onnx 1.16.0__cp38-cp38-win32.whl → 1.16.2__cp38-cp38-win32.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of onnx might be problematic. Click here for more details.
- onnx/backend/test/case/node/dequantizelinear.py +2 -2
- onnx/backend/test/case/node/quantizelinear.py +4 -4
- onnx/backend/test/data/node/test_dequantizelinear_int4/test_data_set_0/input_2.pb +1 -2
- onnx/backend/test/data/node/test_dequantizelinear_uint4/test_data_set_0/input_2.pb +1 -2
- onnx/backend/test/data/node/test_quantizelinear_e4m3fn/test_data_set_0/input_2.pb +0 -0
- onnx/backend/test/data/node/test_quantizelinear_e5m2/test_data_set_0/input_2.pb +0 -0
- onnx/backend/test/data/node/test_quantizelinear_int4/test_data_set_0/input_2.pb +1 -2
- onnx/backend/test/data/node/test_quantizelinear_uint4/test_data_set_0/input_2.pb +1 -2
- onnx/backend/test/runner/__init__.py +1 -3
- onnx/common/version.h +1 -1
- onnx/defs/math/old.cc +7 -2
- onnx/defs/quantization/defs.cc +3 -0
- onnx/defs/quantization/old.cc +3 -1
- onnx/defs/tensor/old.cc +3 -3
- onnx/hub.py +9 -7
- onnx/onnx_cpp2py_export.cp38-win32.pyd +0 -0
- onnx/shape_inference/implementation.cc +18 -18
- onnx/tools/net_drawer.py +1 -1
- onnx/utils.py +63 -0
- onnx/version.py +2 -2
- {onnx-1.16.0.dist-info → onnx-1.16.2.dist-info}/METADATA +2 -2
- {onnx-1.16.0.dist-info → onnx-1.16.2.dist-info}/RECORD +26 -26
- {onnx-1.16.0.dist-info → onnx-1.16.2.dist-info}/WHEEL +1 -1
- {onnx-1.16.0.dist-info → onnx-1.16.2.dist-info}/LICENSE +0 -0
- {onnx-1.16.0.dist-info → onnx-1.16.2.dist-info}/entry_points.txt +0 -0
- {onnx-1.16.0.dist-info → onnx-1.16.2.dist-info}/top_level.txt +0 -0
|
@@ -202,7 +202,7 @@ class DequantizeLinear(Base):
|
|
|
202
202
|
# scalar zero point and scale
|
|
203
203
|
x = make_tensor("x", TensorProto.UINT4, [5], [0, 1, 7, 10, 15])
|
|
204
204
|
x_scale = np.float32(2)
|
|
205
|
-
x_zero_point = make_tensor("
|
|
205
|
+
x_zero_point = make_tensor("x_zero_point", TensorProto.UINT4, (1,), [1])
|
|
206
206
|
y = np.array([-2, 0, 12, 18, 28], dtype=np.float32)
|
|
207
207
|
|
|
208
208
|
expect(
|
|
@@ -224,7 +224,7 @@ class DequantizeLinear(Base):
|
|
|
224
224
|
# scalar zero point and scale
|
|
225
225
|
x = make_tensor("x", TensorProto.INT4, [5], [0, 1, 7, -4, -8])
|
|
226
226
|
x_scale = np.float32(2)
|
|
227
|
-
x_zero_point = make_tensor("
|
|
227
|
+
x_zero_point = make_tensor("x_zero_point", TensorProto.INT4, (1,), [1])
|
|
228
228
|
y = np.array([-2, 0, 12, -10, -18], dtype=np.float32)
|
|
229
229
|
|
|
230
230
|
expect(
|
|
@@ -73,7 +73,7 @@ class QuantizeLinear(Base):
|
|
|
73
73
|
|
|
74
74
|
x = np.array([0.0, 1.0, 2.0, 100000.0, 200.0]).astype(np.float32)
|
|
75
75
|
y_scale = np.float32(2)
|
|
76
|
-
y_zero_point = make_tensor("
|
|
76
|
+
y_zero_point = make_tensor("y_zero_point", TensorProto.FLOAT8E4M3FN, [1], [0])
|
|
77
77
|
y = make_tensor("y", TensorProto.FLOAT8E4M3FN, [5], [0, 0.5, 1, 448, 96])
|
|
78
78
|
|
|
79
79
|
expect(
|
|
@@ -93,7 +93,7 @@ class QuantizeLinear(Base):
|
|
|
93
93
|
|
|
94
94
|
x = np.array([0.0, 1.0, 2.0, 100000.0, 200.0]).astype(np.float32)
|
|
95
95
|
y_scale = np.float32(2)
|
|
96
|
-
y_zero_point = make_tensor("
|
|
96
|
+
y_zero_point = make_tensor("y_zero_point", TensorProto.FLOAT8E5M2, [1], [0.0])
|
|
97
97
|
y = make_tensor("y", TensorProto.FLOAT8E5M2, [5], [0, 0.5, 1, 49152, 96])
|
|
98
98
|
|
|
99
99
|
expect(
|
|
@@ -230,7 +230,7 @@ class QuantizeLinear(Base):
|
|
|
230
230
|
|
|
231
231
|
y_scale = np.asarray([2.0, 3.0, 4.0], dtype=np.float32)
|
|
232
232
|
y_zero_point = make_tensor(
|
|
233
|
-
"
|
|
233
|
+
"y_zero_point", TensorProto.UINT4, y_scale.shape, np.ones_like(y_scale)
|
|
234
234
|
)
|
|
235
235
|
y = make_tensor(
|
|
236
236
|
"y", TensorProto.UINT4, x.shape, [1, 2, 3, 5, -1, -1, 3, 4, 4, 5, 5, 11]
|
|
@@ -262,7 +262,7 @@ class QuantizeLinear(Base):
|
|
|
262
262
|
|
|
263
263
|
y_scale = np.asarray([2.0, 3.0, 4.0], dtype=np.float32)
|
|
264
264
|
y_zero_point = make_tensor(
|
|
265
|
-
"
|
|
265
|
+
"y_zero_point", TensorProto.INT4, y_scale.shape, np.ones_like(y_scale)
|
|
266
266
|
)
|
|
267
267
|
y = make_tensor(
|
|
268
268
|
"y", TensorProto.INT4, x.shape, [1, 2, 3, 5, -8, -6, 3, 4, 4, 5, 5, 7]
|
|
@@ -1,2 +1 @@
|
|
|
1
|
-
*B
|
|
2
|
-
zero_point
|
|
1
|
+
*Bx_zero_point
|
|
@@ -1,2 +1 @@
|
|
|
1
|
-
*B
|
|
2
|
-
zero_point
|
|
1
|
+
*Bx_zero_point
|
|
Binary file
|
|
Binary file
|
|
@@ -1,2 +1 @@
|
|
|
1
|
-
*B
|
|
2
|
-
zero_point
|
|
1
|
+
*By_zero_point
|
|
@@ -1,2 +1 @@
|
|
|
1
|
-
*B
|
|
2
|
-
zero_point
|
|
1
|
+
*By_zero_point
|
|
@@ -10,7 +10,6 @@ import os
|
|
|
10
10
|
import re
|
|
11
11
|
import shutil
|
|
12
12
|
import sys
|
|
13
|
-
import tarfile
|
|
14
13
|
import tempfile
|
|
15
14
|
import time
|
|
16
15
|
import unittest
|
|
@@ -238,8 +237,7 @@ class Runner:
|
|
|
238
237
|
)
|
|
239
238
|
urlretrieve(model_test.url, download_file.name)
|
|
240
239
|
print("Done")
|
|
241
|
-
|
|
242
|
-
t.extractall(models_dir)
