 +184,7 @@ onnx/backend/test/case/node/pow.py,sha256=mqZTB3aExWI77NHZMD5pa0fb0iTsSrVuVoYTZt
184
184
  onnx/backend/test/case/node/prelu.py,sha256=2mc_P13n4GYWE50wcvIhNoyIxmppmrBqq0et5O5ZEck,1160
185
185
  onnx/backend/test/case/node/qlinearconv.py,sha256=NcqkNkS24rCnTDHpLTePunkIwSdHt6mAlNLGF800oEY,2341
186
186
  onnx/backend/test/case/node/qlinearmatmul.py,sha256=liNk0Jzth3BWDJVp1PAOFWqHToB-KsvqN0CQVqwKo7U,5676
187
- onnx/backend/test/case/node/quantizelinear.py,sha256=c2X72l2VarjUAi-hIuJ6ZUF0aBwGmQF9kIakEnF1bvs,11284
187
+ onnx/backend/test/case/node/quantizelinear.py,sha256=xWfKAQmAmYePK_vkbShRm7D4gJ3QzD1o4BUlv9hMPhI,11292
188
188
  onnx/backend/test/case/node/rangeop.py,sha256=p7Lz1xygHPHRUrfInf5FS2RBMhFL67kdLbyQxvxE2Ls,1491
189
189
  onnx/backend/test/case/node/reciprocal.py,sha256=34LwMciBx7lM5-KpzaDSCa5dL3VXblfLVpwoF8N1_48,782
190
190
  onnx/backend/test/case/node/reduce_log_sum.py,sha256=ons-ZqpqnpNaCkk2bUwVu-Di7i0MTeBfKL_fWMn1n8M,3159
@@ -1489,7 +1489,7 @@ onnx/backend/test/data/node/test_dequantizelinear_int16/test_data_set_0/output_0
1489
1489
  onnx/backend/test/data/node/test_dequantizelinear_int4/model.onnx,sha256=9LK35NYKjHLC6JmUJVZSXxI7vCSfoVOyZvVCxLwu4L8,196
1490
1490
  onnx/backend/test/data/node/test_dequantizelinear_int4/test_data_set_0/input_0.pb,sha256=8w_hl7JvcDysb07OiHDWHUWGW-hOCSWr8h5wywBEbS0,21
1491
1491
  onnx/backend/test/data/node/test_dequantizelinear_int4/test_data_set_0/input_1.pb,sha256=qN7egCoW3Tix8QKnMxT243blKL-WqkjKisULKpcdBdY,17
1492
- onnx/backend/test/data/node/test_dequantizelinear_int4/test_data_set_0/input_2.pb,sha256=2-c2oGJ2nFi3f5gMserIvtcpTbtacRrc-RRKTXA605k,19
1492
+ onnx/backend/test/data/node/test_dequantizelinear_int4/test_data_set_0/input_2.pb,sha256=GxHG9IjbNdY0hTEZRYeNssvlZnFbX4ouLHJww6ODDzg,21
1493
1493
  onnx/backend/test/data/node/test_dequantizelinear_int4/test_data_set_0/output_0.pb,sha256=AB-QMRL0DZclEXLlbWVi-ti0NMUhxGgqeAKzRFgL-rM,29
1494
1494
  onnx/backend/test/data/node/test_dequantizelinear_uint16/model.onnx,sha256=z3gpBXrtiijpDEjhgO8EFJWJR4_EZBJ8ei1dpUPMca0,181
1495
1495
  onnx/backend/test/data/node/test_dequantizelinear_uint16/test_data_set_0/input_0.pb,sha256=lXtHv2NCkXFokLmUC4XcHZ0KObiQXiRreUIK-COCeLU,17
@@ -1499,7 +1499,7 @@ onnx/backend/test/data/node/test_dequantizelinear_uint16/test_data_set_0/output_
