onnx 1.16.0__cp38-cp38-win32.whl → 1.16.1__cp38-cp38-win32.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of onnx might be problematic. Click here for more details.

@@ -202,7 +202,7 @@ class DequantizeLinear(Base):
202
202
  # scalar zero point and scale
203
203
  x = make_tensor("x", TensorProto.UINT4, [5], [0, 1, 7, 10, 15])
204
204
  x_scale = np.float32(2)
205
- x_zero_point = make_tensor("zero_point", TensorProto.UINT4, (1,), [1])
205
+ x_zero_point = make_tensor("x_zero_point", TensorProto.UINT4, (1,), [1])
206
206
  y = np.array([-2, 0, 12, 18, 28], dtype=np.float32)
207
207
 
208
208
  expect(
@@ -224,7 +224,7 @@ class DequantizeLinear(Base):
224
224
  # scalar zero point and scale
225
225
  x = make_tensor("x", TensorProto.INT4, [5], [0, 1, 7, -4, -8])
226
226
  x_scale = np.float32(2)
227
- x_zero_point = make_tensor("zero_point", TensorProto.INT4, (1,), [1])
227
+ x_zero_point = make_tensor("x_zero_point", TensorProto.INT4, (1,), [1])
228
228
  y = np.array([-2, 0, 12, -10, -18], dtype=np.float32)
229
229
 
230
230
  expect(
@@ -73,7 +73,7 @@ class QuantizeLinear(Base):
73
73
 
74
74
  x = np.array([0.0, 1.0, 2.0, 100000.0, 200.0]).astype(np.float32)
75
75
  y_scale = np.float32(2)
76
- y_zero_point = make_tensor("zero_point", TensorProto.FLOAT8E4M3FN, [1], [0])
76
+ y_zero_point = make_tensor("y_zero_point", TensorProto.FLOAT8E4M3FN, [1], [0])
77
77
  y = make_tensor("y", TensorProto.FLOAT8E4M3FN, [5], [0, 0.5, 1, 448, 96])
78
78
 
79
79
  expect(
@@ -93,7 +93,7 @@ class QuantizeLinear(Base):
93
93
 
94
94
  x = np.array([0.0, 1.0, 2.0, 100000.0, 200.0]).astype(np.float32)
95
95
  y_scale = np.float32(2)
96
- y_zero_point = make_tensor("zero_point", TensorProto.FLOAT8E5M2, [1], [0.0])
96
+ y_zero_point = make_tensor("y_zero_point", TensorProto.FLOAT8E5M2, [1], [0.0])
97
97
  y = make_tensor("y", TensorProto.FLOAT8E5M2, [5], [0, 0.5, 1, 49152, 96])
98
98
 
99
99
  expect(
@@ -230,7 +230,7 @@ class QuantizeLinear(Base):
230
230
 
231
231
  y_scale = np.asarray([2.0, 3.0, 4.0], dtype=np.float32)
232
232
  y_zero_point = make_tensor(
233
- "zero_point", TensorProto.UINT4, y_scale.shape, np.ones_like(y_scale)
233
+ "y_zero_point", TensorProto.UINT4, y_scale.shape, np.ones_like(y_scale)
234
234
  )
235
235
  y = make_tensor(
236
236
  "y", TensorProto.UINT4, x.shape, [1, 2, 3, 5, -1, -1, 3, 4, 4, 5, 5, 11]
@@ -262,7 +262,7 @@ class QuantizeLinear(Base):
262
262
 
263
263
  y_scale = np.asarray([2.0, 3.0, 4.0], dtype=np.float32)
264
264
  y_zero_point = make_tensor(
265
- "zero_point", TensorProto.INT4, y_scale.shape, np.ones_like(y_scale)
265
+ "y_zero_point", TensorProto.INT4, y_scale.shape, np.ones_like(y_scale)
266
266
  )
267
267
  y = make_tensor(
268
268
  "y", TensorProto.INT4, x.shape, [1, 2, 3, 5, -8, -6, 3, 4, 4, 5, 5, 7]
@@ -1,2 +1 @@
1
- *B
2
- zero_point
1
+ *B x_zero_point
@@ -1,2 +1 @@
1
- *B
2
- zero_point
1
+ *B x_zero_point
@@ -1,2 +1 @@
1
- *B
2
- zero_point
1
+ *B y_zero_point
@@ -1,2 +1 @@
1
- *B
2
- zero_point
1
+ *B y_zero_point
onnx/common/version.h CHANGED
@@ -9,6 +9,6 @@
9
9
  namespace ONNX_NAMESPACE {
10
10
 
11
11
  // Represents the most recent release version. Updated with every release.