|
|
240
|
+
onnx.utils._extract_model_safe(download_file.name, models_dir)
|
|
243
241
|
except Exception as e:
|
|
244
242
|
print(f"Failed to prepare data for model {model_test.model_name}: {e}")
|
|
245
243
|
raise
|
onnx/common/version.h
CHANGED
onnx/defs/math/old.cc
CHANGED
|
@@ -2322,10 +2322,15 @@ ONNX_OPERATOR_SET_SCHEMA(
|
|
|
2322
2322
|
auto transBAttr = ctx.getAttribute("transB");
|
|
2323
2323
|
bool transB = transBAttr ? static_cast<int>(transBAttr->i()) != 0 : false;
|
|
2324
2324
|
|
|
2325
|
+
checkInputRank(ctx, 0, 2);
|
|
2326
|
+
checkInputRank(ctx, 1, 2);
|
|
2327
|
+
|
|
2328
|
+
auto& first_input_shape = getInputShape(ctx, 0);
|
|
2329
|
+
auto& second_input_shape = getInputShape(ctx, 1);
|
|
2325
2330
|
*ctx.getOutputType(0)->mutable_tensor_type()->mutable_shape()->add_dim() =
|
|
2326
|
-
|
|
2331
|
+
first_input_shape.dim(transA ? 1 : 0);
|
|
2327
2332
|
*ctx.getOutputType(0)->mutable_tensor_type()->mutable_shape()->add_dim() =
|
|
2328
|
-
|
|
2333
|
+
second_input_shape.dim(transB ? 0 : 1);
|
|
2329
2334
|
} else if (
|
|
2330
2335
|
hasInputShape(ctx, 2) &&
|
|
2331
2336
|
(!ctx.getAttribute("broadcast") || static_cast<int>(ctx.getAttribute("broadcast")->i()) == 0)) {
|
onnx/defs/quantization/defs.cc
CHANGED
|
@@ -200,6 +200,9 @@ ONNX_OPERATOR_SET_SCHEMA(
|
|
|
200
200
|
.SetDoc(DequantizeLinear_ver21_doc)
|
|
201
201
|
.TypeAndShapeInferenceFunction([](ONNX_NAMESPACE::InferenceContext& ctx) {
|
|
202
202
|
propagateElemTypeFromInputToOutput(ctx, 1, 0);
|
|
203
|
+
if (!hasInputShape(ctx, 0)) {
|
|
204
|
+
return;
|
|
205
|
+
}
|
|
203
206
|
auto& input_shape = getInputShape(ctx, 0);
|
|
204
207
|
updateOutputShape(ctx, 0, input_shape);
|
|
205
208
|
}));
|
onnx/defs/quantization/old.cc
CHANGED
|
@@ -130,6 +130,9 @@ ONNX_OPERATOR_SET_SCHEMA(
|
|
|
130
130
|
.SetDoc(DequantizeLinear_ver19_doc)
|
|
131
131
|
.TypeAndShapeInferenceFunction([](ONNX_NAMESPACE::InferenceContext& ctx) {
|
|
132
132
|
propagateElemTypeFromInputToOutput(ctx, 1, 0);
|
|
133
|
+
if (!hasInputShape(ctx, 0)) {
|
|
134
|
+
return;
|
|
135
|
+
}
|
|
133
136
|
auto& input_shape = getInputShape(ctx, 0);
|
|
134
137
|
updateOutputShape(ctx, 0, input_shape);
|
|
135
138
|
}));
|
|
@@ -181,7 +184,6 @@ ONNX_OPERATOR_SET_SCHEMA(
|
|
|
181
184
|
if (!hasInputShape(ctx, 0)) {
|
|
182
185
|
return;
|
|
183
186
|
}
|
|
184
|
-
|
|
185
187
|
auto& input_shape = getInputShape(ctx, 0);
|
|
186
188
|
updateOutputShape(ctx, 0, input_shape);
|
|
187
189
|
}));
|
onnx/defs/tensor/old.cc
CHANGED
|
@@ -1380,7 +1380,7 @@ ONNX_OPERATOR_SET_SCHEMA(
|
|
|
1380
1380
|
|
|
1381
1381
|
static const char* Slice_ver11_doc = R"DOC(
|
|
1382
1382
|
Produces a slice of the input tensor along multiple axes. Similar to numpy:
|
|
1383
|
-
https://
|
|
1383
|
+
https://numpy.org/doc/stable/reference/routines.indexing.html
|
|
1384
1384
|
Slices uses `starts`, `ends`, `axes` and `steps` inputs to specify the start and end
|
|
1385
1385
|
dimension and step for each axis in the list of axes, it uses this information to
|
|
1386
1386
|
slice the input `data` tensor. If a negative value is passed for any of the
|
|
@@ -4443,7 +4443,7 @@ ONNX_OPERATOR_SET_SCHEMA(
|
|
|
4443
4443
|
|
|
4444
4444
|
static const char* Slice_ver1_doc = R"DOC(
|
|
4445
4445
|
Produces a slice of the input tensor along multiple axes. Similar to numpy:
|
|
4446
|
-
https://
|
|
4446
|
+
https://numpy.org/doc/stable/reference/routines.indexing.html
|
|
4447
4447
|
Slices uses `axes`, `starts` and `ends` attributes to specify the start and end
|
|
4448
4448
|
dimension for each axis in the list of axes, it uses this information to
|
|
4449
4449
|
slice the input `data` tensor. If a negative value is passed for any of the
|
|
@@ -4559,7 +4559,7 @@ ONNX_OPERATOR_SET_SCHEMA(
|
|
|
4559
4559
|
|
|
4560
4560
|
static const char* Slice_ver10_doc = R"DOC(
|
|
4561
4561
|
Produces a slice of the input tensor along multiple axes. Similar to numpy:
|
|
4562
|
-
https://
|
|
4562
|
+
https://numpy.org/doc/stable/reference/routines.indexing.html
|
|
4563
4563
|
Slices uses `starts`, `ends`, `axes` and `steps` inputs to specify the start and end
|
|
4564
4564
|
dimension and step for each axis in the list of axes, it uses this information to
|
|
4565
4565
|
slice the input `data` tensor. If a negative value is passed for any of the
|
onnx/hub.py
CHANGED
|
@@ -9,7 +9,6 @@ import hashlib
|
|
|
9
9
|
import json
|
|
10
10
|
import os
|
|
11
11
|
import sys
|
|
12
|
-
import tarfile
|
|
13
12
|
from io import BytesIO
|
|
14
13
|
from os.path import join
|
|
15
14
|
from typing import IO, Any, Dict, List, Optional, Set, Tuple, cast
|
|
@@ -296,6 +295,7 @@ def download_model_with_test_data(
|
|
|
296
295
|
silent: bool = False,
|
|
297
296
|
) -> Optional[str]:
|
|
298
297
|
"""Downloads a model along with test data by name from the onnx model hub and returns the directory to which the files have been extracted.
