onnx 1.13.1__cp39-cp39-win_amd64.whl → 1.14.1__cp39-cp39-win_amd64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of onnx might be problematic. Click here for more details.
- onnx/__init__.py +116 -70
- onnx/backend/__init__.py +2 -0
- onnx/backend/base.py +3 -0
- onnx/backend/sample/__init__.py +2 -0
- onnx/backend/sample/ops/__init__.py +8 -6
- onnx/backend/sample/ops/abs.py +1 -1
- onnx/backend/test/__init__.py +4 -1
- onnx/backend/test/case/__init__.py +4 -2
- onnx/backend/test/case/base.py +2 -0
- onnx/backend/test/case/model/__init__.py +8 -6
- onnx/backend/test/case/model/expand.py +4 -3
- onnx/backend/test/case/model/gradient.py +4 -3
- onnx/backend/test/case/model/sequence.py +4 -3
- onnx/backend/test/case/model/shrink.py +4 -3
- onnx/backend/test/case/model/sign.py +4 -3
- onnx/backend/test/case/model/single-relu.py +4 -3
- onnx/backend/test/case/model/stringnormalizer.py +4 -3
- onnx/backend/test/case/node/__init__.py +18 -12
- onnx/backend/test/case/node/abs.py +4 -3
- onnx/backend/test/case/node/acos.py +4 -3
- onnx/backend/test/case/node/acosh.py +4 -3
- onnx/backend/test/case/node/adagrad.py +4 -3
- onnx/backend/test/case/node/adam.py +4 -3
- onnx/backend/test/case/node/add.py +4 -3
- onnx/backend/test/case/node/ai_onnx_ml/__init__.py +0 -0
- onnx/backend/test/case/node/ai_onnx_ml/array_feature_extractor.py +30 -0
- onnx/backend/test/case/node/ai_onnx_ml/binarizer.py +27 -0
- onnx/backend/test/case/node/and.py +4 -3
- onnx/backend/test/case/node/argmax.py +4 -3
- onnx/backend/test/case/node/argmin.py +4 -3
- onnx/backend/test/case/node/asin.py +4 -3
- onnx/backend/test/case/node/asinh.py +4 -3
- onnx/backend/test/case/node/atan.py +4 -3
- onnx/backend/test/case/node/atanh.py +4 -3
- onnx/backend/test/case/node/averagepool.py +43 -4
- onnx/backend/test/case/node/batchnorm.py +4 -3
- onnx/backend/test/case/node/bernoulli.py +4 -3
- onnx/backend/test/case/node/bitshift.py +4 -3
- onnx/backend/test/case/node/bitwiseand.py +13 -11
- onnx/backend/test/case/node/bitwisenot.py +8 -6
- onnx/backend/test/case/node/bitwiseor.py +13 -11
- onnx/backend/test/case/node/bitwisexor.py +13 -11
- onnx/backend/test/case/node/blackmanwindow.py +4 -4
- onnx/backend/test/case/node/cast.py +218 -8
- onnx/backend/test/case/node/castlike.py +103 -9
- onnx/backend/test/case/node/ceil.py +4 -3
- onnx/backend/test/case/node/celu.py +4 -3
- onnx/backend/test/case/node/center_crop_pad.py +26 -3
- onnx/backend/test/case/node/clip.py +4 -3
- onnx/backend/test/case/node/col2im.py +5 -4
- onnx/backend/test/case/node/compress.py +4 -3
- onnx/backend/test/case/node/concat.py +4 -3
- onnx/backend/test/case/node/constant.py +4 -3
- onnx/backend/test/case/node/constantofshape.py +4 -3
- onnx/backend/test/case/node/conv.py +4 -3
- onnx/backend/test/case/node/convinteger.py +4 -3
- onnx/backend/test/case/node/convtranspose.py +4 -3
- onnx/backend/test/case/node/cos.py +4 -3
- onnx/backend/test/case/node/cosh.py +4 -3
- onnx/backend/test/case/node/cumsum.py +4 -3
- onnx/backend/test/case/node/deformconv.py +170 -0
- onnx/backend/test/case/node/depthtospace.py +4 -3
- onnx/backend/test/case/node/dequantizelinear.py +46 -3
- onnx/backend/test/case/node/det.py +4 -3
- onnx/backend/test/case/node/dft.py +4 -4
- onnx/backend/test/case/node/div.py +4 -3
- onnx/backend/test/case/node/dropout.py +4 -3
- onnx/backend/test/case/node/dynamicquantizelinear.py +4 -3
- onnx/backend/test/case/node/einsum.py +4 -4
- onnx/backend/test/case/node/elu.py +4 -3
- onnx/backend/test/case/node/equal.py +28 -3
- onnx/backend/test/case/node/erf.py +4 -3
- onnx/backend/test/case/node/exp.py +4 -3
- onnx/backend/test/case/node/expand.py +4 -3
- onnx/backend/test/case/node/eyelike.py +4 -3
- onnx/backend/test/case/node/flatten.py +4 -3
- onnx/backend/test/case/node/floor.py +4 -3
- onnx/backend/test/case/node/gather.py +4 -3
- onnx/backend/test/case/node/gatherelements.py +4 -3
- onnx/backend/test/case/node/gathernd.py +5 -4
- onnx/backend/test/case/node/gemm.py +4 -3
- onnx/backend/test/case/node/globalaveragepool.py +4 -3
- onnx/backend/test/case/node/globalmaxpool.py +4 -3
- onnx/backend/test/case/node/greater.py +4 -3
- onnx/backend/test/case/node/greater_equal.py +4 -3
- onnx/backend/test/case/node/gridsample.py +4 -3
- onnx/backend/test/case/node/groupnormalization.py +5 -4
- onnx/backend/test/case/node/gru.py +10 -9
- onnx/backend/test/case/node/hammingwindow.py +4 -4
- onnx/backend/test/case/node/hannwindow.py +4 -4
- onnx/backend/test/case/node/hardmax.py +4 -3
- onnx/backend/test/case/node/hardsigmoid.py +4 -3
- onnx/backend/test/case/node/hardswish.py +4 -3
- onnx/backend/test/case/node/identity.py +4 -3
- onnx/backend/test/case/node/if.py +4 -3
- onnx/backend/test/case/node/instancenorm.py +4 -3
- onnx/backend/test/case/node/isinf.py +4 -3
- onnx/backend/test/case/node/isnan.py +4 -3
- onnx/backend/test/case/node/layernormalization.py +4 -3
- onnx/backend/test/case/node/leakyrelu.py +4 -3
- onnx/backend/test/case/node/less.py +4 -3
- onnx/backend/test/case/node/less_equal.py +4 -3
- onnx/backend/test/case/node/log.py +4 -3
- onnx/backend/test/case/node/logsoftmax.py +4 -3
- onnx/backend/test/case/node/loop.py +4 -3
- onnx/backend/test/case/node/lppool.py +279 -0
- onnx/backend/test/case/node/lrn.py +4 -3
- onnx/backend/test/case/node/lstm.py +10 -9
- onnx/backend/test/case/node/matmul.py +4 -3
- onnx/backend/test/case/node/matmulinteger.py +4 -3
- onnx/backend/test/case/node/max.py +5 -4
- onnx/backend/test/case/node/maxpool.py +9 -4
- onnx/backend/test/case/node/maxunpool.py +4 -3
- onnx/backend/test/case/node/mean.py +4 -3
- onnx/backend/test/case/node/meanvariancenormalization.py +4 -3
- onnx/backend/test/case/node/melweightmatrix.py +4 -4
- onnx/backend/test/case/node/min.py +5 -4
- onnx/backend/test/case/node/mish.py +4 -3
- onnx/backend/test/case/node/mod.py +4 -3
- onnx/backend/test/case/node/momentum.py +4 -3
- onnx/backend/test/case/node/mul.py +4 -3
- onnx/backend/test/case/node/neg.py +4 -3
- onnx/backend/test/case/node/negativeloglikelihoodloss.py +4 -3
- onnx/backend/test/case/node/nonmaxsuppression.py +4 -3
- onnx/backend/test/case/node/nonzero.py +4 -3
- onnx/backend/test/case/node/not.py +4 -3
- onnx/backend/test/case/node/onehot.py +5 -4
- onnx/backend/test/case/node/optionalgetelement.py +4 -3
- onnx/backend/test/case/node/optionalhaselement.py +4 -3
- onnx/backend/test/case/node/or.py +4 -3
- onnx/backend/test/case/node/pad.py +36 -5
- onnx/backend/test/case/node/pool_op_common.py +20 -2
- onnx/backend/test/case/node/pow.py +4 -3
- onnx/backend/test/case/node/prelu.py +4 -3
- onnx/backend/test/case/node/qlinearconv.py +4 -3
- onnx/backend/test/case/node/qlinearmatmul.py +4 -3
- onnx/backend/test/case/node/quantizelinear.py +50 -3
- onnx/backend/test/case/node/rangeop.py +4 -3
- onnx/backend/test/case/node/reciprocal.py +4 -3
- onnx/backend/test/case/node/reduce_log_sum.py +4 -3
- onnx/backend/test/case/node/reduce_log_sum_exp.py +4 -3
- onnx/backend/test/case/node/reducel1.py +4 -3
- onnx/backend/test/case/node/reducel2.py +4 -3
- onnx/backend/test/case/node/reducemax.py +4 -3
- onnx/backend/test/case/node/reducemean.py +4 -3
- onnx/backend/test/case/node/reducemin.py +4 -3
- onnx/backend/test/case/node/reduceprod.py +4 -3
- onnx/backend/test/case/node/reducesum.py +4 -3
- onnx/backend/test/case/node/reducesumsquare.py +4 -3
- onnx/backend/test/case/node/relu.py +4 -3
- onnx/backend/test/case/node/reshape.py +4 -3
- onnx/backend/test/case/node/resize.py +73 -321
- onnx/backend/test/case/node/reversesequence.py +4 -3
- onnx/backend/test/case/node/rnn.py +10 -9
- onnx/backend/test/case/node/roialign.py +193 -3
- onnx/backend/test/case/node/round.py +4 -3
- onnx/backend/test/case/node/scan.py +4 -3
- onnx/backend/test/case/node/scatter.py +4 -3
- onnx/backend/test/case/node/scatterelements.py +4 -3
- onnx/backend/test/case/node/scatternd.py +4 -3
- onnx/backend/test/case/node/selu.py +4 -3
- onnx/backend/test/case/node/sequence_map.py +4 -4
- onnx/backend/test/case/node/sequenceinsert.py +4 -3
- onnx/backend/test/case/node/shape.py +4 -3
- onnx/backend/test/case/node/shrink.py +4 -3
- onnx/backend/test/case/node/sigmoid.py +4 -3
- onnx/backend/test/case/node/sign.py +4 -3
- onnx/backend/test/case/node/sin.py +4 -3
- onnx/backend/test/case/node/sinh.py +4 -3
- onnx/backend/test/case/node/size.py +4 -3
- onnx/backend/test/case/node/slice.py +4 -3
- onnx/backend/test/case/node/softmax.py +4 -3
- onnx/backend/test/case/node/softmaxcrossentropy.py +4 -3
- onnx/backend/test/case/node/softplus.py +4 -3
- onnx/backend/test/case/node/softsign.py +4 -3
- onnx/backend/test/case/node/spacetodepth.py +6 -3
- onnx/backend/test/case/node/split.py +4 -3
- onnx/backend/test/case/node/splittosequence.py +79 -0
- onnx/backend/test/case/node/sqrt.py +4 -3
- onnx/backend/test/case/node/squeeze.py +2 -0
- onnx/backend/test/case/node/stft.py +4 -4
- onnx/backend/test/case/node/stringnormalizer.py +4 -4
- onnx/backend/test/case/node/sub.py +4 -3
- onnx/backend/test/case/node/sum.py +4 -3
- onnx/backend/test/case/node/tan.py +4 -3
- onnx/backend/test/case/node/tanh.py +4 -3
- onnx/backend/test/case/node/tfidfvectorizer.py +4 -3
- onnx/backend/test/case/node/thresholdedrelu.py +4 -3
- onnx/backend/test/case/node/tile.py +4 -3
- onnx/backend/test/case/node/topk.py +4 -3
- onnx/backend/test/case/node/transpose.py +8 -7
- onnx/backend/test/case/node/trilu.py +4 -3
- onnx/backend/test/case/node/unique.py +4 -3
- onnx/backend/test/case/node/unsqueeze.py +4 -3
- onnx/backend/test/case/node/upsample.py +4 -3
- onnx/backend/test/case/node/where.py +4 -3
- onnx/backend/test/case/node/xor.py +4 -3
- onnx/backend/test/case/test_case.py +2 -0
- onnx/backend/test/case/utils.py +9 -0
- onnx/backend/test/cmd_tools.py +22 -13
- onnx/backend/test/data/light/README.md +16 -0
- onnx/backend/test/data/light/light_bvlc_alexnet.onnx +0 -0
- onnx/backend/test/data/light/light_bvlc_alexnet_output_0.pb +1 -0
- onnx/backend/test/data/light/light_densenet121.onnx +0 -0
- onnx/backend/test/data/light/light_densenet121_output_0.pb +1 -0
- onnx/backend/test/data/light/light_inception_v1.onnx +0 -0
- onnx/backend/test/data/light/light_inception_v1_output_0.pb +1 -0
- onnx/backend/test/data/light/light_inception_v2.onnx +0 -0
- onnx/backend/test/data/light/light_inception_v2_output_0.pb +1 -0
- onnx/backend/test/data/light/light_resnet50.onnx +0 -0
- onnx/backend/test/data/light/light_resnet50_output_0.pb +1 -0
- onnx/backend/test/data/light/light_shufflenet.onnx +0 -0
- onnx/backend/test/data/light/light_shufflenet_output_0.pb +1 -0
- onnx/backend/test/data/light/light_squeezenet.onnx +0 -0
- onnx/backend/test/data/light/light_squeezenet_output_0.pb +1 -0
- onnx/backend/test/data/light/light_vgg19.onnx +0 -0
- onnx/backend/test/data/light/light_vgg19_output_0.pb +1 -0
- onnx/backend/test/data/light/light_zfnet512.onnx +0 -0
- onnx/backend/test/data/light/light_zfnet512_output_0.pb +1 -0
- onnx/backend/test/data/node/test_acos/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_acosh/test_data_set_0/output_0.pb +1 -1
- onnx/backend/test/data/node/test_ai_onnx_ml_array_feature_extractor/model.onnx +19 -0
- onnx/backend/test/data/node/test_ai_onnx_ml_array_feature_extractor/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_ai_onnx_ml_array_feature_extractor/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_ai_onnx_ml_array_feature_extractor/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_ai_onnx_ml_binarizer/model.onnx +0 -0
- onnx/backend/test/data/node/test_ai_onnx_ml_binarizer/test_data_set_0/input_0.pb +1 -0
- onnx/backend/test/data/node/test_ai_onnx_ml_binarizer/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_asin/test_data_set_0/output_0.pb +1 -1
- onnx/backend/test/data/node/test_asinh/test_data_set_0/output_0.pb +1 -1
- onnx/backend/test/data/node/test_atan/test_data_set_0/output_0.pb +1 -1
- onnx/backend/test/data/node/test_atanh/test_data_set_0/output_0.pb +2 -2
- onnx/backend/test/data/node/test_averagepool_1d_default/model.onnx +0 -0
- onnx/backend/test/data/node/test_averagepool_2d_ceil/model.onnx +0 -0
- onnx/backend/test/data/node/test_averagepool_2d_default/model.onnx +0 -0
- onnx/backend/test/data/node/test_averagepool_2d_dilations/model.onnx +0 -0
- onnx/backend/test/data/node/test_averagepool_2d_dilations/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_averagepool_2d_dilations/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_averagepool_2d_pads/model.onnx +0 -0
- onnx/backend/test/data/node/test_averagepool_2d_pads_count_include_pad/model.onnx +0 -0
- onnx/backend/test/data/node/test_averagepool_2d_precomputed_pads/model.onnx +0 -0
- onnx/backend/test/data/node/test_averagepool_2d_precomputed_pads_count_include_pad/model.onnx +0 -0