12
- constexpr const char* LAST_RELEASE_VERSION = "1.16.0";
12
+ constexpr const char* LAST_RELEASE_VERSION = "1.16.1";
13
13
 
14
14
  } // namespace ONNX_NAMESPACE
@@ -200,6 +200,9 @@ ONNX_OPERATOR_SET_SCHEMA(
200
200
  .SetDoc(DequantizeLinear_ver21_doc)
201
201
  .TypeAndShapeInferenceFunction([](ONNX_NAMESPACE::InferenceContext& ctx) {
202
202
  propagateElemTypeFromInputToOutput(ctx, 1, 0);
203
+ if (!hasInputShape(ctx, 0)) {
204
+ return;
205
+ }
203
206
  auto& input_shape = getInputShape(ctx, 0);
204
207
  updateOutputShape(ctx, 0, input_shape);
205
208
  }));
@@ -130,6 +130,9 @@ ONNX_OPERATOR_SET_SCHEMA(
130
130
  .SetDoc(DequantizeLinear_ver19_doc)
131
131
  .TypeAndShapeInferenceFunction([](ONNX_NAMESPACE::InferenceContext& ctx) {
132
132
  propagateElemTypeFromInputToOutput(ctx, 1, 0);
133
+ if (!hasInputShape(ctx, 0)) {
134
+ return;
135
+ }
133
136
  auto& input_shape = getInputShape(ctx, 0);
134
137
  updateOutputShape(ctx, 0, input_shape);
135
138
  }));
@@ -181,7 +184,6 @@ ONNX_OPERATOR_SET_SCHEMA(
181
184
  if (!hasInputShape(ctx, 0)) {
182
185
  return;
183
186
  }
184
-
185
187
  auto& input_shape = getInputShape(ctx, 0);
186
188
  updateOutputShape(ctx, 0, input_shape);
187
189
  }));
Binary file
@@ -488,29 +488,29 @@ class ShapeInferenceImplBase {
488
488
  ProcessCall(n, *(iter->second), ctx);
489
489
  } else {
490
490
  has_unsupported_op = true;
491
+ return;
491
492
  }
492
493
  } else {
493
494
  has_unsupported_op = true;
495
+ return;
494
496
  }
495
- if (!has_unsupported_op) {
496
- for (int i = 0; i < n.output_size(); ++i) {
497
- // skip type and shape propagation for missing optional outputs.
498
- if (!n.output(i).empty())
499
- UpdateType(n.output(i), ctx.getOutputType(i));
500
- }
501
- // Constant values are tracked to improve inference/checking for subsequent nodes.
502
- ProcessConstant(n);
503
- // If data-propagation is enabled, partial-evaluation (aka data-propagation) is performed
504
- // to improve inference/checking for subsequent nodes.
505
- if (options.enable_data_propagation && schema && schema->has_data_propagation_function()) {
506
- if (generated_shape_data_by_name == nullptr) {
507
- fail_shape_inference(
508
- "Container for generated shape data cannot be nullptr when enable_data_propagation option is set.");
509
- }
510
- DataPropagationContextImpl data_propagation_ctx(
511
- n, value_types_by_name, input_data_by_name, *generated_shape_data_by_name);
512
- schema->GetDataPropagationFunction()(data_propagation_ctx);
497
+ for (int i = 0; i < n.output_size(); ++i) {
498
+ // skip type and shape propagation for missing optional outputs.
499
+ if (!n.output(i).empty())
500
+ UpdateType(n.output(i), ctx.getOutputType(i));
501
+ }
502
+ // Constant values are tracked to improve inference/checking for subsequent nodes.
503
+ ProcessConstant(n);
504
+ // If data-propagation is enabled, partial-evaluation (aka data-propagation) is performed
505
+ // to improve inference/checking for subsequent nodes.