|
|
298
|
+
Users are responsible for making sure the model comes from a trusted source, and the data is safe to be extracted.
|
|
299
299
|
|
|
300
300
|
Args:
|
|
301
301
|
model: The name of the onnx model in the manifest. This field is
|
|
@@ -361,12 +361,14 @@ def download_model_with_test_data(
|
|
|
361
361
|
"download the model from the model hub."
|
|
362
362
|
)
|
|
363
363
|
|
|
364
|
-
with
|
|
365
|
-
|
|
366
|
-
|
|
367
|
-
|
|
368
|
-
|
|
369
|
-
|
|
364
|
+
# FIXME: Avoid index manipulation with magic numbers,
|
|
365
|
+
# remove ".tar.gz"
|
|
366
|
+
local_model_with_data_dir_path = local_model_with_data_path[
|
|
367
|
+
0 : len(local_model_with_data_path) - 7
|
|
368
|
+
]
|
|
369
|
+
onnx.utils._extract_model_safe(
|
|
370
|
+
local_model_with_data_path, local_model_with_data_dir_path
|
|
371
|
+
)
|
|
370
372
|
model_with_data_path = (
|
|
371
373
|
local_model_with_data_dir_path
|
|
372
374
|
+ "/"
|
|
Binary file
|
|
@@ -488,29 +488,29 @@ class ShapeInferenceImplBase {
|
|
|
488
488
|
ProcessCall(n, *(iter->second), ctx);
|
|
489
489
|
} else {
|
|
490
490
|
has_unsupported_op = true;
|
|
491
|
+
return;
|
|
491
492
|
}
|
|
492
493
|
} else {
|
|
493
494
|
has_unsupported_op = true;
|
|
495
|
+
return;
|
|
494
496
|
}
|
|
495
|
-
|
|
496
|
-
|
|
497
|
-
|
|
498
|
-
|
|
499
|
-
|
|
500
|
-
|
|
501
|
-
|
|
502
|
-
|
|
503
|
-
|
|
504
|
-
|
|
505
|
-
if (
|
|
506
|
-
|
|
507
|
-
|
|
508
|
-
"Container for generated shape data cannot be nullptr when enable_data_propagation option is set.");
|
|
509
|
-
}
|
|
510
|
-
DataPropagationContextImpl data_propagation_ctx(
|
|
511
|
-
n, value_types_by_name, input_data_by_name, *generated_shape_data_by_name);
|
|
512
|
-
schema->GetDataPropagationFunction()(data_propagation_ctx);
|
|
497
|
+
for (int i = 0; i < n.output_size(); ++i) {
|
|
498
|
+
// skip type and shape propagation for missing optional outputs.
|
|
499
|
+
if (!n.output(i).empty())
|
|
500
|
+
UpdateType(n.output(i), ctx.getOutputType(i));
|
|
501
|
+
}
|
|
502
|
+
// Constant values are tracked to improve inference/checking for subsequent nodes.
|
|
503
|
+
ProcessConstant(n);
|
|
504
|
+
// If data-propagation is enabled, partial-evaluation (aka data-propagation) is performed
|
|
505
|
+
// to improve inference/checking for subsequent nodes.
|
|
506
|
+
if (options.enable_data_propagation && schema && schema->has_data_propagation_function()) {
|
|
507
|
+
if (generated_shape_data_by_name == nullptr) {
|
|
508
|
+
fail_shape_inference(
|
|
509
|
+
"Container for generated shape data cannot be nullptr when enable_data_propagation option is set.");
|
|
513
510
|
}
|
|
511
|
+
DataPropagationContextImpl data_propagation_ctx(
|
|
512
|
+
n, value_types_by_name, input_data_by_name, *generated_shape_data_by_name);
|
|
513
|
+
schema->GetDataPropagationFunction()(data_propagation_ctx);
|
|
514
514
|
}
|
|
515
515
|
}
|
|
516
516
|
ONNX_CATCH(const ONNX_NAMESPACE::InferenceError& ex) {
|
onnx/tools/net_drawer.py
CHANGED
|
@@ -3,7 +3,7 @@
|
|
|
3
3
|
# SPDX-License-Identifier: Apache-2.0
|
|
4
4
|
# A library and utility for drawing ONNX nets. Most of this implementation has
|
|
5
5
|
# been borrowed from the caffe2 implementation
|
|
6
|
-
# https://github.com/pytorch/pytorch/blob/
|
|
6
|
+
# https://github.com/pytorch/pytorch/blob/v2.3.1/caffe2/python/net_drawer.py
|
|
7
7
|
#
|
|
8
8
|
# The script takes two required arguments:
|
|
9
9
|
# -input: a path to a serialized ModelProto .pb file.
|
onnx/utils.py
CHANGED
|
@@ -4,6 +4,7 @@
|
|
|
4
4
|
from __future__ import annotations
|
|
5
5
|
|
|
6
6
|
import os
|
|
7
|
+
import tarfile
|
|
7
8
|
|
|
8
9
|
import onnx.checker
|
|
9
10
|
import onnx.helper
|
|
@@ -212,3 +213,65 @@ def extract_model(
|
|
|
212
213
|
onnx.save(extracted, output_path)
|
|
213
214
|
if check_model:
|
|
214
215
|
onnx.checker.check_model(output_path)
|
|
216
|
+
|
|
217
|
+
|
|
218
|
+
def _tar_members_filter(
|
|
219
|
+
tar: tarfile.TarFile, base: str | os.PathLike
|
|
220
|
+
) -> list[tarfile.TarInfo]:
|
|
221
|
+
"""Check that the content of ``tar`` will be extracted safely
|
|
222
|
+
|
|
223
|
+
Args:
|
|
224
|
+
tar: The tarball file
|
|
225
|
+
base: The directory where the tarball will be extracted
|
|
226
|
+
|
|
227
|
+
Returns:
|
|
228
|
+
list of tarball members
|
|
229
|
+
"""
|
|
230
|
+
result = []
|
|
231
|
+
for member in tar:
|
|
232
|
+
member_path = os.path.join(base, member.name)
|
|
233
|
+
abs_base = os.path.abspath(base)
|
|
234
|
+
abs_member = os.path.abspath(member_path)
|
|
235
|
+
if not abs_member.startswith(abs_base):
|
|
236
|
+
raise RuntimeError(
|
|
237
|
+
f"The tarball member {member_path} in downloading model contains "
|
|
238
|
+
f"directory traversal sequence which may contain harmful payload."
|
|
239
|
+
)
|
|
240
|
+
elif member.issym() or member.islnk():
|
|
241
|
+
raise RuntimeError(
|
|
242
|
+
f"The tarball member {member_path} in downloading model contains "
|
|
243
|
+
f"symbolic links which may contain harmful payload."
|
|
244
|
+
)
|
|
245
|
+
result.append(member)
|
|
246
|
+
return result
|
|
247
|
+
|
|
248
|
+
|
|
249
|
+
def _extract_model_safe(
|
|
250
|
+
model_tar_path: str | os.PathLike, local_model_with_data_dir_path: str | os.PathLike
|
|
251
|
+
) -> None:
|
|
252
|
+
"""Safely extracts a tar file to a specified directory.