- onnx/backend/test/data/node/test_averagepool_2d_precomputed_same_upper/model.onnx +0 -0
- onnx/backend/test/data/node/test_averagepool_2d_precomputed_strides/model.onnx +0 -0
- onnx/backend/test/data/node/test_averagepool_2d_same_lower/model.onnx +0 -0
- onnx/backend/test/data/node/test_averagepool_2d_same_upper/model.onnx +0 -0
- onnx/backend/test/data/node/test_averagepool_2d_strides/model.onnx +0 -0
- onnx/backend/test/data/node/test_averagepool_3d_default/model.onnx +0 -0
- onnx/backend/test/data/node/test_basic_deform_conv_with_padding/model.onnx +0 -0
- onnx/backend/test/data/node/test_basic_deform_conv_with_padding/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_basic_deform_conv_with_padding/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_basic_deform_conv_with_padding/test_data_set_0/input_2.pb +0 -0
- onnx/backend/test/data/node/test_basic_deform_conv_with_padding/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_basic_deform_conv_without_padding/model.onnx +0 -0
- onnx/backend/test/data/node/test_basic_deform_conv_without_padding/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_basic_deform_conv_without_padding/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_basic_deform_conv_without_padding/test_data_set_0/input_2.pb +0 -0
- onnx/backend/test/data/node/test_basic_deform_conv_without_padding/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_bitwise_and_i16_3d/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_bitwise_and_i16_3d/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_bitwise_and_i16_3d/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_bitwise_and_i32_2d/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_bitwise_and_i32_2d/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_bitwise_and_i32_2d/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_bitwise_and_ui64_bcast_3v1d/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_bitwise_and_ui64_bcast_3v1d/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_bitwise_and_ui64_bcast_3v1d/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_bitwise_and_ui8_bcast_4v3d/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_bitwise_and_ui8_bcast_4v3d/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_bitwise_and_ui8_bcast_4v3d/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_bitwise_not_2d/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_bitwise_not_2d/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_bitwise_not_3d/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_bitwise_not_3d/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_bitwise_not_4d/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_bitwise_not_4d/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_bitwise_or_i16_4d/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_bitwise_or_i16_4d/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_bitwise_or_i16_4d/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_bitwise_or_i32_2d/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_bitwise_or_i32_2d/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_bitwise_or_i32_2d/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_bitwise_or_ui64_bcast_3v1d/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_bitwise_or_ui64_bcast_3v1d/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_bitwise_or_ui64_bcast_3v1d/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_bitwise_or_ui8_bcast_4v3d/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_bitwise_or_ui8_bcast_4v3d/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_bitwise_or_ui8_bcast_4v3d/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_bitwise_xor_i16_3d/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_bitwise_xor_i16_3d/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_bitwise_xor_i16_3d/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_bitwise_xor_i32_2d/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_bitwise_xor_i32_2d/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_bitwise_xor_i32_2d/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_bitwise_xor_ui64_bcast_3v1d/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_bitwise_xor_ui64_bcast_3v1d/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_bitwise_xor_ui64_bcast_3v1d/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_bitwise_xor_ui8_bcast_4v3d/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_bitwise_xor_ui8_bcast_4v3d/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_bitwise_xor_ui8_bcast_4v3d/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_BFLOAT16_to_FLOAT/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_DOUBLE_to_FLOAT/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_DOUBLE_to_FLOAT16/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT16_to_DOUBLE/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT16_to_FLOAT/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT16_to_FLOAT8E4M3FN/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT16_to_FLOAT8E4M3FN/test_data_set_0/input_0.pb +2 -0
- onnx/backend/test/data/node/test_cast_FLOAT16_to_FLOAT8E4M3FN/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT16_to_FLOAT8E4M3FNUZ/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT16_to_FLOAT8E4M3FNUZ/test_data_set_0/input_0.pb +2 -0
- onnx/backend/test/data/node/test_cast_FLOAT16_to_FLOAT8E4M3FNUZ/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT16_to_FLOAT8E5M2/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT16_to_FLOAT8E5M2/test_data_set_0/input_0.pb +2 -0
- onnx/backend/test/data/node/test_cast_FLOAT16_to_FLOAT8E5M2/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT16_to_FLOAT8E5M2FNUZ/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT16_to_FLOAT8E5M2FNUZ/test_data_set_0/input_0.pb +2 -0
- onnx/backend/test/data/node/test_cast_FLOAT16_to_FLOAT8E5M2FNUZ/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT8E4M3FNUZ_to_FLOAT/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT8E4M3FNUZ_to_FLOAT/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT8E4M3FNUZ_to_FLOAT/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT8E4M3FNUZ_to_FLOAT16/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT8E4M3FNUZ_to_FLOAT16/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT8E4M3FNUZ_to_FLOAT16/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT8E4M3FN_to_FLOAT/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT8E4M3FN_to_FLOAT/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT8E4M3FN_to_FLOAT/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT8E4M3FN_to_FLOAT16/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT8E4M3FN_to_FLOAT16/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT8E4M3FN_to_FLOAT16/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT8E5M2FNUZ_to_FLOAT/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT8E5M2FNUZ_to_FLOAT/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT8E5M2FNUZ_to_FLOAT/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT8E5M2FNUZ_to_FLOAT16/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT8E5M2FNUZ_to_FLOAT16/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT8E5M2FNUZ_to_FLOAT16/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT8E5M2_to_FLOAT/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT8E5M2_to_FLOAT/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT8E5M2_to_FLOAT/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT8E5M2_to_FLOAT16/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT8E5M2_to_FLOAT16/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT8E5M2_to_FLOAT16/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT_to_BFLOAT16/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT_to_DOUBLE/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT_to_FLOAT16/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT_to_FLOAT8E4M3FN/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT_to_FLOAT8E4M3FN/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT_to_FLOAT8E4M3FN/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT_to_FLOAT8E4M3FNUZ/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT_to_FLOAT8E4M3FNUZ/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT_to_FLOAT8E4M3FNUZ/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT_to_FLOAT8E5M2/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT_to_FLOAT8E5M2/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT_to_FLOAT8E5M2/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT_to_FLOAT8E5M2FNUZ/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT_to_FLOAT8E5M2FNUZ/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT_to_FLOAT8E5M2FNUZ/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT_to_STRING/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_STRING_to_FLOAT/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_no_saturate_FLOAT16_to_FLOAT8E4M3FN/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_no_saturate_FLOAT16_to_FLOAT8E4M3FN/test_data_set_0/input_0.pb +2 -0
- onnx/backend/test/data/node/test_cast_no_saturate_FLOAT16_to_FLOAT8E4M3FN/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_no_saturate_FLOAT16_to_FLOAT8E4M3FNUZ/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_no_saturate_FLOAT16_to_FLOAT8E4M3FNUZ/test_data_set_0/input_0.pb +2 -0
- onnx/backend/test/data/node/test_cast_no_saturate_FLOAT16_to_FLOAT8E4M3FNUZ/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_no_saturate_FLOAT16_to_FLOAT8E5M2/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_no_saturate_FLOAT16_to_FLOAT8E5M2/test_data_set_0/input_0.pb +2 -0
- onnx/backend/test/data/node/test_cast_no_saturate_FLOAT16_to_FLOAT8E5M2/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_no_saturate_FLOAT16_to_FLOAT8E5M2FNUZ/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_no_saturate_FLOAT16_to_FLOAT8E5M2FNUZ/test_data_set_0/input_0.pb +2 -0
- onnx/backend/test/data/node/test_cast_no_saturate_FLOAT16_to_FLOAT8E5M2FNUZ/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_no_saturate_FLOAT_to_FLOAT8E4M3FN/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_no_saturate_FLOAT_to_FLOAT8E4M3FN/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_no_saturate_FLOAT_to_FLOAT8E4M3FN/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_no_saturate_FLOAT_to_FLOAT8E4M3FNUZ/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_no_saturate_FLOAT_to_FLOAT8E4M3FNUZ/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_no_saturate_FLOAT_to_FLOAT8E4M3FNUZ/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_no_saturate_FLOAT_to_FLOAT8E5M2/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_no_saturate_FLOAT_to_FLOAT8E5M2/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_no_saturate_FLOAT_to_FLOAT8E5M2/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_no_saturate_FLOAT_to_FLOAT8E5M2FNUZ/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_no_saturate_FLOAT_to_FLOAT8E5M2FNUZ/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_no_saturate_FLOAT_to_FLOAT8E5M2FNUZ/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_castlike_BFLOAT16_to_FLOAT/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_BFLOAT16_to_FLOAT_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_DOUBLE_to_FLOAT/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_DOUBLE_to_FLOAT16/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_DOUBLE_to_FLOAT16_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_DOUBLE_to_FLOAT_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT16_to_DOUBLE/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT16_to_DOUBLE_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT16_to_FLOAT/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT16_to_FLOAT_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT8E4M3FNUZ_to_FLOAT/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT8E4M3FNUZ_to_FLOAT/test_data_set_0/input_0.pb +1 -0
- onnx/backend/test/data/node/test_castlike_FLOAT8E4M3FNUZ_to_FLOAT/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT8E4M3FNUZ_to_FLOAT/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT8E4M3FNUZ_to_FLOAT_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT8E4M3FNUZ_to_FLOAT_expanded/test_data_set_0/input_0.pb +1 -0
- onnx/backend/test/data/node/test_castlike_FLOAT8E4M3FNUZ_to_FLOAT_expanded/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT8E4M3FNUZ_to_FLOAT_expanded/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT8E4M3FN_to_FLOAT/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT8E4M3FN_to_FLOAT/test_data_set_0/input_0.pb +1 -0
- onnx/backend/test/data/node/test_castlike_FLOAT8E4M3FN_to_FLOAT/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT8E4M3FN_to_FLOAT/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT8E4M3FN_to_FLOAT_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT8E4M3FN_to_FLOAT_expanded/test_data_set_0/input_0.pb +1 -0