506
+ if (options.enable_data_propagation && schema && schema->has_data_propagation_function()) {
507
+ if (generated_shape_data_by_name == nullptr) {
508
+ fail_shape_inference(
509
+ "Container for generated shape data cannot be nullptr when enable_data_propagation option is set.");
513
510
  }
511
+ DataPropagationContextImpl data_propagation_ctx(
512
+ n, value_types_by_name, input_data_by_name, *generated_shape_data_by_name);
513
+ schema->GetDataPropagationFunction()(data_propagation_ctx);
514
514
  }
515
515
  }
516
516
  ONNX_CATCH(const ONNX_NAMESPACE::InferenceError& ex) {
onnx/version.py CHANGED
@@ -1,5 +1,5 @@
1
1
  # This file is generated by setup.py. DO NOT EDIT!
2
2
 
3
3
 
4
- version = "1.16.0"
5
- git_version = "990217f043af7222348ca8f0301e17fa7b841781"
4
+ version = "1.16.1"
5
+ git_version = "595228d99e3977ac27cb79d5963adda262af99ad"
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: onnx
3
- Version: 1.16.0
3
+ Version: 1.16.1
4
4
  Summary: Open Neural Network Exchange
5
5
  Author-email: ONNX Contributors <onnx-technical-discuss@lists.lfaidata.foundation>
6
6
  License: Apache License v2.0
@@ -22,7 +22,7 @@ onnx/onnx-operators.proto,sha256=JQbdYTnvJhfQrFk82zzzEKpokcOUujZ4QBKqvSJNBLU,543
22
22
  onnx/onnx-operators_pb.h,sha256=vlw2jzH5sZfKNzs6x4f34-riKuXPy9PjXbo8ZvOx068,202
23
23
  onnx/onnx.in.proto,sha256=XTWpwFI3cPFVEn4owXCId3oK6s6wdIIUB4TQCzyzgJE,38526
24
24
  onnx/onnx.proto,sha256=mej19HPF15gUvT_6r6hbxI3x7Mxc9pR-Crm7rR9cvnA,38116
25
- onnx/onnx_cpp2py_export.cp38-win32.pyd,sha256=eUfAGqPEZdVcrCiPaKTnd0yCcyxX6BZqu4zGazzQvuU,2503168
25
+ onnx/onnx_cpp2py_export.cp38-win32.pyd,sha256=T2J1S_8fMlBgQ_w31iwbujFINlVWCNTtsGcpjtws4OE,2507264
26
26
  onnx/onnx_data_pb.py,sha256=Czjgcf0pv2Vk_mBsch2sG4bYkzRpNG1efzhhdEilN8I,94
27
27
  onnx/onnx_data_pb2.py,sha256=YuJmAGmOGE_ClfmD9Gbbc1qn9_FzOMDH61e7ay9t5xw,2894
28
28
  onnx/onnx_data_pb2.pyi,sha256=VTSip9Evt2RqdKpntIo6G9LVASJVfc6zJ-yy-T4kW_o,4682
@@ -43,7 +43,7 @@ onnx/shape_inference.py,sha256=eiCtyo0v5MR2JQIIe5lTk1E6pwxKgH-hhhpkbLJASrw,5951
43
43
  onnx/string_utils.h,sha256=jAFGm8XyB3PwvijH-0Cni_83gu1rfXQ7v16OGyPeuMU,1337
44
44
  onnx/subbyte.py,sha256=wYA14-QUhRWD829f-8cxPviSjffUb19rCJSuXIDdIfg,2361
45
45
  onnx/utils.py,sha256=OYvWSG_ulwV6e_h6udGrTPnHCbBnMns_y6G_mrDY0t4,8600
46
- onnx/version.py,sha256=zSedOo-BDfd9yHK95hMSLCTW_lDrdmV1oltOZWvHLtU,134
46
+ onnx/version.py,sha256=8Vf9pXsUELnWLjzu3NFQ1s5ZzUZbHld_hyjeWgPal08,134
47
47
  onnx/version_converter.py,sha256=Qi0hGuU45xf8rD8E7W8f9MVgZiGIrPU5lzl2bOX6gG4,1274
48
48
  onnx/backend/__init__.py,sha256=HiuD-U6YHJwWikkemKJqBq-35U8KJ9LDdAwdisi7OlQ,85
49
49