|
|
253
|
+
|
|
254
|
+
This function ensures that the extraction process mitigates against
|
|
255
|
+
directory traversal vulnerabilities by validating or sanitizing paths
|
|
256
|
+
within the tar file. It also provides compatibility for different versions
|
|
257
|
+
of the tarfile module by checking for the availability of certain attributes
|
|
258
|
+
or methods before invoking them.
|
|
259
|
+
|
|
260
|
+
Args:
|
|
261
|
+
model_tar_path: The path to the tar file to be extracted.
|
|
262
|
+
local_model_with_data_dir_path: The directory path where the tar file
|
|
263
|
+
contents will be extracted to.
|
|
264
|
+
"""
|
|
265
|
+
with tarfile.open(model_tar_path) as model_with_data_zipped:
|
|
266
|
+
# Mitigate tarball directory traversal risks
|
|
267
|
+
if hasattr(tarfile, "data_filter"):
|
|
268
|
+
model_with_data_zipped.extractall(
|
|
269
|
+
path=local_model_with_data_dir_path, filter="data"
|
|
270
|
+
)
|
|
271
|
+
else:
|
|
272
|
+
model_with_data_zipped.extractall(
|
|
273
|
+
path=local_model_with_data_dir_path,
|
|
274
|
+
members=_tar_members_filter(
|
|
275
|
+
model_with_data_zipped, local_model_with_data_dir_path
|
|
276
|
+
),
|
|
277
|
+
)
|
onnx/version.py
CHANGED
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.1
|
|
2
2
|
Name: onnx
|
|
3
|
-
Version: 1.16.
|
|
3
|
+
Version: 1.16.2
|
|
4
4
|
Summary: Open Neural Network Exchange
|
|
5
5
|
Author-email: ONNX Contributors <onnx-technical-discuss@lists.lfaidata.foundation>
|
|
6
6
|
License: Apache License v2.0
|
|
@@ -14,7 +14,7 @@ Requires-Dist: numpy >=1.20
|
|
|
14
14
|
Requires-Dist: protobuf >=3.20.2
|
|
15
15
|
Provides-Extra: reference
|
|
16
16
|
Requires-Dist: google-re2 ; extra == 'reference'
|
|
17
|
-
Requires-Dist:
|
|
17
|
+
Requires-Dist: pillow ; extra == 'reference'
|
|
18
18
|
|
|
19
19
|
<!--
|
|
20
20
|
Copyright (c) ONNX Project Contributors
|
|
@@ -7,7 +7,7 @@ onnx/cpp2py_export.cc,sha256=ffp_Z2wm5ABVrMi3OLIg086E1y1RRuN5rnOSqghIR-E,31228
|
|
|
7
7
|
onnx/external_data_helper.py,sha256=teW0FLi_knNys0oA7pNL2znlUuD_cftOPVvwxqQ89qg,11910
|
|
8
8
|
onnx/gen_proto.py,sha256=s21pPEC_HKO2_A0B0QPvcPHt7D-L3vr9n9LNexMuQYs,8887
|
|
9
9
|
onnx/helper.py,sha256=ZlBHegNB76eElEjzbHZeLWOtj7IE52MQql90JzaOF5E,55671
|
|
10
|
-
onnx/hub.py,sha256=
|
|
10
|
+
onnx/hub.py,sha256=j7LiqxwN_guK3AlU_e-8RCfcZYPnI73USkCbf6WlQ-Y,18398
|
|
11
11
|
onnx/inliner.py,sha256=Ukl3lPP9lC-lUNr2jQzwNZt6g0MPPcNUlxjEHKZbYPk,1772
|
|
12
12
|
onnx/mapping.py,sha256=EEOhJsiUtONiin34fkMInjdOjtqTm3R_wsoNeDeC-W4,8457
|
|
13
13
|
onnx/model_container.py,sha256=aXpLqFjZF2RbjbUni04xYtwVLxG1pr6YYXWx_zz_Pko,13104
|
|
@@ -22,7 +22,7 @@ onnx/onnx-operators.proto,sha256=JQbdYTnvJhfQrFk82zzzEKpokcOUujZ4QBKqvSJNBLU,543
|
|
|
22
22
|
onnx/onnx-operators_pb.h,sha256=vlw2jzH5sZfKNzs6x4f34-riKuXPy9PjXbo8ZvOx068,202
|
|
23
23
|
onnx/onnx.in.proto,sha256=XTWpwFI3cPFVEn4owXCId3oK6s6wdIIUB4TQCzyzgJE,38526
|
|
24
24
|
onnx/onnx.proto,sha256=mej19HPF15gUvT_6r6hbxI3x7Mxc9pR-Crm7rR9cvnA,38116
|
|
25
|
-
onnx/onnx_cpp2py_export.cp38-win32.pyd,sha256=
|
|
25
|
+
onnx/onnx_cpp2py_export.cp38-win32.pyd,sha256=2BqceEZJSpEWtyRWhdfmGGUHNr2ny6_bQFf949ykNwA,2504704
|
|
26
26
|
onnx/onnx_data_pb.py,sha256=Czjgcf0pv2Vk_mBsch2sG4bYkzRpNG1efzhhdEilN8I,94
|
|
27
27
|
onnx/onnx_data_pb2.py,sha256=YuJmAGmOGE_ClfmD9Gbbc1qn9_FzOMDH61e7ay9t5xw,2894
|
|
28
28
|
onnx/onnx_data_pb2.pyi,sha256=VTSip9Evt2RqdKpntIo6G9LVASJVfc6zJ-yy-T4kW_o,4682
|
|
@@ -42,8 +42,8 @@ onnx/serialization.py,sha256=kDFNFRgel53rW0V9ZS-tG5G0PV9Rms60TsOxbNOs1IM,8069
|
|
|
42
42
|
onnx/shape_inference.py,sha256=eiCtyo0v5MR2JQIIe5lTk1E6pwxKgH-hhhpkbLJASrw,5951
|
|
43
43
|
onnx/string_utils.h,sha256=jAFGm8XyB3PwvijH-0Cni_83gu1rfXQ7v16OGyPeuMU,1337
|
|
44
44
|
onnx/subbyte.py,sha256=wYA14-QUhRWD829f-8cxPviSjffUb19rCJSuXIDdIfg,2361
|
|
45
|
-
onnx/utils.py,sha256=
|
|
46
|
-
onnx/version.py,sha256=
|
|
45
|
+
onnx/utils.py,sha256=9ZbcvkYF9r849WoN4OSW55D6g4aNts9hcpKsLlPnT-o,11033
|
|
46
|
+
onnx/version.py,sha256=V0os880BSkJTppWygfb6v6uUXpl0OrHRwpYMhDQ6GYQ,134
|
|
47
