onnx 1.15.0__cp310-cp310-win32.whl → 1.16.1__cp310-cp310-win32.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of onnx might be problematic. Click here for more details.
- onnx/__init__.py +10 -10
- onnx/backend/base.py +13 -14
- onnx/backend/sample/ops/abs.py +1 -1
- onnx/backend/test/case/model/__init__.py +0 -1
- onnx/backend/test/case/node/ai_onnx_ml/tree_ensemble.py +122 -0
- onnx/backend/test/case/node/averagepool.py +15 -30
- onnx/backend/test/case/node/cast.py +88 -11
- onnx/backend/test/case/node/dequantizelinear.py +155 -0
- onnx/backend/test/case/node/groupnormalization.py +13 -9
- onnx/backend/test/case/node/gru.py +2 -2
- onnx/backend/test/case/node/isinf.py +4 -4
- onnx/backend/test/case/node/isnan.py +2 -2
- onnx/backend/test/case/node/lppool.py +8 -16
- onnx/backend/test/case/node/lstm.py +1 -1
- onnx/backend/test/case/node/maxpool.py +40 -34
- onnx/backend/test/case/node/pow.py +1 -1
- onnx/backend/test/case/node/qlinearmatmul.py +143 -109
- onnx/backend/test/case/node/quantizelinear.py +298 -7
- onnx/backend/test/case/node/reducemax.py +26 -0
- onnx/backend/test/case/node/rnn.py +1 -1
- onnx/backend/test/case/node/scan.py +6 -2
- onnx/backend/test/case/node/scatterelements.py +1 -1
- onnx/backend/test/case/node/topk.py +1 -1
- onnx/backend/test/case/utils.py +1 -3
- onnx/backend/test/data/node/test_ai_onnx_ml_tree_ensemble_set_membership/model.onnx +0 -0
- onnx/backend/test/data/node/test_ai_onnx_ml_tree_ensemble_set_membership/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_ai_onnx_ml_tree_ensemble_set_membership/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_ai_onnx_ml_tree_ensemble_single_tree/model.onnx +0 -0
- onnx/backend/test/data/node/test_ai_onnx_ml_tree_ensemble_single_tree/test_data_set_0/input_0.pb +1 -0
- onnx/backend/test/data/node/test_ai_onnx_ml_tree_ensemble_single_tree/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_BFLOAT16_to_FLOAT/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_DOUBLE_to_FLOAT/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_DOUBLE_to_FLOAT16/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT16_to_DOUBLE/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT16_to_FLOAT/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT16_to_FLOAT8E4M3FN/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT16_to_FLOAT8E4M3FN/test_data_set_0/input_0.pb +2 -2
- onnx/backend/test/data/node/test_cast_FLOAT16_to_FLOAT8E4M3FN/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT16_to_FLOAT8E4M3FNUZ/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT16_to_FLOAT8E4M3FNUZ/test_data_set_0/input_0.pb +2 -2
- onnx/backend/test/data/node/test_cast_FLOAT16_to_FLOAT8E4M3FNUZ/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT16_to_FLOAT8E5M2/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT16_to_FLOAT8E5M2/test_data_set_0/input_0.pb +2 -2
- onnx/backend/test/data/node/test_cast_FLOAT16_to_FLOAT8E5M2/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT16_to_FLOAT8E5M2FNUZ/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT16_to_FLOAT8E5M2FNUZ/test_data_set_0/input_0.pb +2 -2
- onnx/backend/test/data/node/test_cast_FLOAT16_to_FLOAT8E5M2FNUZ/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT16_to_INT4/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT16_to_INT4/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT16_to_INT4/test_data_set_0/output_0.pb +1 -0
- onnx/backend/test/data/node/test_cast_FLOAT16_to_UINT4/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT16_to_UINT4/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT16_to_UINT4/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT8E4M3FNUZ_to_FLOAT/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT8E4M3FNUZ_to_FLOAT/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT8E4M3FNUZ_to_FLOAT/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT8E4M3FNUZ_to_FLOAT16/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT8E4M3FNUZ_to_FLOAT16/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT8E4M3FNUZ_to_FLOAT16/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT8E4M3FN_to_FLOAT/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT8E4M3FN_to_FLOAT/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT8E4M3FN_to_FLOAT/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT8E4M3FN_to_FLOAT16/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT8E4M3FN_to_FLOAT16/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT8E4M3FN_to_FLOAT16/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT8E5M2FNUZ_to_FLOAT/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT8E5M2FNUZ_to_FLOAT/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT8E5M2FNUZ_to_FLOAT/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT8E5M2FNUZ_to_FLOAT16/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT8E5M2FNUZ_to_FLOAT16/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT8E5M2FNUZ_to_FLOAT16/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT8E5M2_to_FLOAT/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT8E5M2_to_FLOAT/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT8E5M2_to_FLOAT/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT8E5M2_to_FLOAT16/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT8E5M2_to_FLOAT16/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT8E5M2_to_FLOAT16/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT_to_BFLOAT16/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT_to_DOUBLE/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT_to_FLOAT16/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT_to_FLOAT8E4M3FN/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT_to_FLOAT8E4M3FN/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT_to_FLOAT8E4M3FN/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT_to_FLOAT8E4M3FNUZ/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT_to_FLOAT8E4M3FNUZ/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT_to_FLOAT8E4M3FNUZ/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT_to_FLOAT8E5M2/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT_to_FLOAT8E5M2/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT_to_FLOAT8E5M2/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT_to_FLOAT8E5M2FNUZ/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT_to_FLOAT8E5M2FNUZ/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT_to_FLOAT8E5M2FNUZ/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT_to_INT4/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT_to_INT4/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT_to_INT4/test_data_set_0/output_0.pb +1 -0
- onnx/backend/test/data/node/test_cast_FLOAT_to_STRING/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT_to_UINT4/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT_to_UINT4/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT_to_UINT4/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_INT4_to_FLOAT/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_INT4_to_FLOAT/test_data_set_0/input_0.pb +1 -0
- onnx/backend/test/data/node/test_cast_INT4_to_FLOAT/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_INT4_to_FLOAT16/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_INT4_to_FLOAT16/test_data_set_0/input_0.pb +1 -0
- onnx/backend/test/data/node/test_cast_INT4_to_FLOAT16/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_INT4_to_INT8/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_INT4_to_INT8/test_data_set_0/input_0.pb +1 -0
- onnx/backend/test/data/node/test_cast_INT4_to_INT8/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_STRING_to_FLOAT/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_UINT4_to_FLOAT/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_UINT4_to_FLOAT/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_UINT4_to_FLOAT/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_UINT4_to_FLOAT16/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_UINT4_to_FLOAT16/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_UINT4_to_FLOAT16/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_UINT4_to_UINT8/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_UINT4_to_UINT8/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_UINT4_to_UINT8/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_no_saturate_FLOAT16_to_FLOAT8E4M3FN/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_no_saturate_FLOAT16_to_FLOAT8E4M3FN/test_data_set_0/input_0.pb +2 -2