  onnx/backend/base.py,sha256=myXeAXXVI31c_lcqxeAJNK3dRFncuJox2N55rTGANZ4,4680
@@ -109,7 +109,7 @@ onnx/backend/test/case/node/cosh.py,sha256=paohiM1-bYV3Uq5AeXM1MCXW_kPPabXA6vG7h
109
109
  onnx/backend/test/case/node/cumsum.py,sha256=dtoV_Rg1opPwMpx-jW6ItihP8roPkn5Ymp0brSt5jOQ,3482
110
110
  onnx/backend/test/case/node/deformconv.py,sha256=0kKFJlA45N3OE4YuSr_abaYqIXyDYEAnoEmiO1SyTKw,5647
111
111
  onnx/backend/test/case/node/depthtospace.py,sha256=UEryt7YdGewSq0dD5yzN5EVul5yOBkjaUFna9bt2h2Q,3632
112
- onnx/backend/test/case/node/dequantizelinear.py,sha256=6e5DqcT0bU4CVu6oUWCTI-yrC_6BkgBqMlJ3OTRA194,9404
112
+ onnx/backend/test/case/node/dequantizelinear.py,sha256=0J7b5SaFatZoc6GaNVtLg1pIMhAm1Ly1KPiU7Vad68k,9408
113
113
  onnx/backend/test/case/node/det.py,sha256=aYZlgjZu0qmYUuuv6-6lZ4tW9CHr2PS6VU3wAL9KJ-U,1012
114
114
  onnx/backend/test/case/node/dft.py,sha256=tGoOa57NJWSJk8i6BFs1tQk-1YPp5xFVha-TNqYR0iE,3407
115
115
  onnx/backend/test/case/node/div.py,sha256=ae1QwxAnnhDkISGSWNDVNsScveoTTYDkqSRSYLWuro0,1475
@@ -184,7 +184,7 @@ onnx/backend/test/case/node/pow.py,sha256=mqZTB3aExWI77NHZMD5pa0fb0iTsSrVuVoYTZt
184
184
  onnx/backend/test/case/node/prelu.py,sha256=2mc_P13n4GYWE50wcvIhNoyIxmppmrBqq0et5O5ZEck,1160
185
185
  onnx/backend/test/case/node/qlinearconv.py,sha256=NcqkNkS24rCnTDHpLTePunkIwSdHt6mAlNLGF800oEY,2341
186
186
  onnx/backend/test/case/node/qlinearmatmul.py,sha256=liNk0Jzth3BWDJVp1PAOFWqHToB-KsvqN0CQVqwKo7U,5676
187
- onnx/backend/test/case/node/quantizelinear.py,sha256=c2X72l2VarjUAi-hIuJ6ZUF0aBwGmQF9kIakEnF1bvs,11284
187
+ onnx/backend/test/case/node/quantizelinear.py,sha256=xWfKAQmAmYePK_vkbShRm7D4gJ3QzD1o4BUlv9hMPhI,11292
188
188
  onnx/backend/test/case/node/rangeop.py,sha256=p7Lz1xygHPHRUrfInf5FS2RBMhFL67kdLbyQxvxE2Ls,1491
189
189
  onnx/backend/test/case/node/reciprocal.py,sha256=34LwMciBx7lM5-KpzaDSCa5dL3VXblfLVpwoF8N1_48,782
190
190
  onnx/backend/test/case/node/reduce_log_sum.py,sha256=ons-ZqpqnpNaCkk2bUwVu-Di7i0MTeBfKL_fWMn1n8M,3159
@@ -1489,7 +1489,7 @@ onnx/backend/test/data/node/test_dequantizelinear_int16/test_data_set_0/output_0
1489
1489
  onnx/backend/test/data/node/test_dequantizelinear_int4/model.onnx,sha256=9LK35NYKjHLC6JmUJVZSXxI7vCSfoVOyZvVCxLwu4L8,196
1490
1490
  onnx/backend/test/data/node/test_dequantizelinear_int4/test_data_set_0/input_0.pb,sha256=8w_hl7JvcDysb07OiHDWHUWGW-hOCSWr8h5wywBEbS0,21
1491
1491
  onnx/backend/test/data/node/test_dequantizelinear_int4/test_data_set_0/input_1.pb,sha256=qN7egCoW3Tix8QKnMxT243blKL-WqkjKisULKpcdBdY,17
1492
- onnx/backend/test/data/node/test_dequantizelinear_int4/test_data_set_0/input_2.pb,sha256=2-c2oGJ2nFi3f5gMserIvtcpTbtacRrc-RRKTXA605k,19