47
|
onnx/version_converter.py,sha256=Qi0hGuU45xf8rD8E7W8f9MVgZiGIrPU5lzl2bOX6gG4,1274
|
|
48
48
|
onnx/backend/__init__.py,sha256=HiuD-U6YHJwWikkemKJqBq-35U8KJ9LDdAwdisi7OlQ,85
|
|
49
49
|
onnx/backend/base.py,sha256=myXeAXXVI31c_lcqxeAJNK3dRFncuJox2N55rTGANZ4,4680
|
|
@@ -109,7 +109,7 @@ onnx/backend/test/case/node/cosh.py,sha256=paohiM1-bYV3Uq5AeXM1MCXW_kPPabXA6vG7h
|
|
|
109
109
|
onnx/backend/test/case/node/cumsum.py,sha256=dtoV_Rg1opPwMpx-jW6ItihP8roPkn5Ymp0brSt5jOQ,3482
|
|
110
110
|
onnx/backend/test/case/node/deformconv.py,sha256=0kKFJlA45N3OE4YuSr_abaYqIXyDYEAnoEmiO1SyTKw,5647
|
|
111
111
|
onnx/backend/test/case/node/depthtospace.py,sha256=UEryt7YdGewSq0dD5yzN5EVul5yOBkjaUFna9bt2h2Q,3632
|
|
112
|
-
onnx/backend/test/case/node/dequantizelinear.py,sha256=
|
|
112
|
+
onnx/backend/test/case/node/dequantizelinear.py,sha256=0J7b5SaFatZoc6GaNVtLg1pIMhAm1Ly1KPiU7Vad68k,9408
|
|
113
113
|
onnx/backend/test/case/node/det.py,sha256=aYZlgjZu0qmYUuuv6-6lZ4tW9CHr2PS6VU3wAL9KJ-U,1012
|
|
114
114
|
onnx/backend/test/case/node/dft.py,sha256=tGoOa57NJWSJk8i6BFs1tQk-1YPp5xFVha-TNqYR0iE,3407
|
|
115
115
|
onnx/backend/test/case/node/div.py,sha256=ae1QwxAnnhDkISGSWNDVNsScveoTTYDkqSRSYLWuro0,1475
|
|
@@ -184,7 +184,7 @@ onnx/backend/test/case/node/pow.py,sha256=mqZTB3aExWI77NHZMD5pa0fb0iTsSrVuVoYTZt
|
|
|
184
184
|
onnx/backend/test/case/node/prelu.py,sha256=2mc_P13n4GYWE50wcvIhNoyIxmppmrBqq0et5O5ZEck,1160
|
|
185
185
|
onnx/backend/test/case/node/qlinearconv.py,sha256=NcqkNkS24rCnTDHpLTePunkIwSdHt6mAlNLGF800oEY,2341
|
|
186
186
|
onnx/backend/test/case/node/qlinearmatmul.py,sha256=liNk0Jzth3BWDJVp1PAOFWqHToB-KsvqN0CQVqwKo7U,5676
|
|
187
|
-
onnx/backend/test/case/node/quantizelinear.py,sha256=
|
|
187
|
+
onnx/backend/test/case/node/quantizelinear.py,sha256=xWfKAQmAmYePK_vkbShRm7D4gJ3QzD1o4BUlv9hMPhI,11292
|
|
188
188
|
onnx/backend/test/case/node/rangeop.py,sha256=p7Lz1xygHPHRUrfInf5FS2RBMhFL67kdLbyQxvxE2Ls,1491
|
|
189
189
|
onnx/backend/test/case/node/reciprocal.py,sha256=34LwMciBx7lM5-KpzaDSCa5dL3VXblfLVpwoF8N1_48,782
|
|
190
190
|
onnx/backend/test/case/node/reduce_log_sum.py,sha256=ons-ZqpqnpNaCkk2bUwVu-Di7i0MTeBfKL_fWMn1n8M,3159
|
|
@@ -1489,7 +1489,7 @@ onnx/backend/test/data/node/test_dequantizelinear_int16/test_data_set_0/output_0
|
|
|
1489
1489
|
onnx/backend/test/data/node/test_dequantizelinear_int4/model.onnx,sha256=9LK35NYKjHLC6JmUJVZSXxI7vCSfoVOyZvVCxLwu4L8,196
|
|
1490
1490
|
onnx/backend/test/data/node/test_dequantizelinear_int4/test_data_set_0/input_0.pb,sha256=8w_hl7JvcDysb07OiHDWHUWGW-hOCSWr8h5wywBEbS0,21
|
|
1491
1491
|
onnx/backend/test/data/node/test_dequantizelinear_int4/test_data_set_0/input_1.pb,sha256=qN7egCoW3Tix8QKnMxT243blKL-WqkjKisULKpcdBdY,17
|
|
1492
|
-
onnx/backend/test/data/node/test_dequantizelinear_int4/test_data_set_0/input_2.pb,sha256=
|
|
1492
|
+
onnx/backend/test/data/node/test_dequantizelinear_int4/test_data_set_0/input_2.pb,sha256=GxHG9IjbNdY0hTEZRYeNssvlZnFbX4ouLHJww6ODDzg,21
|
|
1493
1493
|
onnx/backend/test/data/node/test_dequantizelinear_int4/test_data_set_0/output_0.pb,sha256=AB-QMRL0DZclEXLlbWVi-ti0NMUhxGgqeAKzRFgL-rM,29
|
|
1494
1494
|
onnx/backend/test/data/node/test_dequantizelinear_uint16/model.onnx,sha256=z3gpBXrtiijpDEjhgO8EFJWJR4_EZBJ8ei1dpUPMca0,181
|
|
1495
1495
|
onnx/backend/test/data/node/test_dequantizelinear_uint16/test_data_set_0/input_0.pb,sha256=lXtHv2NCkXFokLmUC4XcHZ0KObiQXiRreUIK-COCeLU,17
|
|
@@ -1499,7 +1499,7 @@ onnx/backend/test/data/node/test_dequantizelinear_uint16/test_data_set_0/output_
|
|
|
1499
1499
|
onnx/backend/test/data/node/test_dequantizelinear_uint4/model.onnx,sha256=doOZg8lFykcn-ZiGUM7t9eNIe8AXSPsFvhE_q9pNKmw,197
|
|
1500
1500
|
onnx/backend/test/data/node/test_dequantizelinear_uint4/test_data_set_0/input_0.pb,sha256=DujJO55o1k-7hYjfqgLjHUHvFWS9ME3xYq410pSWAPk,13
|
|
1501
1501
|
onnx/backend/test/data/node/test_dequantizelinear_uint4/test_data_set_0/input_1.pb,sha256=qN7egCoW3Tix8QKnMxT243blKL-WqkjKisULKpcdBdY,17
|
|
1502
|
-