1499
1499
  onnx/backend/test/data/node/test_dequantizelinear_uint4/model.onnx,sha256=doOZg8lFykcn-ZiGUM7t9eNIe8AXSPsFvhE_q9pNKmw,197
1500
1500
  onnx/backend/test/data/node/test_dequantizelinear_uint4/test_data_set_0/input_0.pb,sha256=DujJO55o1k-7hYjfqgLjHUHvFWS9ME3xYq410pSWAPk,13
1501
1501
  onnx/backend/test/data/node/test_dequantizelinear_uint4/test_data_set_0/input_1.pb,sha256=qN7egCoW3Tix8QKnMxT243blKL-WqkjKisULKpcdBdY,17
1502
- onnx/backend/test/data/node/test_dequantizelinear_uint4/test_data_set_0/input_2.pb,sha256=UrqQhZcKtsM1nfoPcUQzBqfqwka_je5kwZ0E8Gr3lJA,19
1502
+ onnx/backend/test/data/node/test_dequantizelinear_uint4/test_data_set_0/input_2.pb,sha256=Uy6DIdWiaShjYZoqvhZytFOW-nrnkq_jDxhSya5GM1Q,21
1503
1503
  onnx/backend/test/data/node/test_dequantizelinear_uint4/test_data_set_0/output_0.pb,sha256=xQMWX_7whFxNBSm64slp3ncuglAEdprKtaQD0zkjTqI,29
1504
1504
  onnx/backend/test/data/node/test_det_2d/model.onnx,sha256=OW5mSOi7fO6hao91GdGbPZF9JKegWWmf7ZkgSHmS4vM,84
1505
1505
  onnx/backend/test/data/node/test_det_2d/test_data_set_0/input_0.pb,sha256=0phUVbSY99aYNDvbb4I7ZwTF4_oqB7I9Teh_3LZTlfk,27
@@ -3533,12 +3533,12 @@ onnx/backend/test/data/node/test_quantizelinear_blocked_symmetric/test_data_set_
3533
3533
  onnx/backend/test/data/node/test_quantizelinear_e4m3fn/model.onnx,sha256=22nDQPV_pY3TRB34BlD_KeS8ow0yOzDZjTNotuWr18M,181
3534
3534
  onnx/backend/test/data/node/test_quantizelinear_e4m3fn/test_data_set_0/input_0.pb,sha256=RpINE2Cg2dhwMgzJm3ZxSLDmJ1q0XwI6WmIHcL_j6Yc,29
3535
3535
  onnx/backend/test/data/node/test_quantizelinear_e4m3fn/test_data_set_0/input_1.pb,sha256=Zv7CydImWalnvbaS5VHQ6zTXvOUCohUym_ClUIDiLJ4,17
3536
- onnx/backend/test/data/node/test_quantizelinear_e4m3fn/test_data_set_0/input_2.pb,sha256=3qDZIcWHdcD6sR2bi0d9zxwFMbgB-8xVA8QC78gP0h4,19
3536
+ onnx/backend/test/data/node/test_quantizelinear_e4m3fn/test_data_set_0/input_2.pb,sha256=_7Vdv5427rLlWyXQDc1ya_9WSxSO8L4LZu_OHnm_FT8,21
3537
3537
  onnx/backend/test/data/node/test_quantizelinear_e4m3fn/test_data_set_0/output_0.pb,sha256=nNu5UvmZ8mpsh_54mZqigNgGwEN8yszynDbulB-hJ5c,14
3538
3538
  onnx/backend/test/data/node/test_quantizelinear_e5m2/model.onnx,sha256=L0yVbjM9lrwdvbAwh8mhf89aKtCJEyrgcxacdH5tcEM,179
3539
3539