1492
+ onnx/backend/test/data/node/test_dequantizelinear_int4/test_data_set_0/input_2.pb,sha256=GxHG9IjbNdY0hTEZRYeNssvlZnFbX4ouLHJww6ODDzg,21
1493
1493
  onnx/backend/test/data/node/test_dequantizelinear_int4/test_data_set_0/output_0.pb,sha256=AB-QMRL0DZclEXLlbWVi-ti0NMUhxGgqeAKzRFgL-rM,29
1494
1494
  onnx/backend/test/data/node/test_dequantizelinear_uint16/model.onnx,sha256=z3gpBXrtiijpDEjhgO8EFJWJR4_EZBJ8ei1dpUPMca0,181
1495
1495
  onnx/backend/test/data/node/test_dequantizelinear_uint16/test_data_set_0/input_0.pb,sha256=lXtHv2NCkXFokLmUC4XcHZ0KObiQXiRreUIK-COCeLU,17
@@ -1499,7 +1499,7 @@ onnx/backend/test/data/node/test_dequantizelinear_uint16/test_data_set_0/output_
1499
1499
  onnx/backend/test/data/node/test_dequantizelinear_uint4/model.onnx,sha256=doOZg8lFykcn-ZiGUM7t9eNIe8AXSPsFvhE_q9pNKmw,197
1500
1500
  onnx/backend/test/data/node/test_dequantizelinear_uint4/test_data_set_0/input_0.pb,sha256=DujJO55o1k-7hYjfqgLjHUHvFWS9ME3xYq410pSWAPk,13
1501
1501
  onnx/backend/test/data/node/test_dequantizelinear_uint4/test_data_set_0/input_1.pb,sha256=qN7egCoW3Tix8QKnMxT243blKL-WqkjKisULKpcdBdY,17
1502
- onnx/backend/test/data/node/test_dequantizelinear_uint4/test_data_set_0/input_2.pb,sha256=UrqQhZcKtsM1nfoPcUQzBqfqwka_je5kwZ0E8Gr3lJA,19
1502
+ onnx/backend/test/data/node/test_dequantizelinear_uint4/test_data_set_0/input_2.pb,sha256=Uy6DIdWiaShjYZoqvhZytFOW-nrnkq_jDxhSya5GM1Q,21
1503
1503
  onnx/backend/test/data/node/test_dequantizelinear_uint4/test_data_set_0/output_0.pb,sha256=xQMWX_7whFxNBSm64slp3ncuglAEdprKtaQD0zkjTqI,29
1504
1504
  onnx/backend/test/data/node/test_det_2d/model.onnx,sha256=OW5mSOi7fO6hao91GdGbPZF9JKegWWmf7ZkgSHmS4vM,84
1505
1505
  onnx/backend/test/data/node/test_det_2d/test_data_set_0/input_0.pb,sha256=0phUVbSY99aYNDvbb4I7ZwTF4_oqB7I9Teh_3LZTlfk,27
@@ -3533,12 +3533,12 @@ onnx/backend/test/data/node/test_quantizelinear_blocked_symmetric/test_data_set_
3533
3533
  onnx/backend/test/data/node/test_quantizelinear_e4m3fn/model.onnx,sha256=22nDQPV_pY3TRB34BlD_KeS8ow0yOzDZjTNotuWr18M,181
3534
3534
  onnx/backend/test/data/node/test_quantizelinear_e4m3fn/test_data_set_0/input_0.pb,sha256=RpINE2Cg2dhwMgzJm3ZxSLDmJ1q0XwI6WmIHcL_j6Yc,29
3535
3535
  onnx/backend/test/data/node/test_quantizelinear_e4m3fn/test_data_set_0/input_1.pb,sha256=Zv7CydImWalnvbaS5VHQ6zTXvOUCohUym_ClUIDiLJ4,17
3536
- onnx/backend/test/data/node/test_quantizelinear_e4m3fn/test_data_set_0/input_2.pb,sha256=3qDZIcWHdcD6sR2bi0d9zxwFMbgB-8xVA8QC78gP0h4,19
3536
+ onnx/backend/test/data/node/test_quantizelinear_e4m3fn/test_data_set_0/input_2.pb,sha256=_7Vdv5427rLlWyXQDc1ya_9WSxSO8L4LZu_OHnm_FT8,21