- onnx/backend/test/data/node/test_castlike_FLOAT8E4M3FN_to_FLOAT_expanded/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT8E4M3FN_to_FLOAT_expanded/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT8E5M2FNUZ_to_FLOAT/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT8E5M2FNUZ_to_FLOAT/test_data_set_0/input_0.pb +1 -0
- onnx/backend/test/data/node/test_castlike_FLOAT8E5M2FNUZ_to_FLOAT/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT8E5M2FNUZ_to_FLOAT/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT8E5M2FNUZ_to_FLOAT_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT8E5M2FNUZ_to_FLOAT_expanded/test_data_set_0/input_0.pb +1 -0
- onnx/backend/test/data/node/test_castlike_FLOAT8E5M2FNUZ_to_FLOAT_expanded/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT8E5M2FNUZ_to_FLOAT_expanded/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT8E5M2_to_FLOAT/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT8E5M2_to_FLOAT/test_data_set_0/input_0.pb +1 -0
- onnx/backend/test/data/node/test_castlike_FLOAT8E5M2_to_FLOAT/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT8E5M2_to_FLOAT/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT8E5M2_to_FLOAT_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT8E5M2_to_FLOAT_expanded/test_data_set_0/input_0.pb +1 -0
- onnx/backend/test/data/node/test_castlike_FLOAT8E5M2_to_FLOAT_expanded/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT8E5M2_to_FLOAT_expanded/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT_to_BFLOAT16/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT_to_BFLOAT16_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT_to_DOUBLE/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT_to_DOUBLE_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT16/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT16_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT8E4M3FN/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT8E4M3FN/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT8E4M3FN/test_data_set_0/input_1.pb +1 -0
- onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT8E4M3FN/test_data_set_0/output_0.pb +1 -0
- onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT8E4M3FNUZ/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT8E4M3FNUZ/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT8E4M3FNUZ/test_data_set_0/input_1.pb +1 -0
- onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT8E4M3FNUZ/test_data_set_0/output_0.pb +1 -0
- onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT8E4M3FNUZ_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT8E4M3FNUZ_expanded/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT8E4M3FNUZ_expanded/test_data_set_0/input_1.pb +1 -0
- onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT8E4M3FNUZ_expanded/test_data_set_0/output_0.pb +1 -0
- onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT8E4M3FN_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT8E4M3FN_expanded/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT8E4M3FN_expanded/test_data_set_0/input_1.pb +1 -0
- onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT8E4M3FN_expanded/test_data_set_0/output_0.pb +1 -0
- onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT8E5M2/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT8E5M2/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT8E5M2/test_data_set_0/input_1.pb +1 -0
- onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT8E5M2/test_data_set_0/output_0.pb +1 -0
- onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT8E5M2FNUZ/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT8E5M2FNUZ/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT8E5M2FNUZ/test_data_set_0/input_1.pb +1 -0
- onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT8E5M2FNUZ/test_data_set_0/output_0.pb +1 -0
- onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT8E5M2FNUZ_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT8E5M2FNUZ_expanded/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT8E5M2FNUZ_expanded/test_data_set_0/input_1.pb +1 -0
- onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT8E5M2FNUZ_expanded/test_data_set_0/output_0.pb +1 -0
- onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT8E5M2_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT8E5M2_expanded/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT8E5M2_expanded/test_data_set_0/input_1.pb +1 -0
- onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT8E5M2_expanded/test_data_set_0/output_0.pb +1 -0
- onnx/backend/test/data/node/test_castlike_FLOAT_to_STRING/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT_to_STRING_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_STRING_to_FLOAT/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_STRING_to_FLOAT_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_center_crop_pad_crop_negative_axes_hwc/model.onnx +0 -0
- onnx/backend/test/data/node/test_center_crop_pad_crop_negative_axes_hwc/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_center_crop_pad_crop_negative_axes_hwc/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_center_crop_pad_crop_negative_axes_hwc/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_center_crop_pad_crop_negative_axes_hwc_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_center_crop_pad_crop_negative_axes_hwc_expanded/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_center_crop_pad_crop_negative_axes_hwc_expanded/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_center_crop_pad_crop_negative_axes_hwc_expanded/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_col2im_pads/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_constant/model.onnx +0 -0
- onnx/backend/test/data/node/test_constant_pad/model.onnx +0 -0
- onnx/backend/test/data/node/test_constant_pad_axes/model.onnx +0 -0
- onnx/backend/test/data/node/test_constant_pad_negative_axes/model.onnx +0 -0
- onnx/backend/test/data/node/test_constant_pad_negative_axes/test_data_set_0/input_0.pb +1 -0
- onnx/backend/test/data/node/test_constant_pad_negative_axes/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_constant_pad_negative_axes/test_data_set_0/input_2.pb +1 -0
- onnx/backend/test/data/node/test_constant_pad_negative_axes/test_data_set_0/input_3.pb +1 -0
- onnx/backend/test/data/node/test_constant_pad_negative_axes/test_data_set_0/output_0.pb +1 -0
- onnx/backend/test/data/node/test_cosh/test_data_set_0/output_0.pb +1 -1
- onnx/backend/test/data/node/test_cosh_example/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_deform_conv_with_mask_bias/model.onnx +0 -0
- onnx/backend/test/data/node/test_deform_conv_with_mask_bias/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_deform_conv_with_mask_bias/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_deform_conv_with_mask_bias/test_data_set_0/input_2.pb +0 -0
- onnx/backend/test/data/node/test_deform_conv_with_mask_bias/test_data_set_0/input_3.pb +0 -0
- onnx/backend/test/data/node/test_deform_conv_with_mask_bias/test_data_set_0/input_4.pb +0 -0
- onnx/backend/test/data/node/test_deform_conv_with_mask_bias/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_deform_conv_with_multiple_offset_groups/model.onnx +0 -0
- onnx/backend/test/data/node/test_deform_conv_with_multiple_offset_groups/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_deform_conv_with_multiple_offset_groups/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_deform_conv_with_multiple_offset_groups/test_data_set_0/input_2.pb +0 -0
- onnx/backend/test/data/node/test_deform_conv_with_multiple_offset_groups/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_dequantizelinear/model.onnx +0 -0
- onnx/backend/test/data/node/test_dequantizelinear_axis/model.onnx +0 -0
- onnx/backend/test/data/node/test_dequantizelinear_e4m3fn/model.onnx +0 -0
- onnx/backend/test/data/node/test_dequantizelinear_e4m3fn/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_dequantizelinear_e4m3fn/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_dequantizelinear_e4m3fn/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_dequantizelinear_e5m2/model.onnx +0 -0
- onnx/backend/test/data/node/test_dequantizelinear_e5m2/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_dequantizelinear_e5m2/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_dequantizelinear_e5m2/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_edge_pad/model.onnx +0 -0
- onnx/backend/test/data/node/test_equal/model.onnx +0 -0
- onnx/backend/test/data/node/test_equal_bcast/model.onnx +0 -0
- onnx/backend/test/data/node/test_equal_string/model.onnx +0 -0
- onnx/backend/test/data/node/test_equal_string/test_data_set_0/input_0.pb +1 -0
- onnx/backend/test/data/node/test_equal_string/test_data_set_0/input_1.pb +1 -0
- onnx/backend/test/data/node/test_equal_string/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_equal_string_broadcast/model.onnx +0 -0
- onnx/backend/test/data/node/test_equal_string_broadcast/test_data_set_0/input_0.pb +1 -0
- onnx/backend/test/data/node/test_equal_string_broadcast/test_data_set_0/input_1.pb +1 -0
- onnx/backend/test/data/node/test_equal_string_broadcast/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_identity/model.onnx +0 -0
- onnx/backend/test/data/node/test_identity_sequence/model.onnx +0 -0
- onnx/backend/test/data/node/test_lppool_1d_default/model.onnx +0 -0
- onnx/backend/test/data/node/test_lppool_1d_default/test_data_set_0/input_0.pb +1 -0
- onnx/backend/test/data/node/test_lppool_1d_default/test_data_set_0/output_0.pb +2 -0
- onnx/backend/test/data/node/test_lppool_2d_default/model.onnx +0 -0
- onnx/backend/test/data/node/test_lppool_2d_default/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_lppool_2d_default/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_lppool_2d_dilations/model.onnx +0 -0
- onnx/backend/test/data/node/test_lppool_2d_dilations/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_lppool_2d_dilations/test_data_set_0/output_0.pb +1 -0
- onnx/backend/test/data/node/test_lppool_2d_pads/model.onnx +0 -0
- onnx/backend/test/data/node/test_lppool_2d_pads/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_lppool_2d_pads/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_lppool_2d_same_lower/model.onnx +0 -0
- onnx/backend/test/data/node/test_lppool_2d_same_lower/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_lppool_2d_same_lower/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_lppool_2d_same_upper/model.onnx +0 -0
- onnx/backend/test/data/node/test_lppool_2d_same_upper/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_lppool_2d_same_upper/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_lppool_2d_strides/model.onnx +0 -0
- onnx/backend/test/data/node/test_lppool_2d_strides/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_lppool_2d_strides/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_lppool_3d_default/model.onnx +0 -0
- onnx/backend/test/data/node/test_lppool_3d_default/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_lppool_3d_default/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_mish/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_mish_expanded/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_quantizelinear/model.onnx +0 -0
- onnx/backend/test/data/node/test_quantizelinear_axis/model.onnx +0 -0
- onnx/backend/test/data/node/test_quantizelinear_e4m3fn/model.onnx +0 -0
- onnx/backend/test/data/node/test_quantizelinear_e4m3fn/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_quantizelinear_e4m3fn/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_quantizelinear_e4m3fn/test_data_set_0/input_2.pb +0 -0
- onnx/backend/test/data/node/test_quantizelinear_e4m3fn/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_quantizelinear_e5m2/model.onnx +0 -0
- onnx/backend/test/data/node/test_quantizelinear_e5m2/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_quantizelinear_e5m2/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_quantizelinear_e5m2/test_data_set_0/input_2.pb +0 -0
- onnx/backend/test/data/node/test_quantizelinear_e5m2/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_reflect_pad/model.onnx +0 -0
- onnx/backend/test/data/node/test_reshape_allowzero_reordered/model.onnx +0 -0
- onnx/backend/test/data/node/test_reshape_extended_dims/model.onnx +0 -0
- onnx/backend/test/data/node/test_reshape_negative_dim/model.onnx +0 -0
- onnx/backend/test/data/node/test_reshape_negative_extended_dims/model.onnx +0 -0
- onnx/backend/test/data/node/test_reshape_one_dim/model.onnx +0 -0