  onnx/backend/test/data/node/test_quantizelinear_e5m2/test_data_set_0/input_0.pb,sha256=RpINE2Cg2dhwMgzJm3ZxSLDmJ1q0XwI6WmIHcL_j6Yc,29
3540
3540
  onnx/backend/test/data/node/test_quantizelinear_e5m2/test_data_set_0/input_1.pb,sha256=Zv7CydImWalnvbaS5VHQ6zTXvOUCohUym_ClUIDiLJ4,17
3541
- onnx/backend/test/data/node/test_quantizelinear_e5m2/test_data_set_0/input_2.pb,sha256=PW0rlxt1n-xDnnHatqfnNnTTn3NsbNGhcm1Gs7psnmY,19
3541
+ onnx/backend/test/data/node/test_quantizelinear_e5m2/test_data_set_0/input_2.pb,sha256=trfI5bwzv3rDl1dqKlEM_RmOGYCac0PrHNjqYeGXxa0,21
3542
3542
  onnx/backend/test/data/node/test_quantizelinear_e5m2/test_data_set_0/output_0.pb,sha256=Bk-NH1ZeWwTusSN6X2cuqkFjbYJ1vDxhtJZ592E76fw,14
3543
3543
  onnx/backend/test/data/node/test_quantizelinear_int16/model.onnx,sha256=8OIsIPruUoe4aZC2anHuM4n85GsQrL2BQYfQbYOYZJo,176
3544
3544
  onnx/backend/test/data/node/test_quantizelinear_int16/test_data_set_0/input_0.pb,sha256=VmE8fR23t887aluLk_qjxKg-S07NoLxCSje5xyEL5NI,73
@@ -3548,7 +3548,7 @@ onnx/backend/test/data/node/test_quantizelinear_int16/test_data_set_0/output_0.p
3548
3548
  onnx/backend/test/data/node/test_quantizelinear_int4/model.onnx,sha256=_W9CJtKqLcm3zntWa30qryL1IGODqC8Lt-W-r4fMSR0,204
3549
3549
  onnx/backend/test/data/node/test_quantizelinear_int4/test_data_set_0/input_0.pb,sha256=Lg7BLkDJVhKNTmTszgJp0eK_i1afP0XARGAXTfNFdeQ,59
3550
3550
  onnx/backend/test/data/node/test_quantizelinear_int4/test_data_set_0/input_1.pb,sha256=2Pe2lcrRWP5oT1EosWg6ZOv0VcNUIPd__rMnNp0couk,27
3551
- onnx/backend/test/data/node/test_quantizelinear_int4/test_data_set_0/input_2.pb,sha256=xOW8QI3GKHP9nY6BjWU6d8g0gyiiAHzjrI5E0nP-HJw,20
3551
+ onnx/backend/test/data/node/test_quantizelinear_int4/test_data_set_0/input_2.pb,sha256=1d3dNu_2t0cVW-a0345YfmGWH3i1K_8DOgi_jg-eIdA,22
3552
3552
  onnx/backend/test/data/node/test_quantizelinear_int4/test_data_set_0/output_0.pb,sha256=y06PaLypD_0xbr5-dsEIz-izN4v0u_LvdzH-IedZ_W0,26
3553
3553
  onnx/backend/test/data/node/test_quantizelinear_uint16/model.onnx,sha256=Bzxw9Zgnq1uix9-HBgh_FLVkNfMG8X9RfD2iiDdOxOI,177
3554
3554
  onnx/backend/test/data/node/test_quantizelinear_uint16/test_data_set_0/input_0.pb,sha256=HBChWZzpiiAckJ1Lx-CShRBJIZz9e-vcIp8no74kWhI,57
@@ -3558,7 +3558,7 @@ onnx/backend/test/data/node/test_quantizelinear_uint16/test_data_set_0/output_0.