- onnx/backend/test/data/node/test_cast_no_saturate_FLOAT16_to_FLOAT8E4M3FN/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_no_saturate_FLOAT16_to_FLOAT8E4M3FNUZ/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_no_saturate_FLOAT16_to_FLOAT8E4M3FNUZ/test_data_set_0/input_0.pb +2 -2
- onnx/backend/test/data/node/test_cast_no_saturate_FLOAT16_to_FLOAT8E4M3FNUZ/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_no_saturate_FLOAT16_to_FLOAT8E5M2/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_no_saturate_FLOAT16_to_FLOAT8E5M2/test_data_set_0/input_0.pb +2 -2
- onnx/backend/test/data/node/test_cast_no_saturate_FLOAT16_to_FLOAT8E5M2/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_no_saturate_FLOAT16_to_FLOAT8E5M2FNUZ/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_no_saturate_FLOAT16_to_FLOAT8E5M2FNUZ/test_data_set_0/input_0.pb +2 -2
- onnx/backend/test/data/node/test_cast_no_saturate_FLOAT16_to_FLOAT8E5M2FNUZ/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_no_saturate_FLOAT_to_FLOAT8E4M3FN/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_no_saturate_FLOAT_to_FLOAT8E4M3FN/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_no_saturate_FLOAT_to_FLOAT8E4M3FN/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_no_saturate_FLOAT_to_FLOAT8E4M3FNUZ/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_no_saturate_FLOAT_to_FLOAT8E4M3FNUZ/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_no_saturate_FLOAT_to_FLOAT8E4M3FNUZ/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_no_saturate_FLOAT_to_FLOAT8E5M2/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_no_saturate_FLOAT_to_FLOAT8E5M2/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_no_saturate_FLOAT_to_FLOAT8E5M2/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_no_saturate_FLOAT_to_FLOAT8E5M2FNUZ/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_no_saturate_FLOAT_to_FLOAT8E5M2FNUZ/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_no_saturate_FLOAT_to_FLOAT8E5M2FNUZ/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_castlike_BFLOAT16_to_FLOAT/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_BFLOAT16_to_FLOAT_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_DOUBLE_to_FLOAT/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_DOUBLE_to_FLOAT16/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_DOUBLE_to_FLOAT16_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_DOUBLE_to_FLOAT_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT16_to_DOUBLE/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT16_to_DOUBLE_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT16_to_FLOAT/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT16_to_FLOAT_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT8E4M3FNUZ_to_FLOAT/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT8E4M3FNUZ_to_FLOAT_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT8E4M3FN_to_FLOAT/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT8E4M3FN_to_FLOAT_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT8E5M2FNUZ_to_FLOAT/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT8E5M2FNUZ_to_FLOAT_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT8E5M2_to_FLOAT/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT8E5M2_to_FLOAT_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT_to_BFLOAT16/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT_to_BFLOAT16_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT_to_DOUBLE/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT_to_DOUBLE_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT16/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT16_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT8E4M3FN/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT8E4M3FNUZ/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT8E4M3FNUZ_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT8E4M3FN_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT8E5M2/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT8E5M2FNUZ/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT8E5M2FNUZ_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT8E5M2_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT_to_STRING/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT_to_STRING_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_STRING_to_FLOAT/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_STRING_to_FLOAT_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_constant/model.onnx +0 -0
- onnx/backend/test/data/node/test_constant_pad/model.onnx +0 -0
- onnx/backend/test/data/node/test_constant_pad_axes/model.onnx +0 -0
- onnx/backend/test/data/node/test_constant_pad_negative_axes/model.onnx +0 -0
- onnx/backend/test/data/node/test_constantofshape_float_ones/model.onnx +0 -0
- onnx/backend/test/data/node/test_constantofshape_int_shape_zero/model.onnx +0 -0
- onnx/backend/test/data/node/test_constantofshape_int_zeros/model.onnx +0 -0
- onnx/backend/test/data/node/test_dequantizelinear/model.onnx +0 -0
- onnx/backend/test/data/node/test_dequantizelinear_axis/model.onnx +0 -0
- onnx/backend/test/data/node/test_dequantizelinear_blocked/model.onnx +0 -0
- onnx/backend/test/data/node/test_dequantizelinear_blocked/test_data_set_0/input_0.pb +1 -0
- onnx/backend/test/data/node/test_dequantizelinear_blocked/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_dequantizelinear_blocked/test_data_set_0/input_2.pb +0 -0
- onnx/backend/test/data/node/test_dequantizelinear_blocked/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_dequantizelinear_e4m3fn/model.onnx +0 -0
- onnx/backend/test/data/node/test_dequantizelinear_e4m3fn_float16/model.onnx +0 -0
- onnx/backend/test/data/node/test_dequantizelinear_e4m3fn_zero_point/model.onnx +0 -0
- onnx/backend/test/data/node/test_dequantizelinear_e5m2/model.onnx +0 -0
- onnx/backend/test/data/node/test_dequantizelinear_int16/model.onnx +0 -0
- onnx/backend/test/data/node/test_dequantizelinear_int16/test_data_set_0/input_0.pb +1 -0
- onnx/backend/test/data/node/test_dequantizelinear_int16/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_dequantizelinear_int16/test_data_set_0/input_2.pb +0 -0
- onnx/backend/test/data/node/test_dequantizelinear_int16/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_dequantizelinear_int4/model.onnx +0 -0
- onnx/backend/test/data/node/test_dequantizelinear_int4/test_data_set_0/input_0.pb +1 -0
- onnx/backend/test/data/node/test_dequantizelinear_int4/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_dequantizelinear_int4/test_data_set_0/input_2.pb +1 -0
- onnx/backend/test/data/node/test_dequantizelinear_int4/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_dequantizelinear_uint16/model.onnx +0 -0
- onnx/backend/test/data/node/test_dequantizelinear_uint16/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_dequantizelinear_uint16/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_dequantizelinear_uint16/test_data_set_0/input_2.pb +1 -0
- onnx/backend/test/data/node/test_dequantizelinear_uint16/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_dequantizelinear_uint4/model.onnx +0 -0
- onnx/backend/test/data/node/test_dequantizelinear_uint4/test_data_set_0/input_0.pb +1 -0
- onnx/backend/test/data/node/test_dequantizelinear_uint4/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_dequantizelinear_uint4/test_data_set_0/input_2.pb +1 -0
- onnx/backend/test/data/node/test_dequantizelinear_uint4/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_edge_pad/model.onnx +0 -0
- onnx/backend/test/data/node/test_flatten_axis0/model.onnx +0 -0
- onnx/backend/test/data/node/test_flatten_axis1/model.onnx +0 -0