onnx/backend/test/data/node/test_dequantizelinear_uint4/test_data_set_0/input_2.pb,sha256=
|
|
1502
|
+
onnx/backend/test/data/node/test_dequantizelinear_uint4/test_data_set_0/input_2.pb,sha256=Uy6DIdWiaShjYZoqvhZytFOW-nrnkq_jDxhSya5GM1Q,21
|
|
1503
1503
|
onnx/backend/test/data/node/test_dequantizelinear_uint4/test_data_set_0/output_0.pb,sha256=xQMWX_7whFxNBSm64slp3ncuglAEdprKtaQD0zkjTqI,29
|
|
1504
1504
|
onnx/backend/test/data/node/test_det_2d/model.onnx,sha256=OW5mSOi7fO6hao91GdGbPZF9JKegWWmf7ZkgSHmS4vM,84
|
|
1505
1505
|
onnx/backend/test/data/node/test_det_2d/test_data_set_0/input_0.pb,sha256=0phUVbSY99aYNDvbb4I7ZwTF4_oqB7I9Teh_3LZTlfk,27
|
|
@@ -3533,12 +3533,12 @@ onnx/backend/test/data/node/test_quantizelinear_blocked_symmetric/test_data_set_
|
|
|
3533
3533
|
onnx/backend/test/data/node/test_quantizelinear_e4m3fn/model.onnx,sha256=22nDQPV_pY3TRB34BlD_KeS8ow0yOzDZjTNotuWr18M,181
|
|
3534
3534
|
onnx/backend/test/data/node/test_quantizelinear_e4m3fn/test_data_set_0/input_0.pb,sha256=RpINE2Cg2dhwMgzJm3ZxSLDmJ1q0XwI6WmIHcL_j6Yc,29
|
|
3535
3535
|
onnx/backend/test/data/node/test_quantizelinear_e4m3fn/test_data_set_0/input_1.pb,sha256=Zv7CydImWalnvbaS5VHQ6zTXvOUCohUym_ClUIDiLJ4,17
|
|
3536
|
-
onnx/backend/test/data/node/test_quantizelinear_e4m3fn/test_data_set_0/input_2.pb,sha256=
|
|
3536
|
+
onnx/backend/test/data/node/test_quantizelinear_e4m3fn/test_data_set_0/input_2.pb,sha256=_7Vdv5427rLlWyXQDc1ya_9WSxSO8L4LZu_OHnm_FT8,21
|
|
3537
3537
|
onnx/backend/test/data/node/test_quantizelinear_e4m3fn/test_data_set_0/output_0.pb,sha256=nNu5UvmZ8mpsh_54mZqigNgGwEN8yszynDbulB-hJ5c,14
|
|
3538
3538
|
onnx/backend/test/data/node/test_quantizelinear_e5m2/model.onnx,sha256=L0yVbjM9lrwdvbAwh8mhf89aKtCJEyrgcxacdH5tcEM,179
|
|
3539
3539
|
onnx/backend/test/data/node/test_quantizelinear_e5m2/test_data_set_0/input_0.pb,sha256=RpINE2Cg2dhwMgzJm3ZxSLDmJ1q0XwI6WmIHcL_j6Yc,29
|
|
3540
3540
|
onnx/backend/test/data/node/test_quantizelinear_e5m2/test_data_set_0/input_1.pb,sha256=Zv7CydImWalnvbaS5VHQ6zTXvOUCohUym_ClUIDiLJ4,17
|
|
3541
|
-
onnx/backend/test/data/node/test_quantizelinear_e5m2/test_data_set_0/input_2.pb,sha256=
|
|
3541
|
+
onnx/backend/test/data/node/test_quantizelinear_e5m2/test_data_set_0/input_2.pb,sha256=trfI5bwzv3rDl1dqKlEM_RmOGYCac0PrHNjqYeGXxa0,21
|
|
3542
3542
|
onnx/backend/test/data/node/test_quantizelinear_e5m2/test_data_set_0/output_0.pb,sha256=Bk-NH1ZeWwTusSN6X2cuqkFjbYJ1vDxhtJZ592E76fw,14
|
|
3543
3543
|
onnx/backend/test/data/node/test_quantizelinear_int16/model.onnx,sha256=8OIsIPruUoe4aZC2anHuM4n85GsQrL2BQYfQbYOYZJo,176
|
|
3544
3544
|
onnx/backend/test/data/node/test_quantizelinear_int16/test_data_set_0/input_0.pb,sha256=VmE8fR23t887aluLk_qjxKg-S07NoLxCSje5xyEL5NI,73
|
|
@@ -3548,7 +3548,7 @@ onnx/backend/test/data/node/test_quantizelinear_int16/test_data_set_0/output_0.p
|
|
|
3548
3548
|
onnx/backend/test/data/node/test_quantizelinear_int4/model.onnx,sha256=_W9CJtKqLcm3zntWa30qryL1IGODqC8Lt-W-r4fMSR0,204
|
|
3549
3549
|
onnx/backend/test/data/node/test_quantizelinear_int4/test_data_set_0/input_0.pb,sha256=Lg7BLkDJVhKNTmTszgJp0eK_i1afP0XARGAXTfNFdeQ,59
|
|
3550
3550
|
onnx/backend/test/data/node/test_quantizelinear_int4/test_data_set_0/input_1.pb,sha256=2Pe2lcrRWP5oT1EosWg6ZOv0VcNUIPd__rMnNp0couk,27
|
|
3551
|
-
onnx/backend/test/data/node/test_quantizelinear_int4/test_data_set_0/input_2.pb,sha256=
|
|
3551
|
+
onnx/backend/test/data/node/test_quantizelinear_int4/test_data_set_0/input_2.pb,sha256=1d3dNu_2t0cVW-a0345YfmGWH3i1K_8DOgi_jg-eIdA,22
|
|
3552
3552
|
onnx/backend/test/data/node/test_quantizelinear_int4/test_data_set_0/output_0.pb,sha256=y06PaLypD_0xbr5-dsEIz-izN4v0u_LvdzH-IedZ_W0,26
|
|
3553
3553
|
onnx/backend/test/data/node/test_quantizelinear_uint16/model.onnx,sha256=Bzxw9Zgnq1uix9-HBgh_FLVkNfMG8X9RfD2iiDdOxOI,177
|
|
3554
3554
|
onnx/backend/test/data/node/test_quantizelinear_uint16/test_data_set_0/input_0.pb,sha256=HBChWZzpiiAckJ1Lx-CShRBJIZz9e-vcIp8no74kWhI,57
|
|
@@ -3558,7 +3558,7 @@ onnx/backend/test/data/node/test_quantizelinear_uint16/test_data_set_0/output_0.