3558
3558
  onnx/backend/test/data/node/test_quantizelinear_uint4/model.onnx,sha256=fw0fba_Z4vNck23gKcLSd08zQkpEXxDA5uZmtiTkF_s,205
3559
3559
  onnx/backend/test/data/node/test_quantizelinear_uint4/test_data_set_0/input_0.pb,sha256=Lg7BLkDJVhKNTmTszgJp0eK_i1afP0XARGAXTfNFdeQ,59
3560
3560
  onnx/backend/test/data/node/test_quantizelinear_uint4/test_data_set_0/input_1.pb,sha256=2Pe2lcrRWP5oT1EosWg6ZOv0VcNUIPd__rMnNp0couk,27
3561
- onnx/backend/test/data/node/test_quantizelinear_uint4/test_data_set_0/input_2.pb,sha256=3msGujD62Tj7EYUPxCej7yQD4E___QrkfkZk0u0m788,20
3561
+ onnx/backend/test/data/node/test_quantizelinear_uint4/test_data_set_0/input_2.pb,sha256=iIP2U9MJwQa9ghUcuN8tpW91KGfsrp1Q8akf22lwe2M,22
3562
3562
  onnx/backend/test/data/node/test_quantizelinear_uint4/test_data_set_0/output_0.pb,sha256=8q530wXE297IpPg4EiJTOU3f4gDmaAuZgtD9-UT2vyM,18
3563
3563
  onnx/backend/test/data/node/test_range_float_type_positive_delta/model.onnx,sha256=yDJm47JALZVJ9S2sTGlShf_fJRLQNqF-BYb_fTfohlo,174
3564
3564
  onnx/backend/test/data/node/test_range_float_type_positive_delta/test_data_set_0/input_0.pb,sha256=PnwKkhwnmd5quiS20ZgN5aEPgWHukh4Z1L_5tQBqFMg,15
@@ -6037,7 +6037,7 @@ onnx/backend/test/loader/__init__.py,sha256=mngOe26IgFmbbCjFIhAyLMnPGhCZoaB7ke-r
6037
6037
  onnx/backend/test/report/__init__.py,sha256=Ua3s3YmvUusUnffIyct0GnwIqFcMP_AsV5aIe1A4rLs,1261
6038
6038
  onnx/backend/test/report/base.py,sha256=npe6vog194R-rbyVje3cIUerSkLoFzDaq5xexAGqbDk,119
6039
6039
  onnx/backend/test/report/coverage.py,sha256=uxx9g_E6TpKakqWY_pfmU0ITIFjRDpkI8lPtu4YL9Zk,11258
6040
- onnx/backend/test/runner/__init__.py,sha256=H-fHfM4x0gD-lSzqtgJNKEFUxQHNLNtXyQSBxWRGNRo,21889
6040
+ onnx/backend/test/runner/__init__.py,sha256=xPTbaxtrn_U6yroPfh2YX8wSqhBE-_ownwVka18FMgU,21850
6041
6041
  onnx/backend/test/runner/item.py,sha256=PEJjl6K3Z-bga8IMHN3alKcweygjAMzZhSa1ChKF6C8,429
6042
6042
  onnx/bin/__init__.py,sha256=HiuD-U6YHJwWikkemKJqBq-35U8KJ9LDdAwdisi7OlQ,85
6043
6043
  onnx/bin/checker.py,sha256=h4tAK3SaViHUdt8nBpookLAqVNSgIHhn2jL_GeHM7m0,684
@@ -6062,7 +6062,7 @@ onnx/common/proto_util.h,sha256=U-KYW5fBs1MqmYWmtMONpw8a75SRMD7D32a8dZ4LlN0,1473
6062
6062
  onnx/common/status.cc,sha256=nMqcYhcpXzyX-Ln7kZPC2EwOMbV5ssNuF6z05N6ojrw,1981
6063
6063