3537
3537
  onnx/backend/test/data/node/test_quantizelinear_e4m3fn/test_data_set_0/output_0.pb,sha256=nNu5UvmZ8mpsh_54mZqigNgGwEN8yszynDbulB-hJ5c,14
3538
3538
  onnx/backend/test/data/node/test_quantizelinear_e5m2/model.onnx,sha256=L0yVbjM9lrwdvbAwh8mhf89aKtCJEyrgcxacdH5tcEM,179
3539
3539
  onnx/backend/test/data/node/test_quantizelinear_e5m2/test_data_set_0/input_0.pb,sha256=RpINE2Cg2dhwMgzJm3ZxSLDmJ1q0XwI6WmIHcL_j6Yc,29
3540
3540
  onnx/backend/test/data/node/test_quantizelinear_e5m2/test_data_set_0/input_1.pb,sha256=Zv7CydImWalnvbaS5VHQ6zTXvOUCohUym_ClUIDiLJ4,17
3541
- onnx/backend/test/data/node/test_quantizelinear_e5m2/test_data_set_0/input_2.pb,sha256=PW0rlxt1n-xDnnHatqfnNnTTn3NsbNGhcm1Gs7psnmY,19
3541
+ onnx/backend/test/data/node/test_quantizelinear_e5m2/test_data_set_0/input_2.pb,sha256=trfI5bwzv3rDl1dqKlEM_RmOGYCac0PrHNjqYeGXxa0,21
3542
3542
  onnx/backend/test/data/node/test_quantizelinear_e5m2/test_data_set_0/output_0.pb,sha256=Bk-NH1ZeWwTusSN6X2cuqkFjbYJ1vDxhtJZ592E76fw,14
3543
3543
  onnx/backend/test/data/node/test_quantizelinear_int16/model.onnx,sha256=8OIsIPruUoe4aZC2anHuM4n85GsQrL2BQYfQbYOYZJo,176
3544
3544
  onnx/backend/test/data/node/test_quantizelinear_int16/test_data_set_0/input_0.pb,sha256=VmE8fR23t887aluLk_qjxKg-S07NoLxCSje5xyEL5NI,73
@@ -3548,7 +3548,7 @@ onnx/backend/test/data/node/test_quantizelinear_int16/test_data_set_0/output_0.p
3548
3548
  onnx/backend/test/data/node/test_quantizelinear_int4/model.onnx,sha256=_W9CJtKqLcm3zntWa30qryL1IGODqC8Lt-W-r4fMSR0,204
3549
3549
  onnx/backend/test/data/node/test_quantizelinear_int4/test_data_set_0/input_0.pb,sha256=Lg7BLkDJVhKNTmTszgJp0eK_i1afP0XARGAXTfNFdeQ,59
3550
3550
  onnx/backend/test/data/node/test_quantizelinear_int4/test_data_set_0/input_1.pb,sha256=2Pe2lcrRWP5oT1EosWg6ZOv0VcNUIPd__rMnNp0couk,27
3551
- onnx/backend/test/data/node/test_quantizelinear_int4/test_data_set_0/input_2.pb,sha256=xOW8QI3GKHP9nY6BjWU6d8g0gyiiAHzjrI5E0nP-HJw,20
3551
+ onnx/backend/test/data/node/test_quantizelinear_int4/test_data_set_0/input_2.pb,sha256=1d3dNu_2t0cVW-a0345YfmGWH3i1K_8DOgi_jg-eIdA,22
3552
3552
  onnx/backend/test/data/node/test_quantizelinear_int4/test_data_set_0/output_0.pb,sha256=y06PaLypD_0xbr5-dsEIz-izN4v0u_LvdzH-IedZ_W0,26
3553
3553
  onnx/backend/test/data/node/test_quantizelinear_uint16/model.onnx,sha256=Bzxw9Zgnq1uix9-HBgh_FLVkNfMG8X9RfD2iiDdOxOI,177
3554
3554
  onnx/backend/test/data/node/test_quantizelinear_uint16/test_data_set_0/input_0.pb,sha256=HBChWZzpiiAckJ1Lx-CShRBJIZz9e-vcIp8no74kWhI,57
@@ -3558,7 +3558,7 @@ onnx/backend/test/data/node/test_quantizelinear_uint16/test_data_set_0/output_0.