- onnx/backend/test/data/node/test_flatten_axis2/model.onnx +0 -0
- onnx/backend/test/data/node/test_flatten_axis3/model.onnx +0 -0
- onnx/backend/test/data/node/test_flatten_default_axis/model.onnx +0 -0
- onnx/backend/test/data/node/test_flatten_negative_axis1/model.onnx +0 -0
- onnx/backend/test/data/node/test_flatten_negative_axis2/model.onnx +0 -0
- onnx/backend/test/data/node/test_flatten_negative_axis3/model.onnx +0 -0
- onnx/backend/test/data/node/test_flatten_negative_axis4/model.onnx +0 -0
- onnx/backend/test/data/node/test_group_normalization_epsilon/model.onnx +0 -0
- onnx/backend/test/data/node/test_group_normalization_epsilon/test_data_set_0/input_0.pb +1 -1
- onnx/backend/test/data/node/test_group_normalization_epsilon/test_data_set_0/input_1.pb +1 -1
- onnx/backend/test/data/node/test_group_normalization_epsilon/test_data_set_0/input_2.pb +1 -1
- onnx/backend/test/data/node/test_group_normalization_epsilon/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_group_normalization_epsilon_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_group_normalization_epsilon_expanded/test_data_set_0/input_0.pb +1 -1
- onnx/backend/test/data/node/test_group_normalization_epsilon_expanded/test_data_set_0/input_1.pb +1 -1
- onnx/backend/test/data/node/test_group_normalization_epsilon_expanded/test_data_set_0/input_2.pb +1 -1
- onnx/backend/test/data/node/test_group_normalization_epsilon_expanded/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_group_normalization_example/model.onnx +0 -0
- onnx/backend/test/data/node/test_group_normalization_example/test_data_set_0/input_1.pb +1 -1
- onnx/backend/test/data/node/test_group_normalization_example/test_data_set_0/input_2.pb +1 -1
- onnx/backend/test/data/node/test_group_normalization_example/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_group_normalization_example_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_group_normalization_example_expanded/test_data_set_0/input_1.pb +1 -1
- onnx/backend/test/data/node/test_group_normalization_example_expanded/test_data_set_0/input_2.pb +1 -1
- onnx/backend/test/data/node/test_group_normalization_example_expanded/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_identity/model.onnx +0 -0
- onnx/backend/test/data/node/test_identity_sequence/model.onnx +0 -0
- onnx/backend/test/data/node/test_lrn_default/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_maxpool_2d_ceil_output_size_reduce_by_one/model.onnx +0 -0
- onnx/backend/test/data/node/test_maxpool_2d_ceil_output_size_reduce_by_one/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_maxpool_2d_ceil_output_size_reduce_by_one/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_mvn/test_data_set_0/output_0.pb +1 -1
- onnx/backend/test/data/node/test_mvn_expanded/test_data_set_0/output_0.pb +1 -1
- onnx/backend/test/data/node/test_mvn_expanded_ver18/test_data_set_0/output_0.pb +1 -1
- onnx/backend/test/data/node/test_pow/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_qlinearmatmul_2D_int8_float16/model.onnx +0 -0
- onnx/backend/test/data/node/test_qlinearmatmul_2D_int8_float16/test_data_set_0/input_0.pb +1 -0
- onnx/backend/test/data/node/test_qlinearmatmul_2D_int8_float16/test_data_set_0/input_1.pb +2 -0
- onnx/backend/test/data/node/test_qlinearmatmul_2D_int8_float16/test_data_set_0/input_2.pb +1 -0
- onnx/backend/test/data/node/test_qlinearmatmul_2D_int8_float16/test_data_set_0/input_3.pb +0 -0
- onnx/backend/test/data/node/test_qlinearmatmul_2D_int8_float16/test_data_set_0/input_4.pb +2 -0
- onnx/backend/test/data/node/test_qlinearmatmul_2D_int8_float16/test_data_set_0/input_5.pb +1 -0
- onnx/backend/test/data/node/test_qlinearmatmul_2D_int8_float16/test_data_set_0/input_6.pb +2 -0
- onnx/backend/test/data/node/test_qlinearmatmul_2D_int8_float16/test_data_set_0/input_7.pb +1 -0
- onnx/backend/test/data/node/test_qlinearmatmul_2D_int8_float16/test_data_set_0/output_0.pb +1 -0
- onnx/backend/test/data/node/test_qlinearmatmul_2D_int8_float32/model.onnx +0 -0
- onnx/backend/test/data/node/test_qlinearmatmul_2D_int8_float32/test_data_set_0/input_0.pb +1 -0
- onnx/backend/test/data/node/test_qlinearmatmul_2D_int8_float32/test_data_set_0/input_2.pb +1 -0
- onnx/backend/test/data/node/test_qlinearmatmul_2D_int8_float32/test_data_set_0/input_3.pb +0 -0
- onnx/backend/test/data/node/test_qlinearmatmul_2D_int8_float32/test_data_set_0/input_5.pb +1 -0
- onnx/backend/test/data/node/test_qlinearmatmul_2D_int8_float32/test_data_set_0/input_7.pb +1 -0
- onnx/backend/test/data/node/test_qlinearmatmul_2D_int8_float32/test_data_set_0/output_0.pb +1 -0
- onnx/backend/test/data/node/test_qlinearmatmul_2D_uint8_float16/model.onnx +0 -0
- onnx/backend/test/data/node/test_qlinearmatmul_2D_uint8_float16/test_data_set_0/input_1.pb +2 -0
- onnx/backend/test/data/node/test_qlinearmatmul_2D_uint8_float16/test_data_set_0/input_4.pb +2 -0
- onnx/backend/test/data/node/test_qlinearmatmul_2D_uint8_float16/test_data_set_0/input_6.pb +2 -0
- onnx/backend/test/data/node/{test_qlinearmatmul_2D → test_qlinearmatmul_2D_uint8_float32}/model.onnx +0 -0
- onnx/backend/test/data/node/test_qlinearmatmul_2D_uint8_float32/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_qlinearmatmul_2D_uint8_float32/test_data_set_0/input_3.pb +0 -0
- onnx/backend/test/data/node/test_qlinearmatmul_2D_uint8_float32/test_data_set_0/output_0.pb +1 -0
- onnx/backend/test/data/node/test_qlinearmatmul_3D_int8_float16/model.onnx +0 -0
- onnx/backend/test/data/node/test_qlinearmatmul_3D_int8_float16/test_data_set_0/input_0.pb +1 -0
- onnx/backend/test/data/node/test_qlinearmatmul_3D_int8_float16/test_data_set_0/input_1.pb +2 -0
- onnx/backend/test/data/node/test_qlinearmatmul_3D_int8_float16/test_data_set_0/input_2.pb +1 -0
- onnx/backend/test/data/node/test_qlinearmatmul_3D_int8_float16/test_data_set_0/input_3.pb +0 -0
- onnx/backend/test/data/node/test_qlinearmatmul_3D_int8_float16/test_data_set_0/input_4.pb +2 -0
- onnx/backend/test/data/node/test_qlinearmatmul_3D_int8_float16/test_data_set_0/input_5.pb +1 -0
- onnx/backend/test/data/node/test_qlinearmatmul_3D_int8_float16/test_data_set_0/input_6.pb +2 -0
- onnx/backend/test/data/node/test_qlinearmatmul_3D_int8_float16/test_data_set_0/input_7.pb +1 -0
- onnx/backend/test/data/node/test_qlinearmatmul_3D_int8_float16/test_data_set_0/output_0.pb +1 -0
- onnx/backend/test/data/node/test_qlinearmatmul_3D_int8_float32/model.onnx +0 -0
- onnx/backend/test/data/node/test_qlinearmatmul_3D_int8_float32/test_data_set_0/input_0.pb +1 -0
- onnx/backend/test/data/node/test_qlinearmatmul_3D_int8_float32/test_data_set_0/input_1.pb +1 -0
- onnx/backend/test/data/node/test_qlinearmatmul_3D_int8_float32/test_data_set_0/input_2.pb +1 -0
- onnx/backend/test/data/node/test_qlinearmatmul_3D_int8_float32/test_data_set_0/input_3.pb +0 -0
- onnx/backend/test/data/node/test_qlinearmatmul_3D_int8_float32/test_data_set_0/input_4.pb +1 -0
- onnx/backend/test/data/node/test_qlinearmatmul_3D_int8_float32/test_data_set_0/input_5.pb +1 -0
- onnx/backend/test/data/node/test_qlinearmatmul_3D_int8_float32/test_data_set_0/input_6.pb +1 -0
- onnx/backend/test/data/node/test_qlinearmatmul_3D_int8_float32/test_data_set_0/input_7.pb +1 -0
- onnx/backend/test/data/node/test_qlinearmatmul_3D_int8_float32/test_data_set_0/output_0.pb +1 -0
- onnx/backend/test/data/node/test_qlinearmatmul_3D_uint8_float16/model.onnx +0 -0
- onnx/backend/test/data/node/test_qlinearmatmul_3D_uint8_float16/test_data_set_0/input_1.pb +2 -0
- onnx/backend/test/data/node/test_qlinearmatmul_3D_uint8_float16/test_data_set_0/input_2.pb +1 -0
- onnx/backend/test/data/node/test_qlinearmatmul_3D_uint8_float16/test_data_set_0/input_4.pb +2 -0
- onnx/backend/test/data/node/test_qlinearmatmul_3D_uint8_float16/test_data_set_0/input_5.pb +1 -0
- onnx/backend/test/data/node/test_qlinearmatmul_3D_uint8_float16/test_data_set_0/input_6.pb +2 -0
- onnx/backend/test/data/node/test_qlinearmatmul_3D_uint8_float16/test_data_set_0/input_7.pb +1 -0