  onnx/common/status.h,sha256=7x8_ZLcNIZVL7HF1ArFp03KU2PUPT6eDZRhEedelnFc,2008
6064
6064
  onnx/common/tensor.h,sha256=tCw06bToUEkXWStd7h5n07ikpmNFadfefi0uDIW5jrw,7699
6065
- onnx/common/version.h,sha256=886IcNQk5AeDaj9tUJ6xaoOv5UQB9vbhovx0faqjalw,308
6065
+ onnx/common/version.h,sha256=aMrqfR_s_hbgqoqwXdZGkD3XeZSVBr9W7H8B4cQMpPs,308
6066
6066
  onnx/common/visitor.h,sha256=Fn-B-0xAy0r3TEo0jh4yYrFJkBV7xZxrP94VX5AjzFI,3215
6067
6067
  onnx/defs/__init__.py,sha256=PZ01rEheu0-GhBVbHrehi9fMoS3e9Vx4XBPGXD_DqHo,4284
6068
6068
  onnx/defs/attr_proto_util.cc,sha256=qAGbnnDY7MvKN7nKIYl6K5f7irNeNnNJ61J67OP_TJk,3658
@@ -6102,7 +6102,7 @@ onnx/defs/image/defs.cc,sha256=TwqyFK_GbtLqanIo4ekYw9g4jp-vIlVBAe-1KWscbWA,2834
6102
6102
  onnx/defs/logical/defs.cc,sha256=Tbj__KPHpdhBAk2cPAhPHdJtPrWvlGkCifJtgnGGmFc,12166
6103
6103
  onnx/defs/logical/old.cc,sha256=3mcunnOuj4d2RAG-bjRwqJU8Eeg1qGE9OFLFOeicHUY,10334
6104
6104
  onnx/defs/math/defs.cc,sha256=0oWGGDB4hVOQd6XNZnKZ5_RaUH_jWvbYUfsAuWTXYk0,145250
6105
- onnx/defs/math/old.cc,sha256=pnVHt23OuOyYjiRwCVmLBc4eiDHvHxgs6c0rLbE8ucM,133720
6105
+ onnx/defs/math/old.cc,sha256=zzg1j-uB0Ifhx9r-kf-i5NArZxhbq6zgj0E-6pkLAiw,133878
6106
6106
  onnx/defs/math/utils.cc,sha256=J86Vx2b1T3zyrwxrEV2sB4vNzN9yg9i-w6cAOGgFJbk,4981
6107
6107
  onnx/defs/math/utils.h,sha256=rL7InDv3ZROqK2tsINn70J92gsmgYdRLiYMsKEviDTg,1347
6108
6108
  onnx/defs/nn/defs.cc,sha256=6MgRpvf0vjTpVdX6x2h0PzP0c17-QVFuKHAaN8zE0fw,128345
@@ -6111,8 +6111,8 @@ onnx/defs/object_detection/defs.cc,sha256=kke0G3Bo0WXsL1jJ9G3eauu_il6NTGZSTYBCr7
6111
6111
  onnx/defs/object_detection/old.cc,sha256=Kfck4FSzoyv90IdefqN028RxGXj5syrnMHtX05vFOWI,8343
6112
6112
  onnx/defs/optional/defs.cc,sha256=9wPzDUjtnMQVWmR_2gaXw0pNUUxI1UyDr0rlWW1fU20,6670
6113
6113
  onnx/defs/optional/old.cc,sha256=gEVbnZiknNPPoHk5pJYfUcGQaLgxgjXaXMR2LQ6rbp4,3499
6114
- onnx/defs/quantization/defs.cc,sha256=6DQxDPmTLWf9ReM-ts9KFVkcTirxSurrs_OgD4P4EPs,13702
6115
- onnx/defs/quantization/old.cc,sha256=ZiIPGiiZs0x4qxRlfEDB6ZBqql6GjBDA04NpZhSx7GE,15630
6114
+ onnx/defs/quantization/defs.cc,sha256=az2b0vYdWyROAYrTfe8N8XAa61vx5WX242fLKa1CAkQ,13777
6115
+ onnx/defs/quantization/old.cc,sha256=n3ZFYTTIc6c6j9NTITKyXsFQpus6_obhJEq4jlxS1Nc,15703
6116
6116
  onnx/defs/reduction/defs.cc,sha256=rHvP9SDvpIKSVD6MEm1rifZPm5Gtmm8la5_rWlanuiY,6316