- onnx/backend/test/data/node/test_reshape_reduced_dims/model.onnx +0 -0
- onnx/backend/test/data/node/test_reshape_reordered_all_dims/model.onnx +0 -0
- onnx/backend/test/data/node/test_reshape_reordered_last_dims/model.onnx +0 -0
- onnx/backend/test/data/node/test_reshape_zero_and_negative_dim/model.onnx +0 -0
- onnx/backend/test/data/node/test_reshape_zero_dim/model.onnx +0 -0
- onnx/backend/test/data/node/test_resize_downsample_scales_cubic/model.onnx +0 -0
- onnx/backend/test/data/node/test_resize_downsample_scales_cubic_A_n0p5_exclude_outside/model.onnx +0 -0
- onnx/backend/test/data/node/test_resize_downsample_scales_cubic_align_corners/model.onnx +0 -0
- onnx/backend/test/data/node/test_resize_downsample_scales_cubic_antialias/model.onnx +0 -0
- onnx/backend/test/data/node/test_resize_downsample_scales_linear/model.onnx +0 -0
- onnx/backend/test/data/node/test_resize_downsample_scales_linear_align_corners/model.onnx +0 -0
- onnx/backend/test/data/node/test_resize_downsample_scales_linear_antialias/model.onnx +0 -0
- onnx/backend/test/data/node/test_resize_downsample_scales_linear_half_pixel_symmetric/model.onnx +0 -0
- onnx/backend/test/data/node/test_resize_downsample_scales_linear_half_pixel_symmetric/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_resize_downsample_scales_linear_half_pixel_symmetric/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_resize_downsample_scales_linear_half_pixel_symmetric/test_data_set_0/output_0.pb +1 -0
- onnx/backend/test/data/node/test_resize_downsample_scales_nearest/model.onnx +0 -0
- onnx/backend/test/data/node/test_resize_downsample_sizes_cubic/model.onnx +0 -0
- onnx/backend/test/data/node/test_resize_downsample_sizes_cubic_antialias/model.onnx +0 -0
- onnx/backend/test/data/node/test_resize_downsample_sizes_linear_antialias/model.onnx +0 -0
- onnx/backend/test/data/node/test_resize_downsample_sizes_linear_pytorch_half_pixel/model.onnx +0 -0
- onnx/backend/test/data/node/test_resize_downsample_sizes_nearest/model.onnx +0 -0
- onnx/backend/test/data/node/test_resize_downsample_sizes_nearest_not_larger/model.onnx +0 -0
- onnx/backend/test/data/node/test_resize_downsample_sizes_nearest_not_smaller/model.onnx +0 -0
- onnx/backend/test/data/node/test_resize_tf_crop_and_resize/model.onnx +0 -0
- onnx/backend/test/data/node/test_resize_tf_crop_and_resize_axes_2_3/model.onnx +0 -0
- onnx/backend/test/data/node/test_resize_tf_crop_and_resize_axes_3_2/model.onnx +0 -0
- onnx/backend/test/data/node/test_resize_upsample_scales_cubic/model.onnx +0 -0
- onnx/backend/test/data/node/test_resize_upsample_scales_cubic_A_n0p5_exclude_outside/model.onnx +0 -0
- onnx/backend/test/data/node/test_resize_upsample_scales_cubic_align_corners/model.onnx +0 -0
- onnx/backend/test/data/node/test_resize_upsample_scales_cubic_asymmetric/model.onnx +0 -0
- onnx/backend/test/data/node/test_resize_upsample_scales_linear/model.onnx +0 -0
- onnx/backend/test/data/node/test_resize_upsample_scales_linear_align_corners/model.onnx +0 -0
- onnx/backend/test/data/node/test_resize_upsample_scales_linear_half_pixel_symmetric/model.onnx +0 -0
- onnx/backend/test/data/node/test_resize_upsample_scales_linear_half_pixel_symmetric/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_resize_upsample_scales_linear_half_pixel_symmetric/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_resize_upsample_scales_linear_half_pixel_symmetric/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_resize_upsample_scales_nearest/model.onnx +0 -0
- onnx/backend/test/data/node/test_resize_upsample_scales_nearest_axes_2_3/model.onnx +0 -0
- onnx/backend/test/data/node/test_resize_upsample_scales_nearest_axes_3_2/model.onnx +0 -0
- onnx/backend/test/data/node/test_resize_upsample_sizes_cubic/model.onnx +0 -0
- onnx/backend/test/data/node/test_resize_upsample_sizes_nearest/model.onnx +0 -0
- onnx/backend/test/data/node/test_resize_upsample_sizes_nearest_axes_2_3/model.onnx +0 -0
- onnx/backend/test/data/node/test_resize_upsample_sizes_nearest_axes_3_2/model.onnx +0 -0
- onnx/backend/test/data/node/test_resize_upsample_sizes_nearest_ceil_half_pixel/model.onnx +0 -0
- onnx/backend/test/data/node/test_resize_upsample_sizes_nearest_floor_align_corners/model.onnx +0 -0
- onnx/backend/test/data/node/test_resize_upsample_sizes_nearest_not_larger/model.onnx +0 -0
- onnx/backend/test/data/node/test_resize_upsample_sizes_nearest_round_prefer_ceil_asymmetric/model.onnx +0 -0
- onnx/backend/test/data/node/test_roialign_mode_max/model.onnx +0 -0
- onnx/backend/test/data/node/test_roialign_mode_max/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_roialign_mode_max/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_roialign_mode_max/test_data_set_0/input_2.pb +0 -0
- onnx/backend/test/data/node/test_roialign_mode_max/test_data_set_0/output_0.pb +2 -0
- onnx/backend/test/data/node/test_shape/model.onnx +0 -0
- onnx/backend/test/data/node/test_shape_clip_end/model.onnx +0 -0
- onnx/backend/test/data/node/test_shape_clip_start/model.onnx +0 -0
- onnx/backend/test/data/node/test_shape_end_1/model.onnx +0 -0
- onnx/backend/test/data/node/test_shape_end_negative_1/model.onnx +0 -0
- onnx/backend/test/data/node/test_shape_example/model.onnx +0 -0
- onnx/backend/test/data/node/test_shape_start_1/model.onnx +0 -0
- onnx/backend/test/data/node/test_shape_start_1_end_2/model.onnx +0 -0
- onnx/backend/test/data/node/test_shape_start_1_end_negative_1/model.onnx +0 -0
- onnx/backend/test/data/node/test_shape_start_negative_1/model.onnx +0 -0
- onnx/backend/test/data/node/test_sinh/test_data_set_0/output_0.pb +1 -1
- onnx/backend/test/data/node/test_size/model.onnx +0 -0
- onnx/backend/test/data/node/test_size_example/model.onnx +0 -0
- onnx/backend/test/data/node/test_softplus_example_expanded_ver18/model.onnx +0 -0
- onnx/backend/test/data/node/{test_softplus_expanded → test_softplus_expanded_ver18}/model.onnx +0 -0
- onnx/backend/test/data/node/test_split_to_sequence_1/model.onnx +0 -0
- onnx/backend/test/data/node/test_split_to_sequence_1/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_split_to_sequence_1/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_split_to_sequence_1/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_split_to_sequence_2/model.onnx +0 -0
- onnx/backend/test/data/node/test_split_to_sequence_2/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_split_to_sequence_2/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_split_to_sequence_2/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_split_to_sequence_nokeepdims/model.onnx +0 -0
- onnx/backend/test/data/node/test_split_to_sequence_nokeepdims/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_split_to_sequence_nokeepdims/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_tan/test_data_set_0/output_0.pb +1 -1
- onnx/backend/test/data/node/test_wrap_pad/model.onnx +0 -0
- onnx/backend/test/data/node/test_wrap_pad/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_wrap_pad/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_wrap_pad/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/real/test_bvlc_alexnet/data.json +1 -1
- onnx/backend/test/data/real/test_densenet121/data.json +1 -1
- onnx/backend/test/data/real/test_inception_v1/data.json +1 -1
- onnx/backend/test/data/real/test_inception_v2/data.json +1 -1
- onnx/backend/test/data/real/test_resnet50/data.json +1 -1
- onnx/backend/test/data/real/test_shufflenet/data.json +1 -1
- onnx/backend/test/data/real/test_squeezenet/data.json +1 -1
- onnx/backend/test/data/real/test_vgg19/data.json +1 -1
- onnx/backend/test/data/real/test_zfnet512/data.json +1 -1
- onnx/backend/test/loader/__init__.py +3 -1
- onnx/backend/test/report/__init__.py +3 -1
- onnx/backend/test/report/base.py +2 -0
- onnx/backend/test/report/coverage.py +8 -14
- onnx/backend/test/runner/__init__.py +146 -39
- onnx/backend/test/runner/item.py +2 -0
- onnx/backend/test/stat_coverage.py +23 -26
- onnx/bin/__init__.py +2 -0
- onnx/bin/checker.py +2 -0
- onnx/checker.cc +26 -9
- onnx/checker.h +3 -3
- onnx/checker.py +22 -5
- onnx/common/array_ref.h +2 -0
- onnx/common/assertions.cc +2 -0
- onnx/common/assertions.h +2 -0
- onnx/common/common.h +2 -0
- onnx/common/constants.h +3 -3
- onnx/common/file_utils.h +3 -1
- onnx/common/graph_node_list.h +2 -0
- onnx/common/interned_strings.cc +2 -0
- onnx/common/interned_strings.h +2 -0
- onnx/common/ir.h +2 -0
- onnx/common/ir_pb_converter.cc +7 -1
- onnx/common/ir_pb_converter.h +2 -0
- onnx/common/model_helpers.cc +3 -3
- onnx/common/model_helpers.h +3 -3
- onnx/common/path.cc +0 -1
- onnx/common/path.h +0 -1
- onnx/common/platform_helpers.h +2 -0
- onnx/common/status.cc +2 -0
- onnx/common/status.h +2 -0
- onnx/common/stl_backports.h +3 -3
- onnx/common/tensor.h +24 -171
- onnx/common/version.h +3 -1
- onnx/compose.py +40 -32
- onnx/cpp2py_export.cc +268 -89
- onnx/defs/__init__.py +9 -7
- onnx/defs/attr_proto_util.cc +2 -0
- onnx/defs/attr_proto_util.h +2 -0
- onnx/defs/controlflow/defs.cc +25 -369
- onnx/defs/controlflow/old.cc +444 -0
- onnx/defs/controlflow/utils.cc +357 -0
- onnx/defs/controlflow/utils.h +21 -0
- onnx/defs/data_propagators.h +2 -0
- onnx/defs/data_type_utils.cc +6 -2
- onnx/defs/gen_doc.py +32 -46
- onnx/defs/gen_shape_inference_information.py +2 -0
- onnx/defs/generator/defs.cc +21 -19
- onnx/defs/generator/old.cc +159 -0
- onnx/defs/logical/defs.cc +17 -16
- onnx/defs/logical/old.cc +23 -0
- onnx/defs/math/defs.cc +155 -131
- onnx/defs/math/old.cc +1 -1
- onnx/defs/nn/defs.cc +135 -45
- onnx/defs/nn/old.cc +142 -9
- onnx/defs/operator_sets.h +45 -0
- onnx/defs/optional/defs.cc +8 -4
- onnx/defs/parser.cc +50 -3
- onnx/defs/parser.h +43 -31
- onnx/defs/printer.cc +7 -1
- onnx/defs/printer.h +1 -1
- onnx/defs/quantization/defs.cc +63 -26
- onnx/defs/quantization/old.cc +102 -1
- onnx/defs/reduction/defs.cc +1 -1
- onnx/defs/reduction/utils.cc +5 -4
- onnx/defs/rnn/defs.cc +95 -173
- onnx/defs/schema.cc +45 -29
- onnx/defs/schema.h +125 -15
- onnx/defs/sequence/defs.cc +11 -8
- onnx/defs/shape_inference.cc +25 -4
- onnx/defs/shape_inference.h +29 -1
- onnx/defs/tensor/defs.cc +500 -566
- onnx/defs/tensor/old.cc +777 -47
- onnx/defs/tensor/utils.cc +130 -8
- onnx/defs/tensor/utils.h +2 -0
- onnx/defs/tensor_proto_util.cc +3 -0
- onnx/defs/traditionalml/defs.cc +19 -2
- onnx/examples/Protobufs.ipynb +129 -31
- onnx/examples/check_model.ipynb +29 -21
- onnx/examples/load_model.ipynb +25 -3
- onnx/examples/make_model.ipynb +32 -23
- onnx/external_data_helper.py +6 -6
- onnx/frontend/__init__.py +2 -0
- onnx/gen_proto.py +18 -24
- onnx/helper.py +393 -108
- onnx/hub.py +189 -20
- onnx/mapping.py +29 -3
- onnx/numpy_helper.py +263 -52
- onnx/onnx-ml.proto +28 -6
- onnx/onnx-operators-ml.proto +1 -1
- onnx/onnx-operators.in.proto +1 -1
- onnx/onnx-operators.proto +1 -1
- onnx/onnx.in.proto +28 -6
- onnx/onnx.proto +28 -6
- onnx/onnx_cpp2py_export.cp39-win_amd64.pyd +0 -0
- onnx/onnx_data_pb2.pyi +2 -1
- onnx/onnx_ml_pb2.py +33 -33
- onnx/onnx_ml_pb2.pyi +12 -2
- onnx/onnx_operators_ml_pb2.pyi +2 -1
- onnx/parser.py +29 -13
- onnx/printer.py +6 -4
- onnx/proto_utils.h +3 -3
- onnx/py_utils.h +3 -3
- onnx/reference/__init__.py +2 -0
- onnx/reference/custom_element_types.py +11 -0
- onnx/reference/op_run.py +84 -8
- onnx/reference/ops/__init__.py +5 -1
- onnx/reference/ops/_helpers.py +55 -0
- onnx/reference/ops/_op.py +19 -12
- onnx/reference/ops/_op_common_indices.py +2 -0
- onnx/reference/ops/_op_common_pool.py +4 -9
- onnx/reference/ops/_op_common_random.py +2 -0
- onnx/reference/ops/_op_common_window.py +2 -0
- onnx/reference/ops/_op_list.py +208 -214
- onnx/reference/ops/aionnx_preview_training/__init__.py +4 -2
- onnx/reference/ops/aionnx_preview_training/_op_list.py +15 -38
- onnx/reference/ops/aionnx_preview_training/_op_run_training.py +2 -0
- onnx/reference/ops/aionnx_preview_training/op_adagrad.py +3 -1
- onnx/reference/ops/aionnx_preview_training/op_adam.py +3 -1
- onnx/reference/ops/aionnx_preview_training/op_momentum.py +3 -1
- onnx/reference/ops/aionnxml/__init__.py +3 -0
- onnx/reference/ops/aionnxml/_common_classifier.py +81 -0
- onnx/reference/ops/aionnxml/_op_list.py +97 -0
- onnx/reference/ops/aionnxml/_op_run_aionnxml.py +8 -0
- onnx/reference/ops/aionnxml/op_array_feature_extractor.py +50 -0
- onnx/reference/ops/aionnxml/op_binarizer.py +15 -0
- onnx/reference/ops/aionnxml/op_dict_vectorizer.py +56 -0
- onnx/reference/ops/aionnxml/op_feature_vectorizer.py +30 -0
- onnx/reference/ops/aionnxml/op_imputer.py +47 -0
- onnx/reference/ops/aionnxml/op_label_encoder.py +52 -0
- onnx/reference/ops/aionnxml/op_linear_classifier.py +99 -0
- onnx/reference/ops/aionnxml/op_linear_regressor.py +26 -0
- onnx/reference/ops/aionnxml/op_normalizer.py +41 -0