- onnx/backend/test/data/node/{test_qlinearmatmul_3D → test_qlinearmatmul_3D_uint8_float32}/model.onnx +0 -0
- onnx/backend/test/data/node/test_qlinearmatmul_3D_uint8_float32/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_qlinearmatmul_3D_uint8_float32/test_data_set_0/input_1.pb +1 -0
- onnx/backend/test/data/node/test_qlinearmatmul_3D_uint8_float32/test_data_set_0/input_2.pb +1 -0
- onnx/backend/test/data/node/test_qlinearmatmul_3D_uint8_float32/test_data_set_0/input_3.pb +0 -0
- onnx/backend/test/data/node/test_qlinearmatmul_3D_uint8_float32/test_data_set_0/input_4.pb +1 -0
- onnx/backend/test/data/node/test_qlinearmatmul_3D_uint8_float32/test_data_set_0/input_5.pb +1 -0
- onnx/backend/test/data/node/test_qlinearmatmul_3D_uint8_float32/test_data_set_0/input_6.pb +1 -0
- onnx/backend/test/data/node/test_qlinearmatmul_3D_uint8_float32/test_data_set_0/input_7.pb +1 -0
- onnx/backend/test/data/node/test_qlinearmatmul_3D_uint8_float32/test_data_set_0/output_0.pb +1 -0
- onnx/backend/test/data/node/test_quantizelinear/model.onnx +0 -0
- onnx/backend/test/data/node/test_quantizelinear_axis/model.onnx +0 -0
- onnx/backend/test/data/node/test_quantizelinear_blocked_asymmetric/model.onnx +0 -0
- onnx/backend/test/data/node/test_quantizelinear_blocked_asymmetric/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_quantizelinear_blocked_asymmetric/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_quantizelinear_blocked_asymmetric/test_data_set_0/input_2.pb +0 -0
- onnx/backend/test/data/node/test_quantizelinear_blocked_asymmetric/test_data_set_0/output_0.pb +1 -0
- onnx/backend/test/data/node/test_quantizelinear_blocked_symmetric/model.onnx +0 -0
- onnx/backend/test/data/node/test_quantizelinear_blocked_symmetric/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_quantizelinear_blocked_symmetric/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_quantizelinear_blocked_symmetric/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_quantizelinear_e4m3fn/model.onnx +0 -0
- onnx/backend/test/data/node/test_quantizelinear_e4m3fn/test_data_set_0/input_2.pb +0 -0
- onnx/backend/test/data/node/test_quantizelinear_e4m3fn/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_quantizelinear_e5m2/model.onnx +0 -0
- onnx/backend/test/data/node/test_quantizelinear_e5m2/test_data_set_0/input_2.pb +0 -0
- onnx/backend/test/data/node/test_quantizelinear_e5m2/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_quantizelinear_int16/model.onnx +0 -0
- onnx/backend/test/data/node/test_quantizelinear_int16/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_quantizelinear_int16/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_quantizelinear_int16/test_data_set_0/input_2.pb +0 -0
- onnx/backend/test/data/node/test_quantizelinear_int16/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_quantizelinear_int4/model.onnx +0 -0
- onnx/backend/test/data/node/test_quantizelinear_int4/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_quantizelinear_int4/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_quantizelinear_int4/test_data_set_0/input_2.pb +1 -0
- onnx/backend/test/data/node/test_quantizelinear_int4/test_data_set_0/output_0.pb +1 -0
- onnx/backend/test/data/node/test_quantizelinear_uint16/model.onnx +0 -0
- onnx/backend/test/data/node/test_quantizelinear_uint16/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_quantizelinear_uint16/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_quantizelinear_uint16/test_data_set_0/input_2.pb +1 -0
- onnx/backend/test/data/node/test_quantizelinear_uint16/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_quantizelinear_uint4/model.onnx +0 -0
- onnx/backend/test/data/node/test_quantizelinear_uint4/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_quantizelinear_uint4/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_quantizelinear_uint4/test_data_set_0/input_2.pb +1 -0
- onnx/backend/test/data/node/test_quantizelinear_uint4/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_reflect_pad/model.onnx +0 -0
- onnx/backend/test/data/node/test_reshape_allowzero_reordered/model.onnx +0 -0
- onnx/backend/test/data/node/test_reshape_extended_dims/model.onnx +0 -0
- onnx/backend/test/data/node/test_reshape_negative_dim/model.onnx +0 -0
- onnx/backend/test/data/node/test_reshape_negative_extended_dims/model.onnx +0 -0
- onnx/backend/test/data/node/test_reshape_one_dim/model.onnx +0 -0
- onnx/backend/test/data/node/test_reshape_reduced_dims/model.onnx +0 -0
- onnx/backend/test/data/node/test_reshape_reordered_all_dims/model.onnx +0 -0
- onnx/backend/test/data/node/test_reshape_reordered_last_dims/model.onnx +0 -0
- onnx/backend/test/data/node/test_reshape_zero_and_negative_dim/model.onnx +0 -0
- onnx/backend/test/data/node/test_reshape_zero_dim/model.onnx +0 -0
- onnx/backend/test/data/node/test_shape/model.onnx +0 -0
- onnx/backend/test/data/node/test_shape_clip_end/model.onnx +0 -0
- onnx/backend/test/data/node/test_shape_clip_start/model.onnx +0 -0
- onnx/backend/test/data/node/test_shape_end_1/model.onnx +0 -0
- onnx/backend/test/data/node/test_shape_end_negative_1/model.onnx +0 -0
- onnx/backend/test/data/node/test_shape_example/model.onnx +0 -0
- onnx/backend/test/data/node/test_shape_start_1/model.onnx +0 -0
- onnx/backend/test/data/node/test_shape_start_1_end_2/model.onnx +0 -0
- onnx/backend/test/data/node/test_shape_start_1_end_negative_1/model.onnx +0 -0
- onnx/backend/test/data/node/test_shape_start_negative_1/model.onnx +0 -0
- onnx/backend/test/data/node/test_size/model.onnx +0 -0
- onnx/backend/test/data/node/test_size_example/model.onnx +0 -0
- onnx/backend/test/data/node/test_squeeze/model.onnx +0 -0
- onnx/backend/test/data/node/test_squeeze_negative_axes/model.onnx +0 -0
- onnx/backend/test/data/node/test_transpose_all_permutations_0/model.onnx +0 -0
- onnx/backend/test/data/node/test_transpose_all_permutations_1/model.onnx +0 -0
- onnx/backend/test/data/node/test_transpose_all_permutations_2/model.onnx +0 -0
- onnx/backend/test/data/node/test_transpose_all_permutations_3/model.onnx +0 -0
- onnx/backend/test/data/node/test_transpose_all_permutations_4/model.onnx +0 -0
- onnx/backend/test/data/node/test_transpose_all_permutations_5/model.onnx +0 -0
- onnx/backend/test/data/node/test_transpose_default/model.onnx +0 -0
- onnx/backend/test/data/node/test_unsqueeze_axis_0/model.onnx +0 -0
- onnx/backend/test/data/node/test_unsqueeze_axis_1/model.onnx +0 -0
- onnx/backend/test/data/node/test_unsqueeze_axis_2/model.onnx +0 -0
- onnx/backend/test/data/node/test_unsqueeze_negative_axes/model.onnx +0 -0
- onnx/backend/test/data/node/test_unsqueeze_three_axes/model.onnx +0 -0
- onnx/backend/test/data/node/test_unsqueeze_two_axes/model.onnx +0 -0
- onnx/backend/test/data/node/test_unsqueeze_unsorted_axes/model.onnx +0 -0
- onnx/backend/test/data/node/test_wrap_pad/model.onnx +0 -0
- onnx/backend/test/loader/__init__.py +0 -1
- onnx/backend/test/runner/__init__.py +43 -15
- onnx/checker.cc +104 -99
- onnx/checker.h +23 -3
- onnx/checker.py +56 -20
- onnx/common/assertions.cc +10 -5
- onnx/common/common.h +19 -0
- onnx/common/file_utils.h +3 -1
- onnx/common/interned_strings.h +7 -1
- onnx/common/ir.h +30 -7
- onnx/common/ir_pb_converter.cc +6 -0
- onnx/common/path.h +18 -2
- onnx/common/proto_util.h +43 -0
- onnx/common/version.h +1 -1
- onnx/cpp2py_export.cc +88 -56
- onnx/defs/__init__.py +29 -8
- onnx/defs/controlflow/defs.cc +16 -16
- onnx/defs/controlflow/old.cc +177 -0
- onnx/defs/data_propagators.h +2 -0
- onnx/defs/data_type_utils.cc +2 -0
- onnx/defs/generator/defs.cc +6 -4
- onnx/defs/generator/old.cc +115 -0
- onnx/defs/math/defs.cc +37 -142
- onnx/defs/math/old.cc +96 -12
- onnx/defs/math/utils.cc +127 -0
- onnx/defs/math/utils.h +8 -0
- onnx/defs/nn/defs.cc +72 -59
- onnx/defs/nn/old.cc +181 -2
- onnx/defs/object_detection/defs.cc +2 -2
- onnx/defs/object_detection/old.cc +2 -2
- onnx/defs/operator_sets.h +51 -0
- onnx/defs/operator_sets_ml.h +14 -0
- onnx/defs/parser.cc +112 -54
- onnx/defs/parser.h +14 -2
- onnx/defs/printer.cc +14 -7
- onnx/defs/quantization/defs.cc +111 -44