|
|
|
3558
3558
|
onnx/backend/test/data/node/test_quantizelinear_uint4/model.onnx,sha256=fw0fba_Z4vNck23gKcLSd08zQkpEXxDA5uZmtiTkF_s,205
|
|
3559
3559
|
onnx/backend/test/data/node/test_quantizelinear_uint4/test_data_set_0/input_0.pb,sha256=Lg7BLkDJVhKNTmTszgJp0eK_i1afP0XARGAXTfNFdeQ,59
|
|
3560
3560
|
onnx/backend/test/data/node/test_quantizelinear_uint4/test_data_set_0/input_1.pb,sha256=2Pe2lcrRWP5oT1EosWg6ZOv0VcNUIPd__rMnNp0couk,27
|
|
3561
|
-
onnx/backend/test/data/node/test_quantizelinear_uint4/test_data_set_0/input_2.pb,sha256=
|
|
3561
|
+
onnx/backend/test/data/node/test_quantizelinear_uint4/test_data_set_0/input_2.pb,sha256=iIP2U9MJwQa9ghUcuN8tpW91KGfsrp1Q8akf22lwe2M,22
|
|
3562
3562
|
onnx/backend/test/data/node/test_quantizelinear_uint4/test_data_set_0/output_0.pb,sha256=8q530wXE297IpPg4EiJTOU3f4gDmaAuZgtD9-UT2vyM,18
|
|
3563
3563
|
onnx/backend/test/data/node/test_range_float_type_positive_delta/model.onnx,sha256=yDJm47JALZVJ9S2sTGlShf_fJRLQNqF-BYb_fTfohlo,174
|
|
3564
3564
|
onnx/backend/test/data/node/test_range_float_type_positive_delta/test_data_set_0/input_0.pb,sha256=PnwKkhwnmd5quiS20ZgN5aEPgWHukh4Z1L_5tQBqFMg,15
|
|
@@ -6037,7 +6037,7 @@ onnx/backend/test/loader/__init__.py,sha256=mngOe26IgFmbbCjFIhAyLMnPGhCZoaB7ke-r
|
|
|
6037
6037
|
onnx/backend/test/report/__init__.py,sha256=Ua3s3YmvUusUnffIyct0GnwIqFcMP_AsV5aIe1A4rLs,1261
|
|
6038
6038
|
onnx/backend/test/report/base.py,sha256=npe6vog194R-rbyVje3cIUerSkLoFzDaq5xexAGqbDk,119
|
|
6039
6039
|
onnx/backend/test/report/coverage.py,sha256=uxx9g_E6TpKakqWY_pfmU0ITIFjRDpkI8lPtu4YL9Zk,11258
|
|
6040
|
-
onnx/backend/test/runner/__init__.py,sha256=
|
|
6040
|
+
onnx/backend/test/runner/__init__.py,sha256=xPTbaxtrn_U6yroPfh2YX8wSqhBE-_ownwVka18FMgU,21850
|
|
6041
6041
|
onnx/backend/test/runner/item.py,sha256=PEJjl6K3Z-bga8IMHN3alKcweygjAMzZhSa1ChKF6C8,429
|
|
6042
6042
|
onnx/bin/__init__.py,sha256=HiuD-U6YHJwWikkemKJqBq-35U8KJ9LDdAwdisi7OlQ,85
|
|
6043
6043
|
onnx/bin/checker.py,sha256=h4tAK3SaViHUdt8nBpookLAqVNSgIHhn2jL_GeHM7m0,684
|
|
@@ -6062,7 +6062,7 @@ onnx/common/proto_util.h,sha256=U-KYW5fBs1MqmYWmtMONpw8a75SRMD7D32a8dZ4LlN0,1473
|
|
|
6062
6062
|
onnx/common/status.cc,sha256=nMqcYhcpXzyX-Ln7kZPC2EwOMbV5ssNuF6z05N6ojrw,1981
|
|
6063
6063
|
onnx/common/status.h,sha256=7x8_ZLcNIZVL7HF1ArFp03KU2PUPT6eDZRhEedelnFc,2008
|
|
6064
6064
|
onnx/common/tensor.h,sha256=tCw06bToUEkXWStd7h5n07ikpmNFadfefi0uDIW5jrw,7699
|
|
6065
|
-
onnx/common/version.h,sha256=
|
|
6065
|
+
onnx/common/version.h,sha256=aMrqfR_s_hbgqoqwXdZGkD3XeZSVBr9W7H8B4cQMpPs,308
|
|
6066
6066
|
onnx/common/visitor.h,sha256=Fn-B-0xAy0r3TEo0jh4yYrFJkBV7xZxrP94VX5AjzFI,3215
|
|
6067
6067
|
onnx/defs/__init__.py,sha256=PZ01rEheu0-GhBVbHrehi9fMoS3e9Vx4XBPGXD_DqHo,4284
|
|
6068
6068
|
onnx/defs/attr_proto_util.cc,sha256=qAGbnnDY7MvKN7nKIYl6K5f7irNeNnNJ61J67OP_TJk,3658
|
|
@@ -6102,7 +6102,7 @@ onnx/defs/image/defs.cc,sha256=TwqyFK_GbtLqanIo4ekYw9g4jp-vIlVBAe-1KWscbWA,2834
|
|
|
6102
6102
|
onnx/defs/logical/defs.cc,sha256=Tbj__KPHpdhBAk2cPAhPHdJtPrWvlGkCifJtgnGGmFc,12166
|
|
6103
6103
|
onnx/defs/logical/old.cc,sha256=3mcunnOuj4d2RAG-bjRwqJU8Eeg1qGE9OFLFOeicHUY,10334
|
|
6104
6104
|
onnx/defs/math/defs.cc,sha256=0oWGGDB4hVOQd6XNZnKZ5_RaUH_jWvbYUfsAuWTXYk0,145250
|
|
6105
|
-
onnx/defs/math/old.cc,sha256=
|
|
6105
|
+
onnx/defs/math/old.cc,sha256=zzg1j-uB0Ifhx9r-kf-i5NArZxhbq6zgj0E-6pkLAiw,133878
|
|
6106
6106
|
onnx/defs/math/utils.cc,sha256=J86Vx2b1T3zyrwxrEV2sB4vNzN9yg9i-w6cAOGgFJbk,4981
|
|
6107
6107
|
onnx/defs/math/utils.h,sha256=rL7InDv3ZROqK2tsINn70J92gsmgYdRLiYMsKEviDTg,1347
|
|
6108
6108
|
onnx/defs/nn/defs.cc,sha256=6MgRpvf0vjTpVdX6x2h0PzP0c17-QVFuKHAaN8zE0fw,128345
|
|
@@ -6111,8 +6111,8 @@ onnx/defs/object_detection/defs.cc,sha256=kke0G3Bo0WXsL1jJ9G3eauu_il6NTGZSTYBCr7
|
|
|
6111
6111
|
onnx/defs/object_detection/old.cc,sha256=Kfck4FSzoyv90IdefqN028RxGXj5syrnMHtX05vFOWI,8343
|
|
6112
6112
|
onnx/defs/optional/defs.cc,sha256=9wPzDUjtnMQVWmR_2gaXw0pNUUxI1UyDr0rlWW1fU20,6670
|
|
6113
6113
|
onnx/defs/optional/old.cc,sha256=gEVbnZiknNPPoHk5pJYfUcGQaLgxgjXaXMR2LQ6rbp4,3499
|
|
6114
|
-
onnx/defs/quantization/defs.cc,sha256=
|
|
6115
|
-
onnx/defs/quantization/old.cc,sha256=
|
|
6114
|
+
onnx/defs/quantization/defs.cc,sha256=az2b0vYdWyROAYrTfe8N8XAa61vx5WX242fLKa1CAkQ,13777
|
|
6115
|
+