- onnx/reference/ops/aionnxml/op_one_hot_encoder.py +55 -0
- onnx/reference/ops/aionnxml/op_scaler.py +12 -0
- onnx/reference/ops/aionnxml/op_svm_classifier.py +334 -0
- onnx/reference/ops/aionnxml/op_svm_helper.py +99 -0
- onnx/reference/ops/aionnxml/op_svm_regressor.py +45 -0
- onnx/reference/ops/aionnxml/op_tree_ensemble_classifier.py +132 -0
- onnx/reference/ops/aionnxml/op_tree_ensemble_helper.py +109 -0
- onnx/reference/ops/aionnxml/op_tree_ensemble_regressor.py +105 -0
- onnx/reference/ops/experimental/__init__.py +3 -1
- onnx/reference/ops/experimental/_op_list.py +15 -36
- onnx/reference/ops/experimental/_op_run_experimental.py +2 -0
- onnx/reference/ops/experimental/op_im2col.py +3 -2
- onnx/reference/ops/op_abs.py +3 -1
- onnx/reference/ops/op_acos.py +3 -1
- onnx/reference/ops/op_acosh.py +3 -1
- onnx/reference/ops/op_add.py +3 -1
- onnx/reference/ops/op_and.py +3 -1
- onnx/reference/ops/op_argmax.py +4 -9
- onnx/reference/ops/op_argmin.py +4 -9
- onnx/reference/ops/op_asin.py +3 -1
- onnx/reference/ops/op_asinh.py +3 -1
- onnx/reference/ops/op_atan.py +3 -1
- onnx/reference/ops/op_atanh.py +3 -1
- onnx/reference/ops/op_attribute_has_value.py +2 -0
- onnx/reference/ops/op_average_pool.py +80 -2
- onnx/reference/ops/op_batch_normalization.py +14 -11
- onnx/reference/ops/op_bernoulli.py +3 -2
- onnx/reference/ops/op_bitshift.py +3 -1
- onnx/reference/ops/op_bitwise_and.py +3 -1
- onnx/reference/ops/op_bitwise_not.py +3 -1
- onnx/reference/ops/op_bitwise_or.py +3 -1
- onnx/reference/ops/op_bitwise_xor.py +3 -1
- onnx/reference/ops/op_blackman_window.py +3 -1
- onnx/reference/ops/op_cast.py +91 -10
- onnx/reference/ops/op_cast_like.py +32 -7
- onnx/reference/ops/op_ceil.py +3 -1
- onnx/reference/ops/op_celu.py +3 -1
- onnx/reference/ops/op_center_crop_pad.py +7 -3
- onnx/reference/ops/op_clip.py +2 -7
- onnx/reference/ops/op_col2im.py +3 -2
- onnx/reference/ops/op_compress.py +2 -0
- onnx/reference/ops/op_concat.py +6 -5
- onnx/reference/ops/op_concat_from_sequence.py +2 -0
- onnx/reference/ops/op_constant.py +46 -35
- onnx/reference/ops/op_constant_of_shape.py +4 -0
- onnx/reference/ops/op_conv.py +62 -39
- onnx/reference/ops/op_conv_integer.py +3 -2
- onnx/reference/ops/op_conv_transpose.py +4 -3
- onnx/reference/ops/op_cos.py +3 -1
- onnx/reference/ops/op_cosh.py +3 -1
- onnx/reference/ops/op_cum_sum.py +2 -0
- onnx/reference/ops/op_deform_conv.py +178 -0
- onnx/reference/ops/op_depth_to_space.py +2 -0
- onnx/reference/ops/op_dequantize_linear.py +72 -21
- onnx/reference/ops/op_det.py +3 -4
- onnx/reference/ops/op_dft.py +2 -0
- onnx/reference/ops/op_div.py +3 -1
- onnx/reference/ops/op_dropout.py +2 -7
- onnx/reference/ops/op_dynamic_quantize_linear.py +2 -0
- onnx/reference/ops/op_einsum.py +2 -0
- onnx/reference/ops/op_elu.py +4 -2
- onnx/reference/ops/op_equal.py +3 -1
- onnx/reference/ops/op_erf.py +3 -1
- onnx/reference/ops/op_exp.py +4 -2
- onnx/reference/ops/op_expand.py +2 -0
- onnx/reference/ops/op_eyelike.py +9 -4
- onnx/reference/ops/op_flatten.py +3 -1
- onnx/reference/ops/op_floor.py +3 -1
- onnx/reference/ops/op_gather.py +2 -0
- onnx/reference/ops/op_gather_elements.py +2 -0
- onnx/reference/ops/op_gathernd.py +3 -1
- onnx/reference/ops/op_gemm.py +5 -10
- onnx/reference/ops/op_global_average_pool.py +6 -5
- onnx/reference/ops/op_global_max_pool.py +2 -0
- onnx/reference/ops/op_greater.py +3 -1
- onnx/reference/ops/op_greater_or_equal.py +3 -1
- onnx/reference/ops/op_grid_sample.py +3 -1
- onnx/reference/ops/op_gru.py +4 -1
- onnx/reference/ops/op_hamming_window.py +3 -1
- onnx/reference/ops/op_hann_window.py +3 -1
- onnx/reference/ops/op_hard_sigmoid.py +3 -1
- onnx/reference/ops/op_hardmax.py +3 -1
- onnx/reference/ops/op_identity.py +3 -1
- onnx/reference/ops/op_if.py +16 -7
- onnx/reference/ops/op_instance_normalization.py +2 -0
- onnx/reference/ops/op_isinf.py +2 -0
- onnx/reference/ops/op_isnan.py +3 -1
- onnx/reference/ops/op_layer_normalization.py +2 -0
- onnx/reference/ops/op_leaky_relu.py +4 -2
- onnx/reference/ops/op_less.py +3 -1
- onnx/reference/ops/op_less_or_equal.py +3 -1
- onnx/reference/ops/op_log.py +4 -2
- onnx/reference/ops/op_log_softmax.py +3 -1
- onnx/reference/ops/op_loop.py +4 -2
- onnx/reference/ops/op_lp_normalization.py +4 -2
- onnx/reference/ops/op_lp_pool.py +41 -0
- onnx/reference/ops/op_lrn.py +9 -5
- onnx/reference/ops/op_lstm.py +4 -2
- onnx/reference/ops/op_matmul.py +3 -1
- onnx/reference/ops/op_matmul_integer.py +2 -0
- onnx/reference/ops/op_max.py +3 -1
- onnx/reference/ops/op_max_pool.py +3 -1
- onnx/reference/ops/op_max_unpool.py +2 -0
- onnx/reference/ops/op_mean.py +3 -1
- onnx/reference/ops/op_mel_weight_matrix.py +2 -0
- onnx/reference/ops/op_min.py +3 -1
- onnx/reference/ops/op_mod.py +2 -0
- onnx/reference/ops/op_mul.py +3 -1
- onnx/reference/ops/op_neg.py +3 -1
- onnx/reference/ops/op_negative_log_likelihood_loss.py +3 -1
- onnx/reference/ops/op_non_max_suppression.py +22 -19
- onnx/reference/ops/op_non_zero.py +4 -1
- onnx/reference/ops/op_not.py +3 -1
- onnx/reference/ops/op_one_hot.py +3 -1
- onnx/reference/ops/op_optional.py +2 -0
- onnx/reference/ops/op_optional_get_element.py +4 -8
- onnx/reference/ops/op_optional_has_element.py +3 -9
- onnx/reference/ops/op_or.py +3 -1
- onnx/reference/ops/op_pad.py +18 -29
- onnx/reference/ops/op_pow.py +2 -0
- onnx/reference/ops/op_prelu.py +4 -2
- onnx/reference/ops/op_qlinear_conv.py +3 -2
- onnx/reference/ops/op_qlinear_matmul.py +2 -0
- onnx/reference/ops/op_quantize_linear.py +100 -15
- onnx/reference/ops/op_random_normal.py +3 -1
- onnx/reference/ops/op_random_normal_like.py +3 -2
- onnx/reference/ops/op_random_uniform.py +3 -1
- onnx/reference/ops/op_random_uniform_like.py +3 -2
- onnx/reference/ops/op_range.py +2 -0
- onnx/reference/ops/op_reciprocal.py +4 -2
- onnx/reference/ops/op_reduce_l1.py +17 -31
- onnx/reference/ops/op_reduce_l2.py +17 -35
- onnx/reference/ops/op_reduce_log_sum.py +6 -29
- onnx/reference/ops/op_reduce_log_sum_exp.py +6 -29
- onnx/reference/ops/op_reduce_max.py +15 -36
- onnx/reference/ops/op_reduce_mean.py +15 -33
- onnx/reference/ops/op_reduce_min.py +15 -32
- onnx/reference/ops/op_reduce_prod.py +15 -29
- onnx/reference/ops/op_reduce_sum.py +17 -45
- onnx/reference/ops/op_reduce_sum_square.py +15 -29
- onnx/reference/ops/op_relu.py +3 -1
- onnx/reference/ops/op_reshape.py +2 -7
- onnx/reference/ops/op_resize.py +59 -26
- onnx/reference/ops/op_reverse_sequence.py +2 -0
- onnx/reference/ops/op_rnn.py +3 -7
- onnx/reference/ops/op_roi_align.py +7 -5
- onnx/reference/ops/op_round.py +4 -2
- onnx/reference/ops/op_scan.py +5 -2
- onnx/reference/ops/op_scatter_elements.py +17 -4
- onnx/reference/ops/op_scatternd.py +2 -0
- onnx/reference/ops/op_selu.py +5 -1
- onnx/reference/ops/op_sequence_at.py +2 -0
- onnx/reference/ops/op_sequence_construct.py +2 -0
- onnx/reference/ops/op_sequence_empty.py +2 -0
- onnx/reference/ops/op_sequence_erase.py +2 -0
- onnx/reference/ops/op_sequence_insert.py +4 -2
- onnx/reference/ops/op_sequence_length.py +7 -1
- onnx/reference/ops/op_sequence_map.py +4 -2
- onnx/reference/ops/op_shape.py +2 -7
- onnx/reference/ops/op_shrink.py +3 -1
- onnx/reference/ops/op_sigmoid.py +7 -1
- onnx/reference/ops/op_sign.py +3 -1
- onnx/reference/ops/op_sin.py +3 -1
- onnx/reference/ops/op_sinh.py +3 -1
- onnx/reference/ops/op_size.py +2 -0
- onnx/reference/ops/op_slice.py +3 -9
- onnx/reference/ops/op_softmax.py +4 -2
- onnx/reference/ops/op_softmax_cross_entropy_loss.py +4 -1
- onnx/reference/ops/op_softplus.py +4 -2
- onnx/reference/ops/op_softsign.py +3 -1
- onnx/reference/ops/op_space_to_depth.py +3 -1
- onnx/reference/ops/op_split.py +7 -9
- onnx/reference/ops/op_split_to_sequence.py +41 -10
- onnx/reference/ops/op_sqrt.py +4 -2
- onnx/reference/ops/op_squeeze.py +3 -12
- onnx/reference/ops/op_stft.py +8 -7
- onnx/reference/ops/op_string_normalizer.py +4 -3
- onnx/reference/ops/op_sub.py +3 -1
- onnx/reference/ops/op_sum.py +3 -1
- onnx/reference/ops/op_tan.py +3 -1
- onnx/reference/ops/op_tanh.py +3 -1
- onnx/reference/ops/op_tfidf_vectorizer.py +15 -13
- onnx/reference/ops/op_thresholded_relu.py +4 -2
- onnx/reference/ops/op_tile.py +2 -0
- onnx/reference/ops/op_topk.py +12 -19
- onnx/reference/ops/op_transpose.py +2 -0
- onnx/reference/ops/op_trilu.py +3 -1
- onnx/reference/ops/op_unique.py +2 -0
- onnx/reference/ops/op_unsqueeze.py +2 -9
- onnx/reference/ops/op_upsample.py +9 -8
- onnx/reference/ops/op_where.py +7 -1
- onnx/reference/ops/op_xor.py +3 -1
- onnx/reference/reference_evaluator.py +64 -20
- onnx/shape_inference/implementation.cc +204 -43
- onnx/shape_inference/implementation.h +33 -13
- onnx/shape_inference.py +37 -12
- onnx/string_utils.h +3 -3
- onnx/test/cpp/common_path_test.cc +2 -0
- onnx/test/cpp/data_propagation_test.cc +2 -0
- onnx/test/cpp/function_context_test.cc +2 -0
- onnx/test/cpp/function_get_test.cc +2 -0
- onnx/test/cpp/function_verify_test.cc +176 -0
- onnx/test/cpp/op_reg_test.cc +2 -0
- onnx/test/cpp/parser_test.cc +37 -1
- onnx/test/cpp/schema_registration_test.cc +2 -0
- onnx/test/cpp/shape_inference_test.cc +2 -0
- onnx/test/cpp/test_main.cc +2 -0
- onnx/tools/__init__.py +2 -0
- onnx/tools/net_drawer.py +13 -9
- onnx/tools/replace_constants.py +429 -0
- onnx/tools/update_model_dims.py +7 -9
- onnx/utils.py +16 -6
- onnx/version.py +2 -2
- onnx/version_converter/BaseConverter.h +2 -0
- onnx/version_converter/adapters/adapter.h +2 -0
- onnx/version_converter/adapters/axes_attribute_to_input.h +2 -0
- onnx/version_converter/adapters/axes_input_to_attribute.h +2 -0
- onnx/version_converter/adapters/batch_normalization_13_14.h +2 -0
- onnx/version_converter/adapters/broadcast_backward_compatibility.h +2 -0
- onnx/version_converter/adapters/broadcast_forward_compatibility.h +2 -0
- onnx/version_converter/adapters/cast_9_8.h +2 -0
- onnx/version_converter/adapters/clip_10_11.h +2 -0
- onnx/version_converter/adapters/compatible.h +2 -0
- onnx/version_converter/adapters/dropout_11_12.h +2 -0
- onnx/version_converter/adapters/extend_supported_types.h +2 -0
- onnx/version_converter/adapters/gemm_6_7.h +2 -0
- onnx/version_converter/adapters/gemm_7_6.h +2 -0
- onnx/version_converter/adapters/maxpool_8_7.h +2 -0
- onnx/version_converter/adapters/no_previous_version.h +2 -0
- onnx/version_converter/adapters/pad_10_11.h +4 -0
- onnx/version_converter/adapters/remove_consumed_inputs.h +2 -0
- onnx/version_converter/adapters/reshape_4_5.h +2 -0
- onnx/version_converter/adapters/reshape_5_4.h +2 -0
- onnx/version_converter/adapters/resize_10_11.h +2 -0
- onnx/version_converter/adapters/scan_8_9.h +2 -0
- onnx/version_converter/adapters/scan_9_8.h +2 -0
- onnx/version_converter/adapters/scatter_10_11.h +2 -0
- onnx/version_converter/adapters/slice_9_10.h +2 -0
- onnx/version_converter/adapters/softmax_12_13.h +20 -28
- onnx/version_converter/adapters/split_12_13.h +2 -0
- onnx/version_converter/adapters/split_13_12.h +2 -0
- onnx/version_converter/adapters/split_17_18.h +2 -0
- onnx/version_converter/adapters/sum_8_7.h +2 -0
- onnx/version_converter/adapters/topk_9_10.h +2 -0
- onnx/version_converter/adapters/transformers.h +3 -1
- onnx/version_converter/adapters/type_restriction.h +2 -0
- onnx/version_converter/adapters/upsample_6_7.h +2 -0
- onnx/version_converter/adapters/upsample_8_9.h +2 -0
- onnx/version_converter/adapters/upsample_9_10.h +2 -0
- onnx/version_converter/adapters/upsample_9_8.h +2 -0
- onnx/version_converter/convert.cc +14 -7
- onnx/version_converter/convert.h +20 -0
- onnx/version_converter/helper.cc +3 -3
- onnx/version_converter/helper.h +3 -3
- onnx/version_converter.py +6 -3
- {onnx-1.13.1.dist-info → onnx-1.14.1.dist-info}/METADATA +96 -52
- {onnx-1.13.1.dist-info → onnx-1.14.1.dist-info}/RECORD +1056 -743
- {onnx-1.13.1.dist-info → onnx-1.14.1.dist-info}/WHEEL +1 -1
- onnx/backend/test/data/node/test_softplus_example_expanded/model.onnx +0 -0
- /onnx/backend/test/data/node/{test_softplus_example_expanded → test_softplus_example_expanded_ver18}/test_data_set_0/input_0.pb +0 -0
- /onnx/backend/test/data/node/{test_softplus_example_expanded → test_softplus_example_expanded_ver18}/test_data_set_0/output_0.pb +0 -0
- /onnx/backend/test/data/node/{test_softplus_expanded → test_softplus_expanded_ver18}/test_data_set_0/input_0.pb +0 -0
- /onnx/backend/test/data/node/{test_softplus_expanded → test_softplus_expanded_ver18}/test_data_set_0/output_0.pb +0 -0
- {onnx-1.13.1.dist-info → onnx-1.14.1.dist-info}/LICENSE +0 -0
- {onnx-1.13.1.dist-info → onnx-1.14.1.dist-info}/entry_points.txt +0 -0
- {onnx-1.13.1.dist-info → onnx-1.14.1.dist-info}/top_level.txt +0 -0
onnx/defs/math/defs.cc
CHANGED
|
@@ -75,7 +75,7 @@ Performs element-wise binary {name} (with Numpy-style broadcasting support).