- onnx/defs/quantization/old.cc +130 -1
- onnx/defs/schema.cc +62 -18
- onnx/defs/schema.h +194 -48
- onnx/defs/shape_inference.cc +28 -19
- onnx/defs/shape_inference.h +2 -0
- onnx/defs/tensor/defs.cc +54 -96
- onnx/defs/tensor/old.cc +939 -34
- onnx/defs/tensor/utils.cc +6 -3
- onnx/defs/tensor/utils.h +5 -1
- onnx/defs/tensor_proto_util.cc +2 -0
- onnx/defs/tensor_util.cc +2 -0
- onnx/defs/traditionalml/defs.cc +273 -117
- onnx/defs/traditionalml/old.cc +329 -14
- onnx/defs/traditionalml/utils.h +27 -0
- onnx/external_data_helper.py +12 -26
- onnx/helper.py +242 -169
- onnx/hub.py +104 -70
- onnx/inliner/inliner.cc +89 -31
- onnx/inliner/inliner.h +5 -0
- onnx/inliner.py +2 -0
- onnx/mapping.py +9 -0
- onnx/model_container.py +346 -0
- onnx/numpy_helper.py +100 -38
- onnx/onnx-ml.proto +50 -13
- onnx/onnx.in.proto +50 -13
- onnx/onnx.proto +50 -13
- onnx/onnx_cpp2py_export/__init__.pyi +5 -0
- onnx/onnx_cpp2py_export/checker.pyi +21 -0
- onnx/onnx_cpp2py_export/defs.pyi +202 -0
- onnx/onnx_cpp2py_export/inliner.pyi +19 -0
- onnx/onnx_cpp2py_export/parser.pyi +32 -0
- onnx/onnx_cpp2py_export/printer.pyi +3 -0
- onnx/onnx_cpp2py_export/shape_inference.pyi +16 -0
- onnx/onnx_cpp2py_export/version_converter.pyi +4 -0
- onnx/onnx_cpp2py_export.cp310-win32.pyd +0 -0
- onnx/onnx_data_pb2.pyi +146 -0
- onnx/onnx_ml_pb2.py +52 -52
- onnx/onnx_ml_pb2.pyi +663 -0
- onnx/onnx_operators_ml_pb2.pyi +67 -0
- onnx/reference/__init__.py +2 -0
- onnx/reference/custom_element_types.py +2 -0
- onnx/reference/op_run.py +166 -121
- onnx/reference/ops/_op.py +27 -50
- onnx/reference/ops/_op_list.py +36 -24
- onnx/reference/ops/aionnx_preview_training/_op_list.py +15 -8
- onnx/reference/ops/aionnxml/_common_classifier.py +3 -5
- onnx/reference/ops/aionnxml/_op_list.py +16 -8
- onnx/reference/ops/aionnxml/op_array_feature_extractor.py +4 -6
- onnx/reference/ops/aionnxml/op_linear_classifier.py +1 -2
- onnx/reference/ops/aionnxml/op_normalizer.py +3 -3
- onnx/reference/ops/aionnxml/op_svm_helper.py +1 -3
- onnx/reference/ops/aionnxml/op_svm_regressor.py +1 -3
- onnx/reference/ops/aionnxml/op_tree_ensemble.py +257 -0
- onnx/reference/ops/aionnxml/op_tree_ensemble_helper.py +2 -6
- onnx/reference/ops/aionnxml/op_tree_ensemble_regressor.py +4 -4
- onnx/reference/ops/experimental/_op_list.py +15 -8
- onnx/reference/ops/op_blackman_window.py +5 -6
- onnx/reference/ops/op_cast.py +22 -0
- onnx/reference/ops/op_cast_like.py +6 -0
- onnx/reference/ops/op_clip.py +5 -8
- onnx/reference/ops/op_col2im.py +1 -3
- onnx/reference/ops/op_constant.py +7 -1
- onnx/reference/ops/op_dequantize_linear.py +43 -40
- onnx/reference/ops/op_det.py +1 -1
- onnx/reference/ops/op_dynamic_quantize_linear.py +2 -2
- onnx/reference/ops/op_grid_sample.py +2 -4
- onnx/reference/ops/op_hamming_window.py +3 -6
- onnx/reference/ops/op_hann_window.py +3 -6
- onnx/reference/ops/op_if.py +4 -3
- onnx/reference/ops/op_loop.py +7 -9
- onnx/reference/ops/op_matmul.py +1 -2
- onnx/reference/ops/op_max_pool.py +5 -0
- onnx/reference/ops/op_optional.py +1 -1
- onnx/reference/ops/op_pool_common.py +3 -6
- onnx/reference/ops/op_qlinear_matmul.py +2 -2
- onnx/reference/ops/op_quantize_linear.py +166 -71
- onnx/reference/ops/op_resize.py +25 -21
- onnx/reference/ops/op_rnn.py +20 -12
- onnx/reference/ops/op_scan.py +23 -15
- onnx/reference/ops/op_scatter_elements.py +7 -6
- onnx/reference/ops/op_stft.py +3 -5
- onnx/reference/ops/op_string_normalizer.py +7 -7
- onnx/reference/ops/op_tfidf_vectorizer.py +7 -8
- onnx/reference/ops/op_topk.py +9 -11
- onnx/reference/ops/op_unique.py +1 -1
- onnx/reference/reference_evaluator.py +119 -63
- onnx/shape_inference/implementation.cc +160 -127
- onnx/shape_inference.py +11 -10
- onnx/subbyte.py +72 -0
- onnx/test/__init__.pyi +6 -0
- onnx/test/checker_test.py +21 -1
- onnx/test/compose_test.py +26 -74
- onnx/test/cpp/inliner_test.cc +76 -1
- onnx/test/cpp/ir_test.cc +60 -0
- onnx/test/cpp/parser_test.cc +106 -0
- onnx/test/function_test.py +1 -3
- onnx/test/helper_test.py +64 -4
- onnx/test/model_container_refeval_test.py +139 -0
- onnx/test/model_container_test.py +136 -0
- onnx/test/model_inference_test.py +44 -0
- onnx/test/reference_evaluator_ml_test.py +448 -47
- onnx/test/reference_evaluator_model_test.py +130 -0
- onnx/test/reference_evaluator_test.py +901 -14
- onnx/test/schema_test.py +166 -1
- onnx/test/shape_inference_test.py +285 -6
- onnx/test/symbolic_shape_test.py +3 -8
- onnx/test/test_backend_onnxruntime.py +238 -224
- onnx/test/test_backend_reference.py +11 -0
- onnx/test/test_external_data.py +51 -2
- onnx/test/version_converter/automatic_conversion_test_base.py +2 -1
- onnx/test/version_converter/automatic_upgrade_test.py +12 -10
- onnx/test/version_converter_test.py +166 -0
- onnx/tools/replace_constants.py +23 -26
- onnx/tools/update_model_dims.py +1 -2
- onnx/version.py +2 -2
- onnx/version_converter/adapters/group_normalization_20_21.h +128 -0
- onnx/version_converter/adapters/q_dq_21_20.h +77 -0
- onnx/version_converter/convert.h +67 -2
- onnx/version_converter.py +6 -142
- {onnx-1.15.0.dist-info → onnx-1.16.1.dist-info}/METADATA +18 -15
- {onnx-1.15.0.dist-info → onnx-1.16.1.dist-info}/RECORD +572 -406
- {onnx-1.15.0.dist-info → onnx-1.16.1.dist-info}/WHEEL +1 -1
- onnx/examples/Protobufs.ipynb +0 -639
- onnx/examples/check_model.ipynb +0 -128
- onnx/examples/load_model.ipynb +0 -116
- onnx/examples/make_model.ipynb +0 -176
- onnx/examples/np_array_tensorproto.ipynb +0 -136
- onnx/examples/resources/single_relu.onnx +0 -12
- onnx/examples/resources/single_relu_new.onnx +0 -12
- onnx/examples/resources/tensor.pb +0 -0
- onnx/examples/resources/two_transposes.onnx +0 -0
- onnx/examples/save_model.ipynb +0 -56
- onnx/examples/shape_inference.ipynb +0 -111
- onnx/test/reference_evaluator_backend_test.py +0 -876
- /onnx/backend/test/data/node/{test_qlinearmatmul_2D → test_qlinearmatmul_2D_int8_float32}/test_data_set_0/input_1.pb +0 -0
- /onnx/backend/test/data/node/{test_qlinearmatmul_2D → test_qlinearmatmul_2D_int8_float32}/test_data_set_0/input_4.pb +0 -0
- /onnx/backend/test/data/node/{test_qlinearmatmul_2D → test_qlinearmatmul_2D_int8_float32}/test_data_set_0/input_6.pb +0 -0
- /onnx/backend/test/data/node/{test_qlinearmatmul_2D → test_qlinearmatmul_2D_uint8_float16}/test_data_set_0/input_0.pb +0 -0
- /onnx/backend/test/data/node/{test_qlinearmatmul_2D → test_qlinearmatmul_2D_uint8_float16}/test_data_set_0/input_2.pb +0 -0
- /onnx/backend/test/data/node/{test_qlinearmatmul_2D → test_qlinearmatmul_2D_uint8_float16}/test_data_set_0/input_3.pb +0 -0
- /onnx/backend/test/data/node/{test_qlinearmatmul_2D → test_qlinearmatmul_2D_uint8_float16}/test_data_set_0/input_5.pb +0 -0
- /onnx/backend/test/data/node/{test_qlinearmatmul_2D → test_qlinearmatmul_2D_uint8_float16}/test_data_set_0/input_7.pb +0 -0
- /onnx/backend/test/data/node/{test_qlinearmatmul_2D → test_qlinearmatmul_2D_uint8_float16}/test_data_set_0/output_0.pb +0 -0
- /onnx/backend/test/data/node/{test_qlinearmatmul_3D → test_qlinearmatmul_2D_uint8_float32}/test_data_set_0/input_1.pb +0 -0
- /onnx/backend/test/data/node/{test_qlinearmatmul_3D → test_qlinearmatmul_2D_uint8_float32}/test_data_set_0/input_2.pb +0 -0
- /onnx/backend/test/data/node/{test_qlinearmatmul_3D → test_qlinearmatmul_2D_uint8_float32}/test_data_set_0/input_4.pb +0 -0
- /onnx/backend/test/data/node/{test_qlinearmatmul_3D → test_qlinearmatmul_2D_uint8_float32}/test_data_set_0/input_5.pb +0 -0
- /onnx/backend/test/data/node/{test_qlinearmatmul_3D → test_qlinearmatmul_2D_uint8_float32}/test_data_set_0/input_6.pb +0 -0
- /onnx/backend/test/data/node/{test_qlinearmatmul_3D → test_qlinearmatmul_2D_uint8_float32}/test_data_set_0/input_7.pb +0 -0
- /onnx/backend/test/data/node/{test_qlinearmatmul_3D → test_qlinearmatmul_3D_uint8_float16}/test_data_set_0/input_0.pb +0 -0
- /onnx/backend/test/data/node/{test_qlinearmatmul_3D → test_qlinearmatmul_3D_uint8_float16}/test_data_set_0/input_3.pb +0 -0
- /onnx/backend/test/data/node/{test_qlinearmatmul_3D → test_qlinearmatmul_3D_uint8_float16}/test_data_set_0/output_0.pb +0 -0