6117
6117
  onnx/defs/reduction/old.cc,sha256=cHIoo2USwB9GY7R0ANTR4m47kGZko6laiSNsURHoGVQ,19434
6118
6118
  onnx/defs/reduction/utils.cc,sha256=Ml0jJiMwSq2pnKgHEWyfnOfiX2cqsCyL6pev2D_VeHk,6375
@@ -6121,7 +6121,7 @@ onnx/defs/rnn/defs.cc,sha256=oHWuTnER8fXzvcmd1zf61oXDIZaNo7je6wy_sqfnOFI,20092
6121
6121
  onnx/defs/rnn/old.cc,sha256=HnFsXxbQIzmRR965HRB2X5vQVjpOWHNEPkpmcKkJiY0,40210
6122
6122
  onnx/defs/sequence/defs.cc,sha256=0CGv3Oxsg9jKoXteXcCzRQ3O7_U_BkbpK9win7gSf1c,34822
6123
6123
  onnx/defs/tensor/defs.cc,sha256=T1SMqOFZIrhTI_EziiBD0zcQck_1gdcuw5X4wy9BqcU,166662
6124
- onnx/defs/tensor/old.cc,sha256=oIpbDbd3ObNXMrWibwWVAz149G6h27Rep86Oo0WxT4U,271738
6124
+ onnx/defs/tensor/old.cc,sha256=vxBKu570Tsi-aUsBeSsBBv5ZscrDE-dO6s51iEWvvcE,271732
6125
6125
  onnx/defs/tensor/utils.cc,sha256=EYWBGwdBFu2mPG6nWnounD7fkj6qrRPX_xiW9eQuLYg,19317
6126
6126
  onnx/defs/tensor/utils.h,sha256=NW6Bf_osOOPr7ibHPXYP7aHlU5zLn5OVzvmySHd3m4I,1855
6127
6127
  onnx/defs/text/defs.cc,sha256=xle6eQMSIGgADF0LyWnbYAa6GXDWA4uQtopu7iuLq9o,10575
@@ -6373,7 +6373,7 @@ onnx/reference/ops/experimental/op_im2col.py,sha256=YLYL6JVcCBUdvVzq4eGrg-Q9Pvm2
6373
6373
  onnx/reference/ops_optimized/__init__.py,sha256=T1nSBzjXBKSnMJzKdQxw39bYBcLj7lbO0uAx63DQkPc,274
6374
6374
  onnx/reference/ops_optimized/op_conv_optimized.py,sha256=y0L2AfrN9yti3gRtK8Z2rAIRN7hmivQHYDZUr2ZvO4w,6608
6375
6375
  onnx/shape_inference/attribute_binder.h,sha256=ICoFJLBC8GU1n8vEbUD8BW4p0-cuaBbRhNo7dKQ7xgY,2446
6376
- onnx/shape_inference/implementation.cc,sha256=_BtfAJtoOFybMskd5Kc1noe8sleRAZmjfaA-_XcdLk0,43711
6376
+ onnx/shape_inference/implementation.cc,sha256=o2yo5deO3LkxzCYzynxKOFZaHMLC5SWmwismDE3LFdQ,43668
6377
6377
  onnx/shape_inference/implementation.h,sha256=zDEvkxX53zf1HgsymUsCfJMlxciW1yw0XzRF7_Svk40,19854
6378
6378
  onnx/test/__init__.pyi,sha256=VW4Y59avFWUotfJT9rPS5AachoNP4rSbu2Z43Ln5Wzw,254
6379
6379
  onnx/test/basic_test.py,sha256=ilA7YFfWJjR-8gRpzhfiMWXzcuytf2dMk3Ipg-hJ0uI,9831
@@ -6427,7 +6427,7 @@ onnx/test/version_converter/automatic_conversion_test_base.py,sha256=Kc2sTGYZY1E
6427
6427
  onnx/test/version_converter/automatic_downgrade_test.py,sha256=0QSOEYy416rXaohwwroTbhKANXTyNuSjs4gd2mxN1Zs,3372
6428
6428
  onnx/test/version_converter/automatic_upgrade_test.py,sha256=9-0xuQdYydfFDRFCK3SJZlh4HUdQad0aKa79bIJWbpk,56018