|
|
|
75
75
|
1,
|
|
76
76
|
OpSchema::Differentiable);
|
|
77
77
|
schema.TypeConstraint(
|
|
78
|
-
"T", OpSchema::
|
|
78
|
+
"T", OpSchema::all_numeric_types_ir4(), "Constrain input and output types to all numeric tensors.");
|
|
79
79
|
schema.TypeAndShapeInferenceFunction([](InferenceContext& ctx) {
|
|
80
80
|
propagateElemTypeFromInputToOutput(ctx, 0, 0);
|
|
81
81
|
if (hasNInputShapes(ctx, 2))
|
|
@@ -103,16 +103,16 @@ ONNX_OPERATOR_SET_SCHEMA(
|
|
|
103
103
|
|
|
104
104
|
static const char* Mod_doc = R"DOC(
|
|
105
105
|
Performs element-wise binary modulus (with Numpy-style broadcasting support).
|
|
106
|
-
|
|
106
|
+
The sign of the remainder is the same as that of the Divisor.
|
|
107
107
|
|
|
108
|
-
|
|
109
|
-
|
|
110
|
-
|
|
111
|
-
|
|
108
|
+
Mod operator can also behave like C fmod() or numpy.fmod. In this case, the sign of the remainder however, will be the same as the Dividend
|
|
109
|
+
(in contrast to integer mod). To force a behavior like numpy.fmod() an 'fmod' Attribute is provided.
|
|
110
|
+
This attribute is set to 0 by default causing the behavior to be like integer mod.
|
|
111
|
+
Setting this attribute to 1 causes the remainder to be calculated similar to that of numpy.fmod().
|
|
112
112
|
|
|
113
|
-
|
|
113
|
+
If the input type is floating point, then `fmod` attribute must be set to 1.
|
|
114
114
|
|
|
115
|
-
|
|
115
|
+
In case of dividend being zero, the results will be platform dependent.
|
|
116
116
|
|
|
117
117
|
This operator supports **multidirectional (i.e., Numpy-style) broadcasting**; for more details please check [the doc](Broadcasting.md).
|
|
118
118
|
)DOC";
|
|
@@ -132,7 +132,7 @@ ONNX_OPERATOR_SET_SCHEMA(
|
|
|
132
132
|
.Output(0, "C", "Remainder tensor", "T", OpSchema::Single, true, 1, OpSchema::Differentiable)
|
|
133
133
|
.TypeConstraint(
|
|
134
134
|
"T",
|
|
135
|
-
OpSchema::
|
|
135
|
+
OpSchema::all_numeric_types_ir4(),
|
|
136
136
|
"Constrain input and output types to high-precision numeric tensors.")
|
|
137
137
|
.TypeAndShapeInferenceFunction([](InferenceContext& ctx) {
|
|
138
138
|
propagateElemTypeFromInputToOutput(ctx, 0, 0);
|
|
@@ -193,7 +193,7 @@ ONNX_OPERATOR_SET_SCHEMA(
|
|
|
193
193
|
.Output(0, "Y", "Output tensor", "T", OpSchema::Single, true, 1, OpSchema::Differentiable)
|
|
194
194
|
.TypeConstraint(
|
|
195
195
|
"T",
|
|
196
|
-
OpSchema::
|
|
196
|
+
OpSchema::all_numeric_types_ir4(),
|
|
197
197
|
"Constrain input and output types to all numeric tensors.")
|
|
198
198
|
.TypeAndShapeInferenceFunction(propagateShapeAndTypeFromFirstInput));
|
|
199
199
|
|
|
@@ -219,7 +219,7 @@ ONNX_OPERATOR_SET_SCHEMA(
|
|
|
219
219
|
static const char* Floor_ver13_doc = R"DOC(
|
|
220
220
|
Floor takes one input data (Tensor<T>) and produces one output data
|
|
221
221
|
(Tensor<T>) where the floor is, y = floor(x), is applied to
|
|
222
|
-
the tensor elementwise.
|
|
222
|
+
the tensor elementwise. If x is integral, +0, -0, NaN, or infinite, x itself is returned.
|
|
223
223
|
)DOC";
|
|
224
224
|
|
|
225
225
|
ONNX_OPERATOR_SET_SCHEMA(
|
|
@@ -238,7 +238,7 @@ ONNX_OPERATOR_SET_SCHEMA(
|
|
|
238
238
|
static const char* Ceil_ver13_doc = R"DOC(
|
|
239
239
|
Ceil takes one input data (Tensor<T>) and produces one output data
|
|
240
240
|
(Tensor<T>) where the ceil is, y = ceil(x), is applied to
|
|
241
|
-
the tensor elementwise.
|
|
241
|
+
the tensor elementwise. If x is integral, +0, -0, NaN, or infinite, x itself is returned.
|
|
242
242
|
)DOC";
|
|
243
243
|
|
|
244
244
|
ONNX_OPERATOR_SET_SCHEMA(
|
|
@@ -312,9 +312,6 @@ static const char* LeakyRelu_ver16_doc = R"DOC(
|
|
|
312
312
|
LeakyRelu takes input data (Tensor<T>) and an argument alpha, and produces one
|
|
313
313
|
output data (Tensor<T>) where the function `f(x) = alpha * x for x < 0`,
|
|
314
314
|
`f(x) = x for x >= 0`, is applied to the data tensor elementwise.
|
|
315
|
-
|
|
316
|
-
**History**
|
|
317
|
-
- Version 16 adds bfloat16 to the types allowed.
|
|
318
315
|
)DOC";
|
|
319
316
|
|
|
320
317
|
ONNX_OPERATOR_SET_SCHEMA(
|
|
@@ -698,9 +695,6 @@ static const char* PRelu_ver16_doc = R"DOC(
|
|
|
698
695
|
PRelu takes input data (Tensor<T>) and slope tensor as input, and produces one
|
|
699
696
|
output data (Tensor<T>) where the function `f(x) = slope * x for x < 0`,
|
|
700
697
|
`f(x) = x for x >= 0`., is applied to the data tensor elementwise.
|
|
701
|
-
|
|
702
|
-
**History**
|
|
703
|
-
- Version 16 adds bfloat16 to the types allowed.
|
|
704
698
|
)DOC";
|
|
705
699
|
|
|
706
700
|
ONNX_OPERATOR_SET_SCHEMA(
|
|
@@ -736,7 +730,7 @@ ONNX_OPERATOR_SET_SCHEMA(
|
|
|
736
730
|
.FunctionBody(R"ONNX(
|
|
737
731
|
{
|
|
738
732
|
Zero = Constant <value = float {0.0}>()
|
|
739
|
-
ZeroCast = CastLike(Zero, X)
|
|
733
|
+
ZeroCast = CastLike(Zero, X)
|
|
740
734
|
XLessThanZero = Less (X, ZeroCast)
|
|
741
735
|
SlopeMulX = Mul (slope, X)
|
|
742
736
|
Y = Where(XLessThanZero, SlopeMulX, X)
|
|
@@ -874,7 +868,7 @@ ONNX_OPERATOR_SET_SCHEMA(
|
|
|
874
868
|
.FillUsing(ElementwiseMultiOpDocGenerator("max"))
|
|
875
869
|
.TypeConstraint(
|
|
876
870
|
"T",
|
|
877
|
-
OpSchema::
|
|
871
|
+
OpSchema::all_numeric_types_ir4(),
|
|
878
872
|
"Constrain input and output types to numeric tensors."));
|
|
879
873
|
|
|
880
874
|
ONNX_OPERATOR_SET_SCHEMA(
|
|
@@ -884,7 +878,7 @@ ONNX_OPERATOR_SET_SCHEMA(
|
|
|
884
878
|
.FillUsing(ElementwiseMultiOpDocGenerator("min"))
|
|
885
879
|
.TypeConstraint(
|
|
886
880
|
"T",
|
|
887
|
-
OpSchema::
|
|
881
|
+
OpSchema::all_numeric_types_ir4(),
|
|
888
882
|
"Constrain input and output types to numeric tensors."));
|
|
889
883
|
|
|
890
884
|
ONNX_OPERATOR_SET_SCHEMA(
|
|
@@ -985,7 +979,7 @@ ONNX_OPERATOR_SET_SCHEMA(
|
|
|
985
979
|
OpSchema::Differentiable)
|
|
986
980
|
.TypeConstraint(
|
|
987
981
|
"T",
|
|
988
|
-
OpSchema::
|
|
982
|
+
OpSchema::all_numeric_types_ir4(),
|
|
989
983
|
"Constrain input and output types to all numeric tensors.")
|
|
990
984
|
.SetContextDependentFunctionBodyBuilder(BuildContextDependentFunctionBodyClip)
|
|
991
985
|
.TypeAndShapeInferenceFunction(propagateShapeAndTypeFromFirstInput));
|
|
@@ -1143,21 +1137,23 @@ ONNX_OPERATOR_SET_SCHEMA(
|
|
|
1143
1137
|
{"tensor(float16)", "tensor(float)", "tensor(double)"},
|
|
1144
1138
|
"Constrain input and output types to float tensors.")