- {onnx-1.15.0.dist-info → onnx-1.16.1.dist-info}/LICENSE +0 -0
- {onnx-1.15.0.dist-info → onnx-1.16.1.dist-info}/entry_points.txt +0 -0
- {onnx-1.15.0.dist-info → onnx-1.16.1.dist-info}/top_level.txt +0 -0
|
@@ -149,3 +149,158 @@ class DequantizeLinear(Base):
|
|
|
149
149
|
outputs=[y],
|
|
150
150
|
name="test_dequantizelinear_e5m2",
|
|
151
151
|
)
|
|
152
|
+
|
|
153
|
+
@staticmethod
|
|
154
|
+
def export_uint16() -> None:
|
|
155
|
+
node = onnx.helper.make_node(
|
|
156
|
+
"DequantizeLinear",
|
|
157
|
+
inputs=["x", "x_scale", "x_zero_point"],
|
|
158
|
+
outputs=["y"],
|
|
159
|
+
)
|
|
160
|
+
|
|
161
|
+
x = np.array([30000, 31000, 32768, 33000]).astype(np.uint16)
|
|
162
|
+
x_scale = np.float32(2)
|
|
163
|
+
x_zero_point = np.uint16(32767)
|
|
164
|
+
y = np.array([-5534.0, -3534.0, 2.0, 466.0], dtype=np.float32)
|
|
165
|
+
|
|
166
|
+
expect(
|
|
167
|
+
node,
|
|
168
|
+
inputs=[x, x_scale, x_zero_point],
|
|
169
|
+
outputs=[y],
|
|
170
|
+
name="test_dequantizelinear_uint16",
|
|
171
|
+
)
|
|
172
|
+
|
|
173
|
+
@staticmethod
|
|
174
|
+
def export_int16() -> None:
|
|
175
|
+
node = onnx.helper.make_node(
|
|
176
|
+
"DequantizeLinear",
|
|
177
|
+
inputs=["x", "x_scale", "x_zero_point"],
|
|
178
|
+
outputs=["y"],
|
|
179
|
+
)
|
|
180
|
+
|
|
181
|
+
x = np.array([-300, -30, -1025, 1270]).astype(np.int16)
|
|
182
|
+
x_scale = np.float32(2)
|
|
183
|
+
x_zero_point = np.int16(-1024)
|
|
184
|
+
y = np.array([1448.0, 1988.0, -2.0, 4588.0], dtype=np.float32)
|
|
185
|
+
|
|
186
|
+
expect(
|
|
187
|
+
node,
|
|
188
|
+
inputs=[x, x_scale, x_zero_point],
|
|
189
|
+
outputs=[y],
|
|
190
|
+
name="test_dequantizelinear_int16",
|
|
191
|
+
)
|
|
192
|
+
|
|
193
|
+
@staticmethod
|
|
194
|
+
def export_uint4() -> None:
|
|
195
|
+
node = onnx.helper.make_node(
|
|
196
|
+
"DequantizeLinear",
|
|
197
|
+
inputs=["x", "x_scale", "x_zero_point"],
|
|
198
|
+
outputs=["y"],
|
|
199
|
+
axis=0,
|
|
200
|
+
)
|
|
201
|
+
|
|
202
|
+
# scalar zero point and scale
|
|
203
|
+
x = make_tensor("x", TensorProto.UINT4, [5], [0, 1, 7, 10, 15])
|
|
204
|
+
x_scale = np.float32(2)
|
|
205
|
+
x_zero_point = make_tensor("x_zero_point", TensorProto.UINT4, (1,), [1])
|
|
206
|
+
y = np.array([-2, 0, 12, 18, 28], dtype=np.float32)
|
|
207
|
+
|
|
208
|
+
expect(
|
|
209
|
+
node,
|
|
210
|
+
inputs=[x, x_scale, x_zero_point],
|
|
211
|
+
outputs=[y],
|
|
212
|
+
name="test_dequantizelinear_uint4",
|
|
213
|
+
)
|
|
214
|
+
|
|
215
|
+
@staticmethod
|
|
216
|
+
def export_int4() -> None:
|
|
217
|
+
node = onnx.helper.make_node(
|
|
218
|
+
"DequantizeLinear",
|
|
219
|
+
inputs=["x", "x_scale", "x_zero_point"],
|
|
220
|
+
outputs=["y"],
|
|
221
|
+
axis=0,
|
|
222
|
+
)
|
|
223
|
+
|
|
224
|
+
# scalar zero point and scale
|
|
225
|
+
x = make_tensor("x", TensorProto.INT4, [5], [0, 1, 7, -4, -8])
|
|
226
|
+
x_scale = np.float32(2)
|
|
227
|
+
x_zero_point = make_tensor("x_zero_point", TensorProto.INT4, (1,), [1])
|
|
228
|
+
y = np.array([-2, 0, 12, -10, -18], dtype=np.float32)
|
|
229
|
+
|
|
230
|
+
expect(
|
|
231
|
+
node,
|
|
232
|
+
inputs=[x, x_scale, x_zero_point],
|
|
233
|
+
outputs=[y],
|
|
234
|
+
name="test_dequantizelinear_int4",
|
|
235
|
+
)
|
|
236
|
+
|
|
237
|
+
@staticmethod
|
|
238
|
+
def export_blocked() -> None:
|
|
239
|
+
node = onnx.helper.make_node(
|
|
240
|
+
"DequantizeLinear",
|
|
241
|
+
inputs=["x", "x_scale", "x_zero_point"],
|
|
242
|
+
outputs=["y"],
|
|
243
|
+
axis=1,
|
|
244
|
+
block_size=2,
|
|
245
|
+
)
|
|
246
|
+
|
|
247
|
+
x = np.array(
|
|
248
|
+
[
|
|
249
|
+
[
|
|
250
|
+
[[3, 89], [34, 200], [74, 59]],
|
|
251
|
+
[[5, 24], [24, 87], [32, 13]],
|
|
252
|
+
[[5, 12], [12, 33], [65, 42]],
|
|
253
|
+
[[245, 99], [4, 142], [121, 102]],
|
|
254
|
+
],
|
|
255
|
+
],
|
|
256
|
+
dtype=np.uint8,
|
|
257
|
+
)
|
|
258
|
+
|
|
259
|
+
x_scale = np.array(
|
|
260
|
+
[
|
|
261
|
+
[
|
|
262
|
+
[[3.0, 2.0], [4.0, 1.0], [2.0, 2.0]],
|
|
263
|
+
[[5.0, 2.0], [4.0, 3.0], [5.0, 2.0]],
|
|
264
|
+
],
|
|
265
|
+
],
|
|
266
|
+
dtype=np.float32,
|
|
267
|
+
)
|
|
268
|
+
x_zero_point = np.array(
|
|
269
|
+
[
|
|
270
|
+
[
|
|
271
|
+
[[1, 0], [0, 1], [2, 20]],
|
|
272
|
+
[[3, 2], [4, 3], [15, 2]],
|
|
273
|
+
],
|
|
274
|
+
],
|
|
275
|
+
dtype=np.uint8,
|
|
276
|
+
)
|
|
277
|
+
|
|
278
|
+
# x.shape = (1, 4, 3, 2)
|
|
279
|
+
# x_scale.shape = (1, 2, 3, 2)
|
|
280
|
+
assert x_scale.shape == x_zero_point.shape
|
|
281
|
+
block_axis = 1
|
|
282
|
+
# The block shape is [x.shape[i] // x_scale.shape[i] for i in range(len(x.shape))] = (1, 2, 1, 1)
|
|
283
|
+
assert all(
|
|
284
|
+
x.shape[i] == x_scale.shape[i]
|
|
285
|
+
for i in range(len(x.shape))
|
|
286
|
+
if i != block_axis
|
|
287
|
+
)
|
|
288
|
+
assert x.shape[block_axis] % x_scale.shape[block_axis] == 0
|
|
289
|
+
repeats = x.shape[block_axis] // x_scale.shape[block_axis]
|
|
290
|
+
|
|
291
|
+
# Create element-wise scale and zero point
|
|
292
|
+
x_scale_elementwise = np.repeat(x_scale, repeats=repeats, axis=block_axis)
|
|
293
|
+
x_zero_point_elementwise = np.repeat(
|
|
294
|
+
x_zero_point, repeats=repeats, axis=block_axis
|
|
295
|
+
)
|
|
296
|
+
|
|
297
|
+
y = (
|
|
298
|
+
x.astype(np.float32) - x_zero_point_elementwise.astype(np.float32)
|
|
299
|
+
) * x_scale_elementwise
|
|
300
|
+
|
|
301
|
+
expect(
|
|
302
|
+
node,
|
|
303
|
+
inputs=[x, x_scale, x_zero_point],
|
|
304
|
+
outputs=[y],
|
|
305
|
+
name="test_dequantizelinear_blocked",
|
|
306
|
+
)
|
|
@@ -20,20 +20,21 @@ def _group_normalization(x, num_groups, scale, bias, epsilon=1e-5):
|
|
|
20
20
|
axes = tuple(range(2, len(new_shape)))
|
|
21
21
|
mean = np.mean(x_reshaped, axis=axes, keepdims=True)
|
|
22
22
|
var = np.var(x_reshaped, axis=axes, keepdims=True)
|
|
23
|
-
|
|
23
|
+
x_normalized = ((x_reshaped - mean) / np.sqrt(var + epsilon)).reshape(x.shape)
|
|
24
|
+
dim_ones = (1,) * (len(x.shape) - 2)
|
|
24
25
|
scale = scale.reshape(-1, *dim_ones)
|
|
25
26
|
bias = bias.reshape(-1, *dim_ones)
|
|
26
|
-
|
|
27
|
-
return res.reshape(x.shape)
|
|
27
|
+
return scale * x_normalized + bias
|
|
28
28
|
|
|
29
29
|
|
|
30
30
|
class GroupNormalization(Base):
|
|
31
31
|
@staticmethod
|
|
32
32
|
def export() -> None:
|
|
33
|
-
|
|
33
|
+
c = 4
|
|
34
34
|
num_groups = 2
|
|
35
|
-
|
|
36
|
-
|
|
35
|
+
x = np.random.randn(3, c, 2, 2).astype(np.float32)
|
|
36
|
+
scale = np.random.randn(c).astype(np.float32)
|
|
37
|
+
bias = np.random.randn(c).astype(np.float32)
|
|
37
38
|
y = _group_normalization(x, num_groups, scale, bias).astype(np.float32)
|
|
38
39
|
|
|
39
40
|
node = onnx.helper.make_node(
|
|
@@ -50,10 +51,13 @@ class GroupNormalization(Base):
|
|
|
50
51
|
name="test_group_normalization_example",
|
|
51
52
|
)
|
|
52
53
|
|
|
53
|
-
|
|
54
|
+
@staticmethod
|
|
55
|
+
def export_epsilon() -> None:
|
|
56
|
+
c = 4
|
|
54
57
|
num_groups = 2
|
|
55
|
-
|
|
56
|
-
|
|
58
|
+
x = np.random.randn(3, c, 2, 2).astype(np.float32)
|
|
59
|
+
scale = np.random.randn(c).astype(np.float32)
|
|
60
|
+
bias = np.random.randn(c).astype(np.float32)
|
|
57
61
|
epsilon = 1e-2
|
|
58
62
|
y = _group_normalization(x, num_groups, scale, bias, epsilon).astype(np.float32)
|
|
59
63
|
|
|
@@ -37,7 +37,7 @@ class GRUHelper:
|
|
|
37
37
|
hidden_size = params[R].shape[-1]
|
|
38
38
|
batch_size = params[X].shape[1]
|
|
39
39
|
|
|
40
|
-
layout = params
|
|
40
|
+
layout = params.get(LAYOUT, 0)
|
|
41
41
|
x = params[X]
|
|
42
42
|
x = x if layout == 0 else np.swapaxes(x, 0, 1)
|
|
43
43
|
b = (
|
|
@@ -46,7 +46,7 @@ class GRUHelper:
|
|
|
46
46
|
else np.zeros(2 * number_of_gates * hidden_size)
|
|
47
47
|
)
|
|
48
48
|
h_0 = params[H_0] if H_0 in params else np.zeros((batch_size, hidden_size))
|
|
49
|
-
lbr = params
|
|
49
|
+
lbr = params.get(LBR, 0)
|
|
50
50
|
|
|
51
51
|
self.X = x
|
|
52
52
|
self.W = params[W]
|
|
@@ -18,7 +18,7 @@ class IsInf(Base):
|
|
|
18
18
|
outputs=["y"],
|
|
19
19
|
)
|
|
20
20
|
|
|
21
|
-
x = np.array([-1.2, np.nan, np.inf, 2.8, np.