3558
3558
  onnx/backend/test/data/node/test_quantizelinear_uint4/model.onnx,sha256=fw0fba_Z4vNck23gKcLSd08zQkpEXxDA5uZmtiTkF_s,205
3559
3559
  onnx/backend/test/data/node/test_quantizelinear_uint4/test_data_set_0/input_0.pb,sha256=Lg7BLkDJVhKNTmTszgJp0eK_i1afP0XARGAXTfNFdeQ,59
3560
3560
  onnx/backend/test/data/node/test_quantizelinear_uint4/test_data_set_0/input_1.pb,sha256=2Pe2lcrRWP5oT1EosWg6ZOv0VcNUIPd__rMnNp0couk,27
3561
- onnx/backend/test/data/node/test_quantizelinear_uint4/test_data_set_0/input_2.pb,sha256=3msGujD62Tj7EYUPxCej7yQD4E___QrkfkZk0u0m788,20
3561
+ onnx/backend/test/data/node/test_quantizelinear_uint4/test_data_set_0/input_2.pb,sha256=iIP2U9MJwQa9ghUcuN8tpW91KGfsrp1Q8akf22lwe2M,22
3562
3562
  onnx/backend/test/data/node/test_quantizelinear_uint4/test_data_set_0/output_0.pb,sha256=8q530wXE297IpPg4EiJTOU3f4gDmaAuZgtD9-UT2vyM,18
3563
3563
  onnx/backend/test/data/node/test_range_float_type_positive_delta/model.onnx,sha256=yDJm47JALZVJ9S2sTGlShf_fJRLQNqF-BYb_fTfohlo,174
3564
3564
  onnx/backend/test/data/node/test_range_float_type_positive_delta/test_data_set_0/input_0.pb,sha256=PnwKkhwnmd5quiS20ZgN5aEPgWHukh4Z1L_5tQBqFMg,15
@@ -6062,7 +6062,7 @@ onnx/common/proto_util.h,sha256=U-KYW5fBs1MqmYWmtMONpw8a75SRMD7D32a8dZ4LlN0,1473
6062
6062
  onnx/common/status.cc,sha256=nMqcYhcpXzyX-Ln7kZPC2EwOMbV5ssNuF6z05N6ojrw,1981
6063
6063
  onnx/common/status.h,sha256=7x8_ZLcNIZVL7HF1ArFp03KU2PUPT6eDZRhEedelnFc,2008
6064
6064
  onnx/common/tensor.h,sha256=tCw06bToUEkXWStd7h5n07ikpmNFadfefi0uDIW5jrw,7699
6065
- onnx/common/version.h,sha256=886IcNQk5AeDaj9tUJ6xaoOv5UQB9vbhovx0faqjalw,308
6065
+ onnx/common/version.h,sha256=2_9g5wIb82uYGYJA9D8DFmFCEZ-b1NVqPjFvsMtbIYs,308
6066
6066
  onnx/common/visitor.h,sha256=Fn-B-0xAy0r3TEo0jh4yYrFJkBV7xZxrP94VX5AjzFI,3215
6067
6067
  onnx/defs/__init__.py,sha256=PZ01rEheu0-GhBVbHrehi9fMoS3e9Vx4XBPGXD_DqHo,4284
6068
6068
  onnx/defs/attr_proto_util.cc,sha256=qAGbnnDY7MvKN7nKIYl6K5f7irNeNnNJ61J67OP_TJk,3658
@@ -6111,8 +6111,8 @@ onnx/defs/object_detection/defs.cc,sha256=kke0G3Bo0WXsL1jJ9G3eauu_il6NTGZSTYBCr7
6111
6111
  onnx/defs/object_detection/old.cc,sha256=Kfck4FSzoyv90IdefqN028RxGXj5syrnMHtX05vFOWI,8343
6112
6112
  onnx/defs/optional/defs.cc,sha256=9wPzDUjtnMQVWmR_2gaXw0pNUUxI1UyDr0rlWW1fU20,6670
6113
6113
  onnx/defs/optional/old.cc,sha256=gEVbnZiknNPPoHk5pJYfUcGQaLgxgjXaXMR2LQ6rbp4,3499
6114
- onnx/defs/quantization/defs.cc,sha256=6DQxDPmTLWf9ReM-ts9KFVkcTirxSurrs_OgD4P4EPs,13702
6115
- onnx/defs/quantization/old.cc,sha256=ZiIPGiiZs0x4qxRlfEDB6ZBqql6GjBDA04NpZhSx7GE,15630
6114
+ onnx/defs/quantization/defs.cc,sha256=az2b0vYdWyROAYrTfe8N8XAa61vx5WX242fLKa1CAkQ,13777
6115
+ onnx/defs/quantization/old.cc,sha256=n3ZFYTTIc6c6j9NTITKyXsFQpus6_obhJEq4jlxS1Nc,15703