|
|
1145
1139
|
.TypeAndShapeInferenceFunction(propagateShapeAndTypeFromFirstInput)
|
|
1146
|
-
.FunctionBody(
|
|
1147
|
-
|
|
1148
|
-
|
|
1149
|
-
|
|
1150
|
-
|
|
1151
|
-
|
|
1152
|
-
|
|
1153
|
-
|
|
1140
|
+
.FunctionBody(
|
|
1141
|
+
R"ONNX(
|
|
1142
|
+
{
|
|
1143
|
+
exp_x = Exp (X)
|
|
1144
|
+
one = Constant <value = float {1.0}>()
|
|
1145
|
+
one_cast = CastLike (one, X)
|
|
1146
|
+
exp_x_add_one = Add (exp_x, one_cast)
|
|
1147
|
+
Y = Log (exp_x_add_one)
|
|
1148
|
+
}
|
|
1149
|
+
)ONNX",
|
|
1150
|
+
18));
|
|
1154
1151
|
|
|
1155
1152
|
static const char* Gemm_ver13_doc = R"DOC(General Matrix multiplication:
|
|
1156
1153
|
https://en.wikipedia.org/wiki/Basic_Linear_Algebra_Subprograms#Level_3
|
|
1157
1154
|
|
|
1158
|
-
A' = transpose(A) if transA else A
|
|
1159
|
-
|
|
1160
|
-
B' = transpose(B) if transB else B
|
|
1155
|
+
* A' = transpose(A) if transA else A
|
|
1156
|
+
* B' = transpose(B) if transB else B
|
|
1161
1157
|
|
|
1162
1158
|
Compute Y = alpha * A' * B' + beta * C, where input tensor A has shape (M, K) or (K, M),
|
|
1163
1159
|
input tensor B has shape (K, N) or (N, K), input tensor C is broadcastable to shape (M, N),
|
|
@@ -1339,18 +1335,19 @@ ONNX_OPERATOR_SET_SCHEMA(
|
|
|
1339
1335
|
static const char* TopK_ver11_doc = R"DOC(
|
|
1340
1336
|
Retrieve the top-K largest or smallest elements along a specified axis. Given an input tensor of
|
|
1341
1337
|
shape [a_1, a_2, ..., a_n, r] and integer argument k, return two outputs:
|
|
1342
|
-
-Value tensor of shape [a_1, a_2, ..., a_{axis-1}, k, a_{axis+1}, ... a_n]
|
|
1343
|
-
which contains the values of the top k elements along the specified axis
|
|
1344
|
-
-Index tensor of shape [a_1, a_2, ..., a_{axis-1}, k, a_{axis+1}, ... a_n] which
|
|
1345
|
-
contains the indices of the top k elements (original indices from the input
|
|
1346
|
-
tensor).
|
|
1347
1338
|
|
|
1348
|
-
|
|
1349
|
-
|
|
1350
|
-
|
|
1339
|
+
* Value tensor of shape [a_1, a_2, ..., a_{axis-1}, k, a_{axis+1}, ... a_n]
|
|
1340
|
+
which contains the values of the top k elements along the specified axis
|
|
1341
|
+
* Index tensor of shape [a_1, a_2, ..., a_{axis-1}, k, a_{axis+1}, ... a_n] which
|
|
1342
|
+
contains the indices of the top k elements (original indices from the input
|
|
1343
|
+
tensor).
|
|
1344
|
+
|
|
1345
|
+
* If "largest" is 1 (the default value) then the k largest elements are returned.
|
|
1346
|
+
* If "sorted" is 1 (the default value) then the resulting k elements will be sorted.
|
|
1347
|
+
* If "sorted" is 0, order of returned 'Values' and 'Indices' are undefined.
|
|
1351
1348
|
|
|
1352
1349
|
Given two equivalent values, this operator uses the indices along the axis as
|
|
1353
|
-
|
|
1350
|
+
a tiebreaker. That is, the element with the lower index will appear first.
|
|
1354
1351
|
)DOC";
|
|
1355
1352
|
|
|
1356
1353
|
ONNX_OPERATOR_SET_SCHEMA(
|
|
@@ -1654,10 +1651,7 @@ ONNX_OPERATOR_SET_SCHEMA(
|
|
|
1654
1651
|
1,
|
|
1655
1652
|
OpSchema::NonDifferentiable)
|
|
1656
1653
|
.Output(0, "output", "Output tensor", "T", OpSchema::Single, true, 1, OpSchema::Differentiable)
|
|
1657
|
-
.TypeConstraint(
|
|
1658
|
-
"T",
|
|
1659
|
-
OpSchema::all_tensor_types_with_bfloat(),
|
|
1660
|
-
"Constrain input and output types to all tensors.")
|
|
1654
|
+
.TypeConstraint("T", OpSchema::all_tensor_types_ir4(), "Constrain input and output types to all tensors.")
|
|
1661
1655
|
.TypeAndShapeInferenceFunction([](InferenceContext& ctx) {
|
|
1662
1656
|
// Type inference
|
|
1663
1657
|
propagateElemTypeFromInputToOutput(ctx, 0, 0);
|
|
@@ -1827,7 +1821,7 @@ ONNX_OPERATOR_SET_SCHEMA(
|
|
|
1827
1821
|
OpSchema::NonDifferentiable)
|
|
1828
1822
|
.TypeConstraint(
|
|
1829
1823
|
"T",
|
|
1830
|
-
OpSchema::
|
|
1824
|
+
OpSchema::all_numeric_types_ir4(),
|
|
1831
1825
|
"Constrain input and output types to all numeric tensors.")
|
|
1832
1826
|
.TypeAndShapeInferenceFunction(propagateShapeAndTypeFromFirstInput));
|
|
1833
1827
|
|
|
@@ -1853,7 +1847,7 @@ ONNX_OPERATOR_SET_SCHEMA(
|
|
|
1853
1847
|
OpSchema::Differentiable)
|
|
1854
1848
|
.TypeConstraint(
|
|
1855
1849
|
"T",
|
|
1856
|
-
OpSchema::
|
|
1850
|
+
OpSchema::all_numeric_types_ir4(),
|
|
1857
1851
|
"Constrain input and output types to all numeric tensors.")
|
|
1858
1852
|
.TypeAndShapeInferenceFunction(propagateShapeAndTypeFromFirstInput));
|
|
1859
1853
|
|
|
@@ -2111,7 +2105,7 @@ ONNX_OPERATOR_SET_SCHEMA(
|
|
|
2111
2105
|
OpSchema::Differentiable)
|
|
2112
2106
|
.TypeConstraint(
|
|
2113
2107
|
"T",
|
|
2114
|
-
OpSchema::
|
|
2108
|
+
OpSchema::numeric_types_for_math_reduction_ir4(),
|
|
2115
2109
|
"Constrain input and output types to high-precision numeric tensors.")
|
|
2116
2110
|
.TypeConstraint("T2", {"tensor(int32)", "tensor(int64)"}, "axis tensor can be int32 or int64 only")
|
|
2117
2111
|
.TypeAndShapeInferenceFunction(ONNX_NAMESPACE::propagateShapeAndTypeFromFirstInput));
|
|
@@ -2120,6 +2114,7 @@ static const char* Round_ver11_doc = R"DOC(
|
|
|
2120
2114
|
Round takes one input Tensor and rounds the values, element-wise, meaning
|
|
2121
2115
|
it finds the nearest integer for each value.
|
|
2122
2116
|
In case of halfs, the rule is to round them to the nearest even integer.
|
|
2117
|
+
If input x is integral, +0, -0, NaN, or infinite, x itself is returned.
|
|
2123
2118
|
The output tensor has the same shape and type as the input.
|
|
2124
2119
|
|
|
2125
2120
|
Examples:
|
|
@@ -2204,85 +2199,100 @@ The operator's "target" input tensor has the shape of (N, d1, d2, ..., dk). It e
|
|
|
2204
2199
|
or it may contain a special value (indicated by an attribute ignore_index) for N x d1 x d2 x ... x dk samples.
|
|
2205
2200
|
The loss value for input[n, :, d_1, d_2,...d_k] being classified as class c = target[n][d_1][d_2]...[d_k] is computed as:
|
|
2206
2201
|
|
|
2207
|
-
|
|
2202
|
+
```
|
|
2203
|
+
loss[n][d_1][d_2]...[d_k] = -input[n][c][d_1][d_2]...[d_k].
|
|
2204
|
+
```
|
|
2208
2205
|
|
|
2209
2206
|
When an optional "weight" is provided, the sample loss is calculated as:
|
|
2210
2207
|
|
|
2211
|
-
|
|
2208
|
+
```
|
|
2209
|
+
loss[n][d_1][d_2]...[d_k] = -input[n][c][d_1][d_2]...[d_k] * weight[c].
|
|
2210
|
+
```
|
|
2212
2211
|
|
|
2213
2212
|
loss is zero for the case when target-value equals ignore_index.
|
|
2214
2213
|
|
|
2215
|
-
|
|
2214
|
+
```
|
|
2215
|
+
loss[n][d_1][d_2]...[d_k] = 0, when target[n][d_1][d_2]...[d_k] = ignore_index
|
|
2216
|
+
```
|
|
2216
2217
|
|
|
2217
2218
|
If "reduction" attribute is set to "none", the operator's output will be the above loss with shape (N, d1, d2, ..., dk).
|
|
2218
2219
|
If "reduction" attribute is set to "mean" (the default attribute value), the output loss is (weight) averaged:
|
|
2219
2220
|
|
|
2220
|
-
|
|
2221
|
+
```
|
|
2222
|
+
mean(loss), if "weight" is not provided,
|
|
2223
|
+
```
|
|
2221
2224
|
|
|
2222
2225
|
or if weight is provided,
|
|
2223
2226
|
|
|
2224
|
-
|
|
2227
|
+
```
|
|
2228
|
+
sum(loss) / sum(weight[target[n][d_1][d_2]...[d_k]]]), for all samples.
|
|
2229
|
+
```
|
|
2225
2230
|
|
|
2226
|
-
If "reduction" attribute is set to "sum", the output is a scalar:
|
|
2227
|
-
sum(loss).
|
|
2231
|
+
If "reduction" attribute is set to "sum", the output is a scalar: `sum(loss)`.
|
|
2228
2232
|
|
|
2229
2233
|
See also https://pytorch.org/docs/stable/nn.html#torch.nn.NLLLoss.
|
|
2230
2234
|
|
|
2231
2235
|
Example 1:
|
|
2232
2236
|
|
|
2233
|
-
|
|
2234
|
-
|
|
2235
|
-
|
|
2236
|
-
|
|
2237
|
-
|
|
2238
|
-
|
|
2239
|
-
|
|
2240
|
-
|
|
2241
|
-
|
|
2242
|
-
|
|
2243
|
-
|
|
2244
|
-
|
|
2245
|
-
|
|
2246
|
-
|
|
2247
|
-
|
|
2237
|
+
```
|
|
2238
|
+
// negative log likelihood loss, "none" reduction
|
|
2239
|
+
N, C, d1 = 2, 3, 2
|
|
2240
|
+
input = [[[1.0, 2.0], [2.0, 2.0], [3.0, 2.0]],
|
|
2241
|
+
[[0.0, 1.0], [2.0, 2.0], [1.0, 2]]]
|
|
2242
|
+
target = [[2, 1], [0, 2]]
|
|
2243
|
+
|
|
2244
|
+
loss = np.zeros((N, d1))
|
|
2245
|
+
for n in range(N):
|
|
2246
|
+
for d_1 in range(d1):
|
|
2247
|
+
c = target[n][d_1]
|
|
2248
|
+
loss[n][d_1] = -input[n][c][d_1]
|
|
2249
|
+
|
|
2250
|
+
// print(loss)
|
|
2251
|
+
// [[-3. -2.]
|
|
2252
|
+
// [-0. -2.]]