|
|
21
|
+
x = np.array([-1.2, np.nan, np.inf, 2.8, -np.inf, np.inf], dtype=np.float32)
|
|
22
22
|
y = np.isinf(x)
|
|
23
23
|
expect(node, inputs=[x], outputs=[y], name="test_isinf")
|
|
24
24
|
|
|
@@ -28,7 +28,7 @@ class IsInf(Base):
|
|
|
28
28
|
"IsInf", inputs=["x"], outputs=["y"], detect_negative=0
|
|
29
29
|
)
|
|
30
30
|
|
|
31
|
-
x = np.array([-1.7, np.nan, np.inf, 3.6, np.
|
|
31
|
+
x = np.array([-1.7, np.nan, np.inf, 3.6, -np.inf, np.inf], dtype=np.float32)
|
|
32
32
|
y = np.isposinf(x)
|
|
33
33
|
expect(node, inputs=[x], outputs=[y], name="test_isinf_positive")
|
|
34
34
|
|
|
@@ -38,7 +38,7 @@ class IsInf(Base):
|
|
|
38
38
|
"IsInf", inputs=["x"], outputs=["y"], detect_positive=0
|
|
39
39
|
)
|
|
40
40
|
|
|
41
|
-
x = np.array([-1.7, np.nan, np.inf, -3.6, np.
|
|
41
|
+
x = np.array([-1.7, np.nan, np.inf, -3.6, -np.inf, np.inf], dtype=np.float32)
|
|
42
42
|
y = np.isneginf(x)
|
|
43
43
|
expect(node, inputs=[x], outputs=[y], name="test_isinf_negative")
|
|
44
44
|
|
|
@@ -50,6 +50,6 @@ class IsInf(Base):
|
|
|
50
50
|
outputs=["y"],
|
|
51
51
|
)
|
|
52
52
|
|
|
53
|
-
x = np.array([-1.2, np.nan, np.inf, 2.8, np.
|
|
53
|
+
x = np.array([-1.2, np.nan, np.inf, 2.8, -np.inf, np.inf], dtype=np.float16)
|
|
54
54
|
y = np.isinf(x)
|
|
55
55
|
expect(node, inputs=[x], outputs=[y], name="test_isinf_float16")
|
|
@@ -18,7 +18,7 @@ class IsNaN(Base):
|
|
|
18
18
|
outputs=["y"],
|
|
19
19
|
)
|
|
20
20
|
|
|
21
|
-
x = np.array([-1.2, np.nan, np.inf, 2.8, np.
|
|
21
|
+
x = np.array([-1.2, np.nan, np.inf, 2.8, -np.inf, np.inf], dtype=np.float32)
|
|
22
22
|
y = np.isnan(x)
|
|
23
23
|
expect(node, inputs=[x], outputs=[y], name="test_isnan")
|
|
24
24
|
|
|
@@ -30,6 +30,6 @@ class IsNaN(Base):
|
|
|
30
30
|
outputs=["y"],
|
|
31
31
|
)
|
|
32
32
|
|
|
33
|
-
x = np.array([-1.2, np.nan, np.inf, 2.8, np.
|
|
33
|
+
x = np.array([-1.2, np.nan, np.inf, 2.8, -np.inf, np.inf], dtype=np.float16)
|
|
34
34
|
y = np.isnan(x)
|
|
35
35
|
expect(node, inputs=[x], outputs=[y], name="test_isnan_float16")
|
|
@@ -18,8 +18,7 @@ from onnx.reference.ops.op_pool_common import (
|
|
|
18
18
|
class LpPool(Base):
|
|
19
19
|
@staticmethod
|
|
20
20
|
def export_lppool_1d_default() -> None:
|
|
21
|
-
"""
|
|
22
|
-
input_shape: [1, 3, 32]
|
|
21
|
+
"""input_shape: [1, 3, 32]
|
|
23
22
|
output_shape: [1, 3, 31]
|
|
24
23
|
"""
|
|
25
24
|
p = 3
|
|
@@ -46,8 +45,7 @@ class LpPool(Base):
|
|
|
46
45
|
|
|
47
46
|
@staticmethod
|
|
48
47
|
def export_lppool_2d_default() -> None:
|
|
49
|
-
"""
|
|
50
|
-
input_shape: [1, 3, 32, 32]
|
|
48
|
+
"""input_shape: [1, 3, 32, 32]
|
|
51
49
|
output_shape: [1, 3, 31, 31]
|
|
52
50
|
"""
|
|
53
51
|
p = 4
|
|
@@ -73,8 +71,7 @@ class LpPool(Base):
|
|
|
73
71
|
|
|
74
72
|
@staticmethod
|
|
75
73
|
def export_lppool_3d_default() -> None:
|
|
76
|
-
"""
|
|
77
|
-
input_shape: [1, 3, 32, 32, 32]
|
|
74
|
+
"""input_shape: [1, 3, 32, 32, 32]
|
|
78
75
|
output_shape: [1, 3, 31, 31, 31]
|
|
79
76
|
"""
|
|
80
77
|
p = 3
|
|
@@ -100,8 +97,7 @@ class LpPool(Base):
|
|
|
100
97
|
|
|
101
98
|
@staticmethod
|
|
102
99
|
def export_lppool_2d_same_upper() -> None:
|
|
103
|
-
"""
|
|
104
|
-
input_shape: [1, 3, 32, 32]
|
|
100
|
+
"""input_shape: [1, 3, 32, 32]
|
|
105
101
|
output_shape: [1, 3, 32, 32]
|
|
106
102
|
pad_shape: [1, 1] -> [0, 1, 0, 1] by axis
|
|
107
103
|
"""
|
|
@@ -141,8 +137,7 @@ class LpPool(Base):
|
|
|
141
137
|
|
|
142
138
|
@staticmethod
|
|
143
139
|
def export_lppool_2d_same_lower() -> None:
|
|
144
|
-
"""
|
|
145
|
-
input_shape: [1, 3, 32, 32]
|
|
140
|
+
"""input_shape: [1, 3, 32, 32]
|
|
146
141
|
output_shape: [1, 3, 32, 32]
|
|
147
142
|
pad_shape: [1, 1] -> [1, 0, 1, 0] by axis
|
|
148
143
|
"""
|
|
@@ -182,8 +177,7 @@ class LpPool(Base):
|
|
|
182
177
|
|
|
183
178
|
@staticmethod
|
|
184
179
|
def export_lppool_2d_pads() -> None:
|
|
185
|
-
"""
|
|
186
|
-
input_shape: [1, 3, 28, 28]
|
|
180
|
+
"""input_shape: [1, 3, 28, 28]
|
|
187
181
|
output_shape: [1, 3, 30, 30]
|
|
188
182
|
pad_shape: [4, 4] -> [2, 2, 2, 2] by axis
|
|
189
183
|
"""
|
|
@@ -217,8 +211,7 @@ class LpPool(Base):
|
|
|
217
211
|
|
|
218
212
|
@staticmethod
|
|
219
213
|
def export_lppool_2d_strides() -> None:
|
|
220
|
-
"""
|
|
221
|
-
input_shape: [1, 3, 32, 32]
|
|
214
|
+
"""input_shape: [1, 3, 32, 32]
|
|
222
215
|
output_shape: [1, 3, 10, 10]
|
|
223
216
|
"""
|
|
224
217
|
p = 2
|
|
@@ -245,8 +238,7 @@ class LpPool(Base):
|
|
|
245
238
|
|
|
246
239
|
@staticmethod
|
|
247
240
|
def export_lppool_2d_dilations() -> None:
|
|
248
|
-
"""
|
|
249
|
-
input_shape: [1, 1, 4, 4]
|
|
241
|
+
"""input_shape: [1, 1, 4, 4]
|
|
250
242
|
output_shape: [1, 1, 2, 2]
|
|
251
243
|
"""
|
|
252
244
|
p = 2
|
|
@@ -18,8 +18,7 @@ from onnx.reference.ops.op_pool_common import (
|
|
|
18
18
|
class MaxPool(Base):
|
|
19
19
|
@staticmethod
|
|
20
20
|
def export_maxpool_2d_uint8() -> None:
|
|
21
|
-
"""
|
|
22
|
-
input_shape: [1, 1, 5, 5]
|
|
21
|
+
"""input_shape: [1, 1, 5, 5]
|
|
23
22
|
output_shape: [1, 1, 5, 5]
|
|
24
23
|
pad_shape: [4, 4] -> [2, 2, 2, 2] by axis
|
|
25
24
|
"""
|
|
@@ -61,8 +60,7 @@ class MaxPool(Base):
|
|
|
61
60
|
|
|
62
61
|
@staticmethod
|
|
63
62
|
def export_maxpool_2d_precomputed_pads() -> None:
|
|
64
|
-
"""
|
|
65
|
-
input_shape: [1, 1, 5, 5]
|
|
63
|
+
"""input_shape: [1, 1, 5, 5]
|
|
66
64
|
output_shape: [1, 1, 5, 5]
|
|
67
65
|
pad_shape: [4, 4] -> [2, 2, 2, 2] by axis
|
|
68
66
|
"""
|
|
@@ -104,8 +102,7 @@ class MaxPool(Base):
|
|
|
104
102
|
|
|
105
103
|
@staticmethod
|
|
106
104
|
def export_maxpool_with_argmax_2d_precomputed_pads() -> None:
|
|
107
|
-
"""
|
|
108
|
-
input_shape: [1, 1, 5, 5]
|
|
105
|
+
"""input_shape: [1, 1, 5, 5]
|
|
109
106
|
output_shape: [1, 1, 5, 5]
|
|
110
107
|
pad_shape: [4, 4] -> [2, 2, 2, 2] by axis