onnx/defs/quantization/old.cc,sha256=n3ZFYTTIc6c6j9NTITKyXsFQpus6_obhJEq4jlxS1Nc,15703
|
|
6116
6116
|
onnx/defs/reduction/defs.cc,sha256=rHvP9SDvpIKSVD6MEm1rifZPm5Gtmm8la5_rWlanuiY,6316
|
|
6117
6117
|
onnx/defs/reduction/old.cc,sha256=cHIoo2USwB9GY7R0ANTR4m47kGZko6laiSNsURHoGVQ,19434
|
|
6118
6118
|
onnx/defs/reduction/utils.cc,sha256=Ml0jJiMwSq2pnKgHEWyfnOfiX2cqsCyL6pev2D_VeHk,6375
|
|
@@ -6121,7 +6121,7 @@ onnx/defs/rnn/defs.cc,sha256=oHWuTnER8fXzvcmd1zf61oXDIZaNo7je6wy_sqfnOFI,20092
|
|
|
6121
6121
|
onnx/defs/rnn/old.cc,sha256=HnFsXxbQIzmRR965HRB2X5vQVjpOWHNEPkpmcKkJiY0,40210
|
|
6122
6122
|
onnx/defs/sequence/defs.cc,sha256=0CGv3Oxsg9jKoXteXcCzRQ3O7_U_BkbpK9win7gSf1c,34822
|
|
6123
6123
|
onnx/defs/tensor/defs.cc,sha256=T1SMqOFZIrhTI_EziiBD0zcQck_1gdcuw5X4wy9BqcU,166662
|
|
6124
|
-
onnx/defs/tensor/old.cc,sha256=
|
|
6124
|
+
onnx/defs/tensor/old.cc,sha256=vxBKu570Tsi-aUsBeSsBBv5ZscrDE-dO6s51iEWvvcE,271732
|
|
6125
6125
|
onnx/defs/tensor/utils.cc,sha256=EYWBGwdBFu2mPG6nWnounD7fkj6qrRPX_xiW9eQuLYg,19317
|
|
6126
6126
|
onnx/defs/tensor/utils.h,sha256=NW6Bf_osOOPr7ibHPXYP7aHlU5zLn5OVzvmySHd3m4I,1855
|
|
6127
6127
|
onnx/defs/text/defs.cc,sha256=xle6eQMSIGgADF0LyWnbYAa6GXDWA4uQtopu7iuLq9o,10575
|
|
@@ -6373,7 +6373,7 @@ onnx/reference/ops/experimental/op_im2col.py,sha256=YLYL6JVcCBUdvVzq4eGrg-Q9Pvm2
|
|
|
6373
6373
|
onnx/reference/ops_optimized/__init__.py,sha256=T1nSBzjXBKSnMJzKdQxw39bYBcLj7lbO0uAx63DQkPc,274
|
|
6374
6374
|
onnx/reference/ops_optimized/op_conv_optimized.py,sha256=y0L2AfrN9yti3gRtK8Z2rAIRN7hmivQHYDZUr2ZvO4w,6608
|
|
6375
6375
|
onnx/shape_inference/attribute_binder.h,sha256=ICoFJLBC8GU1n8vEbUD8BW4p0-cuaBbRhNo7dKQ7xgY,2446
|
|
6376
|
-
onnx/shape_inference/implementation.cc,sha256=
|
|
6376
|
+
onnx/shape_inference/implementation.cc,sha256=o2yo5deO3LkxzCYzynxKOFZaHMLC5SWmwismDE3LFdQ,43668
|
|
6377
6377
|
onnx/shape_inference/implementation.h,sha256=zDEvkxX53zf1HgsymUsCfJMlxciW1yw0XzRF7_Svk40,19854
|
|
6378
6378
|
onnx/test/__init__.pyi,sha256=VW4Y59avFWUotfJT9rPS5AachoNP4rSbu2Z43Ln5Wzw,254
|
|
6379
6379
|
onnx/test/basic_test.py,sha256=ilA7YFfWJjR-8gRpzhfiMWXzcuytf2dMk3Ipg-hJ0uI,9831
|
|
@@ -6427,7 +6427,7 @@ onnx/test/version_converter/automatic_conversion_test_base.py,sha256=Kc2sTGYZY1E
|
|
|
6427
6427
|
onnx/test/version_converter/automatic_downgrade_test.py,sha256=0QSOEYy416rXaohwwroTbhKANXTyNuSjs4gd2mxN1Zs,3372
|
|
6428
6428
|
onnx/test/version_converter/automatic_upgrade_test.py,sha256=9-0xuQdYydfFDRFCK3SJZlh4HUdQad0aKa79bIJWbpk,56018
|
|
6429
6429
|
onnx/tools/__init__.py,sha256=HiuD-U6YHJwWikkemKJqBq-35U8KJ9LDdAwdisi7OlQ,85
|
|
6430
|
-
onnx/tools/net_drawer.py,sha256=
|
|
6430
|
+
onnx/tools/net_drawer.py,sha256=vAEERPpHmHvJpb-QS88JTa9UgLPbk1vv__fGCdIHs78,5055
|
|
6431
6431
|
onnx/tools/replace_constants.py,sha256=-CKmbtN4oqaOiPBKQoiilFMBlAPyhRGyCK0ZrcdH2FQ,15272
|
|
6432
6432
|
onnx/tools/update_model_dims.py,sha256=_18ze7JC_En-IC6SX3zHNhIFABaJa7vc5wsAEc9ygdg,3528
|
|
6433
6433
|
onnx/version_converter/BaseConverter.h,sha256=VeziFFvwvPKyaCwuTtb6gtN3kAzFXOVxHiFsoBUBC5c,3853
|
|
@@ -6476,9 +6476,9 @@ onnx/version_converter/adapters/upsample_6_7.h,sha256=vHwjsHvCw3d5d4rE1UZBSI_EyG
|
|
|
6476
6476
|
onnx/version_converter/adapters/upsample_8_9.h,sha256=a3U4oqwTt8gJXR2bf1d0LgOjjOg0JobuinpE-QBC4Fg,1334
|
|
6477
6477
|
onnx/version_converter/adapters/upsample_9_10.h,sha256=J5xRPJQ6mTpLCV1yp6LaEoTaXghP9FhTFS-IAxRi5rs,1112
|
|
6478
6478
|
onnx/version_converter/adapters/upsample_9_8.h,sha256=miIzjt52ofR78p3TAi5V9mQWUG8EZy8ExKsilj5SSvY,2598
|
|
6479
|
-
onnx-1.16.
|
|
6480
|
-
onnx-1.16.
|
|
6481
|
-
onnx-1.16.
|
|
6482
|
-
onnx-1.16.
|
|
6483
|
-
onnx-1.16.
|
|
6484
|
-
onnx-1.16.
|
|
6479
|
+
onnx-1.16.2.dist-info/LICENSE,sha256=Pd-b5cKP4n2tFDpdx27qJSIq0d1ok0oEcGTlbtL6QMU,11560
|
|
6480
|
+
onnx-1.16.2.dist-info/METADATA,sha256=CZEVY9JSRVgMevXirUNIcT4fetxXnNPiH7hesgDEjd4,16842
|
|
6481
|
+
onnx-1.16.2.dist-info/WHEEL,sha256=3szW57pNWqFVRic6Ma4o9j5UYGJmr9Fs-0ZX6rmK_Y4,95
|
|
6482
|
+
onnx-1.16.2.dist-info/entry_points.txt,sha256=kI2A5Kl3HXkb7WkSIlcynOx46XYhwXcFVJlmwL58mPk,156
|
|
6483
|
+
onnx-1.16.2.dist-info/top_level.txt,sha256=fok5iu7rojicZZye7lCMdLme_jvte9jjDqYyhL0Kg6E,5
|
|
6484
|
+
onnx-1.16.2.dist-info/RECORD,,
|
|
File without changes
|
|
File without changes
|
|
File without changes
|