6116
6116
  onnx/defs/reduction/defs.cc,sha256=rHvP9SDvpIKSVD6MEm1rifZPm5Gtmm8la5_rWlanuiY,6316
6117
6117
  onnx/defs/reduction/old.cc,sha256=cHIoo2USwB9GY7R0ANTR4m47kGZko6laiSNsURHoGVQ,19434
6118
6118
  onnx/defs/reduction/utils.cc,sha256=Ml0jJiMwSq2pnKgHEWyfnOfiX2cqsCyL6pev2D_VeHk,6375
@@ -6373,7 +6373,7 @@ onnx/reference/ops/experimental/op_im2col.py,sha256=YLYL6JVcCBUdvVzq4eGrg-Q9Pvm2
6373
6373
  onnx/reference/ops_optimized/__init__.py,sha256=T1nSBzjXBKSnMJzKdQxw39bYBcLj7lbO0uAx63DQkPc,274
6374
6374
  onnx/reference/ops_optimized/op_conv_optimized.py,sha256=y0L2AfrN9yti3gRtK8Z2rAIRN7hmivQHYDZUr2ZvO4w,6608
6375
6375
  onnx/shape_inference/attribute_binder.h,sha256=ICoFJLBC8GU1n8vEbUD8BW4p0-cuaBbRhNo7dKQ7xgY,2446
6376
- onnx/shape_inference/implementation.cc,sha256=_BtfAJtoOFybMskd5Kc1noe8sleRAZmjfaA-_XcdLk0,43711
6376
+ onnx/shape_inference/implementation.cc,sha256=o2yo5deO3LkxzCYzynxKOFZaHMLC5SWmwismDE3LFdQ,43668
6377
6377
  onnx/shape_inference/implementation.h,sha256=zDEvkxX53zf1HgsymUsCfJMlxciW1yw0XzRF7_Svk40,19854
6378
6378
  onnx/test/__init__.pyi,sha256=VW4Y59avFWUotfJT9rPS5AachoNP4rSbu2Z43Ln5Wzw,254
6379
6379
  onnx/test/basic_test.py,sha256=ilA7YFfWJjR-8gRpzhfiMWXzcuytf2dMk3Ipg-hJ0uI,9831
@@ -6476,9 +6476,9 @@ onnx/version_converter/adapters/upsample_6_7.h,sha256=vHwjsHvCw3d5d4rE1UZBSI_EyG
6476
6476
  onnx/version_converter/adapters/upsample_8_9.h,sha256=a3U4oqwTt8gJXR2bf1d0LgOjjOg0JobuinpE-QBC4Fg,1334
6477
6477
  onnx/version_converter/adapters/upsample_9_10.h,sha256=J5xRPJQ6mTpLCV1yp6LaEoTaXghP9FhTFS-IAxRi5rs,1112
6478
6478
  onnx/version_converter/adapters/upsample_9_8.h,sha256=miIzjt52ofR78p3TAi5V9mQWUG8EZy8ExKsilj5SSvY,2598
6479
- onnx-1.16.0.dist-info/LICENSE,sha256=Pd-b5cKP4n2tFDpdx27qJSIq0d1ok0oEcGTlbtL6QMU,11560
6480
- onnx-1.16.0.dist-info/METADATA,sha256=_t3j5FnAt2iP3zQt3PJAPE3JjWZ7xkQxMtarnORIJUc,16842
6481
- onnx-1.16.0.dist-info/WHEEL,sha256=57hb2VMKfzdcZEFKIri3BxIFhvran9ahu4uVnDJqFIU,96
6482
- onnx-1.16.0.dist-info/entry_points.txt,sha256=kI2A5Kl3HXkb7WkSIlcynOx46XYhwXcFVJlmwL58mPk,156
6483
- onnx-1.16.0.dist-info/top_level.txt,sha256=fok5iu7rojicZZye7lCMdLme_jvte9jjDqYyhL0Kg6E,5
6484
- onnx-1.16.0.dist-info/RECORD,,
6479
+ onnx-1.16.1.dist-info/LICENSE,sha256=Pd-b5cKP4n2tFDpdx27qJSIq0d1ok0oEcGTlbtL6QMU,11560
6480
+ onnx-1.16.1.dist-info/METADATA,sha256=ReMoSuBe_QT4EaYpzuASqACxSxbfZKZshjYgaJMLQK0,16842
6481
+ onnx-1.16.1.dist-info/WHEEL,sha256=57hb2VMKfzdcZEFKIri3BxIFhvran9ahu4uVnDJqFIU,96
6482
+ onnx-1.16.1.dist-info/entry_points.txt,sha256=kI2A5Kl3HXkb7WkSIlcynOx46XYhwXcFVJlmwL58mPk,156
6483
+ onnx-1.16.1.dist-info/top_level.txt,sha256=fok5iu7rojicZZye7lCMdLme_jvte9jjDqYyhL0Kg6E,5
6484
+ onnx-1.16.1.dist-info/RECORD,,
File without changes
File without changes