|
|
111
108
|
"""
|
|
@@ -165,8 +162,7 @@ class MaxPool(Base):
|
|
|
165
162
|
|
|
166
163
|
@staticmethod
|
|
167
164
|
def export_maxpool_2d_precomputed_strides() -> None:
|
|
168
|
-
"""
|
|
169
|
-
input_shape: [1, 1, 5, 5]
|
|
165
|
+
"""input_shape: [1, 1, 5, 5]
|
|
170
166
|
output_shape: [1, 1, 2, 2]
|
|
171
167
|
"""
|
|
172
168
|
node = onnx.helper.make_node(
|
|
@@ -193,8 +189,7 @@ class MaxPool(Base):
|
|
|
193
189
|
|
|
194
190
|
@staticmethod
|
|
195
191
|
def export_maxpool_with_argmax_2d_precomputed_strides() -> None:
|
|
196
|
-
"""
|
|
197
|
-
input_shape: [1, 1, 5, 5]
|
|
192
|
+
"""input_shape: [1, 1, 5, 5]
|
|
198
193
|
output_shape: [1, 1, 2, 2]
|
|
199
194
|
"""
|
|
200
195
|
node = onnx.helper.make_node(
|
|
@@ -230,8 +225,7 @@ class MaxPool(Base):
|
|
|
230
225
|
|
|
231
226
|
@staticmethod
|
|
232
227
|
def export_maxpool_2d_precomputed_same_upper() -> None:
|
|
233
|
-
"""
|
|
234
|
-
input_shape: [1, 1, 5, 5]
|
|
228
|
+
"""input_shape: [1, 1, 5, 5]
|
|
235
229
|
output_shape: [1, 1, 3, 3]
|
|
236
230
|
pad_shape: [2, 2] -> [1, 1, 1, 1] by axis
|
|
237
231
|
"""
|
|
@@ -264,8 +258,7 @@ class MaxPool(Base):
|
|
|
264
258
|
|
|
265
259
|
@staticmethod
|
|
266
260
|
def export_maxpool_1d_default() -> None:
|
|
267
|
-
"""
|
|
268
|
-
input_shape: [1, 3, 32]
|
|
261
|
+
"""input_shape: [1, 3, 32]
|
|
269
262
|
output_shape: [1, 3, 31]
|
|
270
263
|
"""
|
|
271
264
|
node = onnx.helper.make_node(
|
|
@@ -289,8 +282,7 @@ class MaxPool(Base):
|
|
|
289
282
|
|
|
290
283
|
@staticmethod
|
|
291
284
|
def export_maxpool_2d_default() -> None:
|
|
292
|
-
"""
|
|
293
|
-
input_shape: [1, 3, 32, 32]
|
|
285
|
+
"""input_shape: [1, 3, 32, 32]
|
|
294
286
|
output_shape: [1, 3, 31, 31]
|
|
295
287
|
"""
|
|
296
288
|
node = onnx.helper.make_node(
|
|
@@ -314,8 +306,7 @@ class MaxPool(Base):
|
|
|
314
306
|
|
|
315
307
|
@staticmethod
|
|
316
308
|
def export_maxpool_3d_default() -> None:
|
|
317
|
-
"""
|
|
318
|
-
input_shape: [1, 3, 32, 32, 32]
|
|
309
|
+
"""input_shape: [1, 3, 32, 32, 32]
|
|
319
310
|
output_shape: [1, 3, 31, 31, 31]
|
|
320
311
|
"""
|
|
321
312
|
node = onnx.helper.make_node(
|
|
@@ -339,8 +330,7 @@ class MaxPool(Base):
|
|
|
339
330
|
|
|
340
331
|
@staticmethod
|
|
341
332
|
def export_maxpool_2d_same_upper() -> None:
|
|
342
|
-
"""
|
|
343
|
-
input_shape: [1, 3, 32, 32]
|
|
333
|
+
"""input_shape: [1, 3, 32, 32]
|
|
344
334
|
output_shape: [1, 3, 32, 32]
|
|
345
335
|
pad_shape: [1, 1] -> [0, 1, 0, 1] by axis
|
|
346
336
|
"""
|
|
@@ -378,8 +368,7 @@ class MaxPool(Base):
|
|
|
378
368
|
|
|
379
369
|
@staticmethod
|
|
380
370
|
def export_maxpool_2d_same_lower() -> None:
|
|
381
|
-
"""
|
|
382
|
-
input_shape: [1, 3, 32, 32]
|
|
371
|
+
"""input_shape: [1, 3, 32, 32]
|
|
383
372
|
output_shape: [1, 3, 32, 32]
|
|
384
373
|
pad_shape: [1, 1] -> [1, 0, 1, 0] by axis
|
|
385
374
|
"""
|
|
@@ -417,8 +406,7 @@ class MaxPool(Base):
|
|
|
417
406
|
|
|
418
407
|
@staticmethod
|
|
419
408
|
def export_maxpool_2d_pads() -> None:
|
|
420
|
-
"""
|
|
421
|
-
input_shape: [1, 3, 28, 28]
|
|
409
|
+
"""input_shape: [1, 3, 28, 28]
|
|
422
410
|
output_shape: [1, 3, 30, 30]
|
|
423
411
|
pad_shape: [4, 4] -> [2, 2, 2, 2] by axis
|
|
424
412
|
"""
|
|
@@ -451,8 +439,7 @@ class MaxPool(Base):
|
|
|
451
439
|
|
|
452
440
|
@staticmethod
|
|
453
441
|
def export_maxpool_2d_strides() -> None:
|
|
454
|
-
"""
|
|
455
|
-
input_shape: [1, 3, 32, 32]
|
|
442
|
+
"""input_shape: [1, 3, 32, 32]
|
|
456
443
|
output_shape: [1, 3, 10, 10]
|
|
457
444
|
"""
|
|
458
445
|
node = onnx.helper.make_node(
|
|
@@ -473,8 +460,7 @@ class MaxPool(Base):
|
|
|
473
460
|
|
|
474
461
|
@staticmethod
|
|
475
462
|
def export_maxpool_2d_ceil() -> None:
|
|
476
|
-
"""
|
|
477
|
-
input_shape: [1, 1, 4, 4]
|
|
463
|
+
"""input_shape: [1, 1, 4, 4]
|
|
478
464
|
output_shape: [1, 1, 2, 2]
|
|
479
465
|
"""
|
|
480
466
|
node = onnx.helper.make_node(
|
|
@@ -502,9 +488,31 @@ class MaxPool(Base):
|
|
|
502
488
|
expect(node, inputs=[x], outputs=[y], name="test_maxpool_2d_ceil")
|
|
503
489
|
|
|
504
490
|
@staticmethod
|
|
505
|
-
def
|
|
491
|
+
def export_maxpool_2d_ceil_output_size_reduce_by_one() -> None:
|
|
492
|
+
"""input_shape: [1, 1, 2, 2]
|
|
493
|
+
output_shape: [1, 1, 1, 1]
|
|
506
494
|
"""
|
|
507
|
-
|
|
495
|
+
node = onnx.helper.make_node(
|
|
496
|
+
"MaxPool",
|
|
497
|
+
inputs=["x"],
|
|
498
|
+
outputs=["y"],
|
|
499
|
+
kernel_shape=[1, 1],
|
|
500
|
+
strides=[2, 2],
|
|
501
|
+
ceil_mode=True,
|
|
502
|
+
)
|
|
503
|
+
x = np.array([[[[1, 2], [3, 4]]]]).astype(np.float32)
|
|
504
|
+
y = np.array([[[[1]]]]).astype(np.float32)
|
|
505
|
+
|
|
506
|
+
expect(
|
|
507
|
+
node,
|
|
508
|
+
inputs=[x],
|
|
509
|
+
outputs=[y],
|
|
510
|
+
name="test_maxpool_2d_ceil_output_size_reduce_by_one",
|
|
511
|
+
)
|
|
512
|
+
|
|
513
|
+
@staticmethod
|
|
514
|
+
def export_maxpool_2d_dilations() -> None:
|
|
515
|
+
"""input_shape: [1, 1, 4, 4]
|
|
508
516
|
output_shape: [1, 1, 2, 2]
|
|
509
517
|
"""
|
|
510
518
|
node = onnx.helper.make_node(
|
|
@@ -533,8 +541,7 @@ class MaxPool(Base):
|
|
|
533
541
|
|
|
534
542
|
@staticmethod
|
|
535
543
|
def export_maxpool_3d_dilations() -> None:
|
|
536
|
-
"""
|
|
537
|
-
input_shape: [1, 1, 4, 4, 4]
|
|
544
|
+
"""input_shape: [1, 1, 4, 4, 4]
|
|
538
545
|
output_shape: [1, 1, 2, 2, 2]
|
|
539
546
|
"""
|
|
540
547
|
node = onnx.helper.make_node(
|
|
@@ -585,8 +592,7 @@ class MaxPool(Base):
|
|
|
585
592
|
|
|
586
593
|
@staticmethod
|
|
587
594
|
def export_maxpool_3d_dilations_use_ref_impl() -> None:
|
|
588
|
-
"""
|
|
589
|
-
input_shape: [1, 1, 4, 4, 4]
|
|
595
|
+
"""input_shape: [1, 1, 4, 4, 4]
|
|
590
596
|
output_shape: [1, 1, 2, 2, 2]
|
|
591
597
|
"""
|
|
592
598
|
dilations = [2, 2, 2]
|