|
|
2253
|
+
```
|
|
2248
2254
|
|
|
2249
2255
|
Example 2:
|
|
2250
2256
|
|
|
2251
|
-
|
|
2252
|
-
|
|
2253
|
-
|
|
2254
|
-
|
|
2255
|
-
|
|
2256
|
-
|
|
2257
|
-
|
|
2258
|
-
|
|
2259
|
-
|
|
2260
|
-
|
|
2261
|
-
|
|
2262
|
-
|
|
2263
|
-
|
|
2264
|
-
|
|
2265
|
-
|
|
2257
|
+
```
|
|
2258
|
+
// weighted negative log likelihood loss, sum reduction
|
|
2259
|
+
N, C, d1 = 2, 3, 2
|
|
2260
|
+
input = [[[1.0, 2.0], [2.0, 2.0], [3.0, 2.0]],
|
|
2261
|
+
[[0.0, 1.0], [2.0, 2.0], [1.0, 2]]]
|
|
2262
|
+
target = [[2, 1], [0, 2]]
|
|
2263
|
+
weight = [0.2, 0.3, 0.1]
|
|
2264
|
+
loss = np.zeros((N, d1))
|
|
2265
|
+
for n in range(N):
|
|
2266
|
+
for d_1 in range(d1):
|
|
2267
|
+
c = target[n][d_1]
|
|
2268
|
+
loss[n][d_1] = -input[n][c][d_1] * weight[c]
|
|
2269
|
+
|
|
2270
|
+
loss = np.sum(loss)
|
|
2271
|
+
// print(loss)
|
|
2272
|
+
// -1.1
|
|
2273
|
+
```
|
|
2266
2274
|
|
|
2267
2275
|
Example 3:
|
|
2268
2276
|
|
|
2269
|
-
|
|
2270
|
-
|
|
2271
|
-
|
|
2272
|
-
|
|
2273
|
-
|
|
2274
|
-
|
|
2275
|
-
|
|
2276
|
-
|
|
2277
|
-
|
|
2278
|
-
|
|
2279
|
-
|
|
2280
|
-
|
|
2281
|
-
|
|
2282
|
-
|
|
2283
|
-
|
|
2284
|
-
|
|
2285
|
-
|
|
2277
|
+
```
|
|
2278
|
+
// weighted negative log likelihood loss, mean reduction
|
|
2279
|
+
N, C, d1 = 2, 3, 2
|
|
2280
|
+
input = [[[1.0, 2.0], [2.0, 2.0], [3.0, 2.0]],
|
|
2281
|
+
[[0.0, 1.0], [2.0, 2.0], [1.0, 2]]]
|
|
2282
|
+
target = [[2, 1], [0, 2]]
|
|
2283
|
+
weight = [0.2, 0.3, 0.1]
|
|
2284
|
+
loss = np.zeros((N, d1))
|
|
2285
|
+
weight_total = 0
|
|
2286
|
+
for n in range(N):
|
|
2287
|
+
for d_1 in range(d1):
|
|
2288
|
+
c = target[n][d_1]
|
|
2289
|
+
loss[n][d_1] = -input[n][c][d_1] * weight[c]
|
|
2290
|
+
weight_total = weight_total + weight[c]
|
|
2291
|
+
|
|
2292
|
+
loss = np.sum(loss) / weight_total
|
|
2293
|
+
// print(loss)
|
|
2294
|
+
// -1.57
|
|
2295
|
+
```
|
|
2286
2296
|
)DOC";
|
|
2287
2297
|
|
|
2288
2298
|
bool BuildContextDependentFunctionBody(
|
|
@@ -2602,9 +2612,11 @@ void einsumRankInference(ONNX_NAMESPACE::InferenceContext& ctx, std::string equa
|
|
|
2602
2612
|
}
|
|
2603
2613
|
|
|
2604
2614
|
static const char* Einsum_ver12_doc = R"DOC(
|
|
2605
|
-
An einsum of the form
|
|
2615
|
+
An einsum of the form `term1, term2 -> output-term` produces an output tensor using the following equation
|
|
2606
2616
|
|
|
2607
|
-
```
|
|
2617
|
+
```
|
|
2618
|
+
output[output-term] = reduce-sum( input1[term1] * input2[term] )
|
|
2619
|
+
```
|
|
2608
2620
|
|
|
2609
2621
|
where the reduce-sum performs a summation over all the indices occurring in the input terms (term1, term2)
|
|
2610
2622
|
that do not occur in the output-term.
|
|
@@ -2665,29 +2677,38 @@ If the input is N-D tensor with shape (N, C, D1, D2, ..., Dk),
|
|
|
2665
2677
|
the loss tensor L may have (N, D1, D2, ..., Dk) as its shape and L[i,][j_1][j_2]...[j_k] denotes a scalar element in L.
|
|
2666
2678
|
After L is available, this operator can optionally do a reduction operator.
|
|
2667
2679
|
|
|
2668
|
-
shape(scores): (N, C) where C is the number of classes, or (N, C, D1, D2,..., Dk),
|
|
2669
|
-
|
|
2670
|
-
shape(labels): (N) where each value is 0 <= labels[i] <= C-1, or (N, D1, D2,..., Dk),
|
|
2671
|
-
|
|
2680
|
+
* shape(scores): (N, C) where C is the number of classes, or (N, C, D1, D2,..., Dk),
|
|
2681
|
+
with K >= 1 in case of K-dimensional loss.
|
|
2682
|
+
* shape(labels): (N) where each value is 0 <= labels[i] <= C-1, or (N, D1, D2,..., Dk),
|
|
2683
|
+
with K >= 1 in case of K-dimensional loss.
|
|
2672
2684
|
|
|
2673
2685
|
The loss for one sample, l_i, can caculated as follows:
|
|
2674
|
-
|
|
2686
|
+
```
|
|
2687
|
+
l[i][d1][d2]...[dk] = -y[i][c][d1][d2]..[dk], where i is the index of classes.
|
|
2688
|
+
```
|
|
2675
2689
|
or
|
|
2676
|
-
|
|
2690
|
+
```
|
|
2691
|
+
l[i][d1][d2]...[dk] = -y[i][c][d1][d2]..[dk] * weights[c], if 'weights' is provided.
|
|
2692
|
+
```
|
|
2677
2693
|
|
|
2678
2694
|
loss is zero for the case when label-value equals ignore_index.
|
|
2679
|
-
|
|
2695
|
+
```
|
|
2696
|
+
l[i][d1][d2]...[dk] = 0, when labels[n][d1][d2]...[dk] = ignore_index
|
|
2697
|
+
```
|
|
2680
2698
|
|
|
2681
2699
|
where:
|
|
2682
|
-
|
|
2683
|
-
|
|
2684
|
-
|
|
2700
|
+
```
|
|
2701
|
+
p = Softmax(scores)
|
|
2702
|
+
y = Log(p)
|
|
2703
|
+
c = labels[i][d1][d2]...[dk]
|
|
2704
|
+
```
|
|
2685
2705
|
|
|
2686
2706
|
Finally, L is optionally reduced:
|
|
2687
|
-
|
|
2688
|
-
If reduction = '
|
|
2689
|
-
If reduction = '
|
|
2690
|
-
|
|
2707
|
+
|
|
2708
|
+
* If reduction = 'none', the output is L with shape (N, D1, D2, ..., Dk).
|
|
2709
|
+
* If reduction = 'sum', the output is scalar: Sum(L).
|
|
2710
|
+
* If reduction = 'mean', the output is scalar: ReduceMean(L), or if weight is provided: `ReduceSum(L) / ReduceSum(W)`,
|
|
2711
|
+
where tensor W is of shape `(N, D1, D2, ..., Dk)` and `W[n][d1][d2]...[dk] = weights[labels[i][d1][d2]...[dk]]`.
|
|
2691
2712
|
)DOC";
|
|
2692
2713
|
|
|
2693
2714
|
bool BuildContextDependentFunctionBodySCE(
|
|
@@ -2893,9 +2914,9 @@ ONNX_OPERATOR_SET_SCHEMA(
|
|
|
2893
2914
|
"output",
|
|
2894
2915
|
"The Fourier Transform of the input vector."
|
|
2895
2916
|
"If onesided is 0, the following shape is expected: [batch_idx][signal_dim1][signal_dim2]...[signal_dimN][2]. "
|
|
2896
|
-
"If axis=
|
|
2897
|
-
"If axis=
|
|
2898
|
-
"If axis=N
|
|
2917
|
+
"If axis=1 and onesided is 1, the following shape is expected: [batch_idx][floor(signal_dim1/2)+1][signal_dim2]...[signal_dimN][2]. "
|
|
2918
|
+
"If axis=2 and onesided is 1, the following shape is expected: [batch_idx][signal_dim1][floor(signal_dim2/2)+1]...[signal_dimN][2]. "
|
|
2919
|
+
"If axis=N and onesided is 1, the following shape is expected: [batch_idx][signal_dim1][signal_dim2]...[floor(signal_dimN/2)+1][2]. "
|
|
2899
2920
|
"The signal_dim at the specified axis is equal to the dft_length.",
|
|
2900
2921
|
"T1")
|
|
2901
2922
|
.TypeConstraint(
|
|
@@ -3050,7 +3071,7 @@ ONNX_OPERATOR_SET_SCHEMA(
|
|
|
3050
3071
|
OpSchema()
|
|
3051
3072
|
.FillUsing(CosineSumWindowOpDocGenerator("Hann"))
|
|
3052
3073
|
.TypeConstraint("T1", {"tensor(int32)", "tensor(int64)"}, "Constrain the input size to int64_t.")
|
|
3053
|
-
.TypeConstraint("T2", OpSchema::
|
|
3074
|
+
.TypeConstraint("T2", OpSchema::all_numeric_types_ir4(), "Constrain output types to numeric tensors.")
|
|
3054
3075
|
.FunctionBody(R"ONNX(
|
|
3055
3076
|
{
|
|
3056
3077
|
A0 = Constant <value = float {0.5}>()
|
|
@@ -3088,7 +3109,7 @@ ONNX_OPERATOR_SET_SCHEMA(
|
|
|
3088
3109
|
OpSchema()
|
|
3089
3110
|
.FillUsing(CosineSumWindowOpDocGenerator("Hamming"))
|
|
3090
3111
|
.TypeConstraint("T1", {"tensor(int32)", "tensor(int64)"}, "Constrain the input size to int64_t.")
|
|
3091
|
-
.TypeConstraint("T2", OpSchema::
|
|
3112
|
+
.TypeConstraint("T2", OpSchema::all_numeric_types_ir4(), "Constrain output types to numeric tensors.")
|
|
3092
3113
|
.FunctionBody(R"ONNX(
|
|
3093
3114
|
{
|
|
3094
3115
|
A0 = Constant <value = float {0.54347826087}>()
|
|
@@ -3126,7 +3147,7 @@ ONNX_OPERATOR_SET_SCHEMA(
|
|
|
3126
3147
|
OpSchema()
|
|
3127
3148
|
.FillUsing(CosineSumWindowOpDocGenerator("Blackman"))
|
|
3128
3149
|
.TypeConstraint("T1", {"tensor(int32)", "tensor(int64)"}, "Constrain the input size to int64_t.")
|
|
3129
|
-
.TypeConstraint("T2", OpSchema::
|
|
3150
|
+
.TypeConstraint("T2", OpSchema::all_numeric_types_ir4(), "Constrain output types to numeric tensors.")
|
|
3130
3151
|
.FunctionBody(R"ONNX(
|
|
3131
3152
|
{
|
|
3132
3153
|
A0 = Constant <value = float {0.42}>()
|
|
@@ -3242,7 +3263,7 @@ ONNX_OPERATOR_SET_SCHEMA(
|
|
|
3242
3263
|
"T2",
|
|
3243
3264
|
{"tensor(float)", "tensor(float16)", "tensor(double)", "tensor(bfloat16)"},
|
|
3244
3265
|
"Constrain to float tensors")
|
|
3245
|
-
.TypeConstraint("T3", OpSchema::
|
|
3266
|
+
.TypeConstraint("T3", OpSchema::all_numeric_types_ir4(), "Constrain to any numerical types.")
|
|
3246
3267
|
.TypeAndShapeInferenceFunction([](ONNX_NAMESPACE::InferenceContext& ctx) {
|
|
3247
3268
|
auto output_datatype = getAttribute(ctx, "output_datatype", static_cast<int64_t>(TensorProto_DataType_FLOAT));
|
|
3248
3269
|
updateOutputElemType(ctx, 0, output_datatype);
|
|
@@ -3444,17 +3465,20 @@ ONNX_OPERATOR_SET_SCHEMA(
|
|
|
3444
3465
|
}
|
|
3445
3466
|
|
|
3446
3467
|
bool is_onesided = static_cast<bool>(getAttribute(ctx, "onesided", 0));
|
|
3447
|
-
|
|
3448
|
-
dft_size = is_onesided ? ((dft_size >> 1) + 1) : dft_size;
|
|
3449
|
-
}
|
|
3468
|
+
int64_t dft_unique_bins = is_onesided ? ((dft_size >> 1) + 1) : dft_size;
|
|
3450
3469
|
|
|
3451
3470
|
auto n_dfts = static_cast<int64_t>((signal_size - dft_size) / static_cast<float>(frame_step_value)) + 1;
|
|
3452
3471
|
|
|
3453
3472
|
// The output has the following shape: [batch_size][frames][dft_unique_bins][2]
|
|
3454
3473
|
ONNX_NAMESPACE::TensorShapeProto result_shape_proto;
|
|
3455
|
-
result_shape_proto.add_dim()
|
|
3474
|
+
auto batch_dim = result_shape_proto.add_dim();
|
|
3475
|
+
|
|
3476
|
+
if (input_shape.dim(0).has_dim_value()) {
|
|
3477
|
+
batch_dim->set_dim_value(input_shape.dim(0).dim_value()); // batch size
|
|
3478
|
+
}
|
|
3479
|
+
|
|
3456
3480
|
result_shape_proto.add_dim()->set_dim_value(n_dfts);
|
|
3457
|
-
result_shape_proto.add_dim()->set_dim_value(
|
|
3481
|
+
result_shape_proto.add_dim()->set_dim_value(dft_unique_bins);
|
|
3458
3482
|
result_shape_proto.add_dim()->set_dim_value(2);
|
|
3459
3483
|
updateOutputShape(ctx, 0, result_shape_proto);
|
|
3460
3484
|
}));
|
onnx/defs/math/old.cc
CHANGED
|
@@ -34,7 +34,7 @@ Performs element-wise binary {name} (with Numpy-style broadcasting support).
|
|
|
34
34
|
OpSchema::Differentiable);
|
|
35
35
|
schema.TypeConstraint(
|
|
36
36
|
"T",
|
|
37
|
-
OpSchema::
|
|
37
|
+
OpSchema::numeric_types_for_math_reduction_ir4(),
|
|
38
38
|
"Constrain input and output types to high-precision numeric tensors.");
|
|
39
39
|
schema.TypeAndShapeInferenceFunction([](InferenceContext& ctx) {
|
|
40
40
|
propagateElemTypeFromInputToOutput(ctx, 0, 0);
|