6429
6429
  onnx/tools/__init__.py,sha256=HiuD-U6YHJwWikkemKJqBq-35U8KJ9LDdAwdisi7OlQ,85
6430
- onnx/tools/net_drawer.py,sha256=D1CjUu2SqPr9M5YuFWRknQGczHcXY6wJF5B1TP_72G8,5055
6430
+ onnx/tools/net_drawer.py,sha256=vAEERPpHmHvJpb-QS88JTa9UgLPbk1vv__fGCdIHs78,5055
6431
6431
  onnx/tools/replace_constants.py,sha256=-CKmbtN4oqaOiPBKQoiilFMBlAPyhRGyCK0ZrcdH2FQ,15272
6432
6432
  onnx/tools/update_model_dims.py,sha256=_18ze7JC_En-IC6SX3zHNhIFABaJa7vc5wsAEc9ygdg,3528
6433
6433
  onnx/version_converter/BaseConverter.h,sha256=VeziFFvwvPKyaCwuTtb6gtN3kAzFXOVxHiFsoBUBC5c,3853
@@ -6476,9 +6476,9 @@ onnx/version_converter/adapters/upsample_6_7.h,sha256=vHwjsHvCw3d5d4rE1UZBSI_EyG
6476
6476
  onnx/version_converter/adapters/upsample_8_9.h,sha256=a3U4oqwTt8gJXR2bf1d0LgOjjOg0JobuinpE-QBC4Fg,1334
6477
6477
  onnx/version_converter/adapters/upsample_9_10.h,sha256=J5xRPJQ6mTpLCV1yp6LaEoTaXghP9FhTFS-IAxRi5rs,1112
6478
6478
  onnx/version_converter/adapters/upsample_9_8.h,sha256=miIzjt52ofR78p3TAi5V9mQWUG8EZy8ExKsilj5SSvY,2598
6479
- onnx-1.16.0.dist-info/LICENSE,sha256=Pd-b5cKP4n2tFDpdx27qJSIq0d1ok0oEcGTlbtL6QMU,11560
6480
- onnx-1.16.0.dist-info/METADATA,sha256=_t3j5FnAt2iP3zQt3PJAPE3JjWZ7xkQxMtarnORIJUc,16842
6481
- onnx-1.16.0.dist-info/WHEEL,sha256=J4VEqyL9z1mLE9UmMSsP54FoLo18dqSe_E9pRPZ-IbI,96
6482
- onnx-1.16.0.dist-info/entry_points.txt,sha256=kI2A5Kl3HXkb7WkSIlcynOx46XYhwXcFVJlmwL58mPk,156
6483
- onnx-1.16.0.dist-info/top_level.txt,sha256=fok5iu7rojicZZye7lCMdLme_jvte9jjDqYyhL0Kg6E,5
6484
- onnx-1.16.0.dist-info/RECORD,,
6479
+ onnx-1.16.2.dist-info/LICENSE,sha256=Pd-b5cKP4n2tFDpdx27qJSIq0d1ok0oEcGTlbtL6QMU,11560
6480
+ onnx-1.16.2.dist-info/METADATA,sha256=CZEVY9JSRVgMevXirUNIcT4fetxXnNPiH7hesgDEjd4,16842
6481
+ onnx-1.16.2.dist-info/WHEEL,sha256=RGwqtRvW_oOsMMUOIYl69Nqx1L0RT5kPQtdYJzAVFx8,95
6482
+ onnx-1.16.2.dist-info/entry_points.txt,sha256=kI2A5Kl3HXkb7WkSIlcynOx46XYhwXcFVJlmwL58mPk,156
6483
+ onnx-1.16.2.dist-info/top_level.txt,sha256=fok5iu7rojicZZye7lCMdLme_jvte9jjDqYyhL0Kg6E,5
6484
+ onnx-1.16.2.dist-info/RECORD,,
@@ -1,5 +1,5 @@
1
1
  Wheel-Version: 1.0
2
- Generator: bdist_wheel (0.43.0)
2
+ Generator: setuptools (72.1.0)
3
3
  Root-Is-Purelib: false
4
4
  Tag: cp39-cp39-win32
5
5
 
File without changes