onnx 1.13.1__cp37-cp37m-win_amd64.whl → 1.14.1__cp37-cp37m-win_amd64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of onnx might be problematic. Click here for more details.

Files changed (1057) hide show
  1. onnx/__init__.py +116 -70
  2. onnx/backend/__init__.py +2 -0
  3. onnx/backend/base.py +3 -0
  4. onnx/backend/sample/__init__.py +2 -0
  5. onnx/backend/sample/ops/__init__.py +8 -6
  6. onnx/backend/sample/ops/abs.py +1 -1
  7. onnx/backend/test/__init__.py +4 -1
  8. onnx/backend/test/case/__init__.py +4 -2
  9. onnx/backend/test/case/base.py +2 -0
  10. onnx/backend/test/case/model/__init__.py +8 -6
  11. onnx/backend/test/case/model/expand.py +4 -3
  12. onnx/backend/test/case/model/gradient.py +4 -3
  13. onnx/backend/test/case/model/sequence.py +4 -3
  14. onnx/backend/test/case/model/shrink.py +4 -3
  15. onnx/backend/test/case/model/sign.py +4 -3
  16. onnx/backend/test/case/model/single-relu.py +4 -3
  17. onnx/backend/test/case/model/stringnormalizer.py +4 -3
  18. onnx/backend/test/case/node/__init__.py +18 -12
  19. onnx/backend/test/case/node/abs.py +4 -3
  20. onnx/backend/test/case/node/acos.py +4 -3
  21. onnx/backend/test/case/node/acosh.py +4 -3
  22. onnx/backend/test/case/node/adagrad.py +4 -3
  23. onnx/backend/test/case/node/adam.py +4 -3
  24. onnx/backend/test/case/node/add.py +4 -3
  25. onnx/backend/test/case/node/ai_onnx_ml/__init__.py +0 -0
  26. onnx/backend/test/case/node/ai_onnx_ml/array_feature_extractor.py +30 -0
  27. onnx/backend/test/case/node/ai_onnx_ml/binarizer.py +27 -0
  28. onnx/backend/test/case/node/and.py +4 -3
  29. onnx/backend/test/case/node/argmax.py +4 -3
  30. onnx/backend/test/case/node/argmin.py +4 -3
  31. onnx/backend/test/case/node/asin.py +4 -3
  32. onnx/backend/test/case/node/asinh.py +4 -3
  33. onnx/backend/test/case/node/atan.py +4 -3
  34. onnx/backend/test/case/node/atanh.py +4 -3
  35. onnx/backend/test/case/node/averagepool.py +43 -4
  36. onnx/backend/test/case/node/batchnorm.py +4 -3
  37. onnx/backend/test/case/node/bernoulli.py +4 -3
  38. onnx/backend/test/case/node/bitshift.py +4 -3
  39. onnx/backend/test/case/node/bitwiseand.py +13 -11
  40. onnx/backend/test/case/node/bitwisenot.py +8 -6
  41. onnx/backend/test/case/node/bitwiseor.py +13 -11
  42. onnx/backend/test/case/node/bitwisexor.py +13 -11
  43. onnx/backend/test/case/node/blackmanwindow.py +4 -4
  44. onnx/backend/test/case/node/cast.py +218 -8
  45. onnx/backend/test/case/node/castlike.py +103 -9
  46. onnx/backend/test/case/node/ceil.py +4 -3
  47. onnx/backend/test/case/node/celu.py +4 -3
  48. onnx/backend/test/case/node/center_crop_pad.py +26 -3
  49. onnx/backend/test/case/node/clip.py +4 -3
  50. onnx/backend/test/case/node/col2im.py +5 -4
  51. onnx/backend/test/case/node/compress.py +4 -3
  52. onnx/backend/test/case/node/concat.py +4 -3
  53. onnx/backend/test/case/node/constant.py +4 -3
  54. onnx/backend/test/case/node/constantofshape.py +4 -3
  55. onnx/backend/test/case/node/conv.py +4 -3
  56. onnx/backend/test/case/node/convinteger.py +4 -3
  57. onnx/backend/test/case/node/convtranspose.py +4 -3
  58. onnx/backend/test/case/node/cos.py +4 -3
  59. onnx/backend/test/case/node/cosh.py +4 -3
  60. onnx/backend/test/case/node/cumsum.py +4 -3
  61. onnx/backend/test/case/node/deformconv.py +170 -0
  62. onnx/backend/test/case/node/depthtospace.py +4 -3
  63. onnx/backend/test/case/node/dequantizelinear.py +46 -3
  64. onnx/backend/test/case/node/det.py +4 -3
  65. onnx/backend/test/case/node/dft.py +4 -4
  66. onnx/backend/test/case/node/div.py +4 -3
  67. onnx/backend/test/case/node/dropout.py +4 -3
  68. onnx/backend/test/case/node/dynamicquantizelinear.py +4 -3
  69. onnx/backend/test/case/node/einsum.py +4 -4
  70. onnx/backend/test/case/node/elu.py +4 -3
  71. onnx/backend/test/case/node/equal.py +28 -3
  72. onnx/backend/test/case/node/erf.py +4 -3
  73. onnx/backend/test/case/node/exp.py +4 -3
  74. onnx/backend/test/case/node/expand.py +4 -3
  75. onnx/backend/test/case/node/eyelike.py +4 -3
  76. onnx/backend/test/case/node/flatten.py +4 -3
  77. onnx/backend/test/case/node/floor.py +4 -3
  78. onnx/backend/test/case/node/gather.py +4 -3
  79. onnx/backend/test/case/node/gatherelements.py +4 -3
  80. onnx/backend/test/case/node/gathernd.py +5 -4
  81. onnx/backend/test/case/node/gemm.py +4 -3
  82. onnx/backend/test/case/node/globalaveragepool.py +4 -3
  83. onnx/backend/test/case/node/globalmaxpool.py +4 -3
  84. onnx/backend/test/case/node/greater.py +4 -3
  85. onnx/backend/test/case/node/greater_equal.py +4 -3
  86. onnx/backend/test/case/node/gridsample.py +4 -3
  87. onnx/backend/test/case/node/groupnormalization.py +5 -4
  88. onnx/backend/test/case/node/gru.py +10 -9
  89. onnx/backend/test/case/node/hammingwindow.py +4 -4
  90. onnx/backend/test/case/node/hannwindow.py +4 -4
  91. onnx/backend/test/case/node/hardmax.py +4 -3
  92. onnx/backend/test/case/node/hardsigmoid.py +4 -3
  93. onnx/backend/test/case/node/hardswish.py +4 -3
  94. onnx/backend/test/case/node/identity.py +4 -3
  95. onnx/backend/test/case/node/if.py +4 -3
  96. onnx/backend/test/case/node/instancenorm.py +4 -3
  97. onnx/backend/test/case/node/isinf.py +4 -3
  98. onnx/backend/test/case/node/isnan.py +4 -3
  99. onnx/backend/test/case/node/layernormalization.py +4 -3
  100. onnx/backend/test/case/node/leakyrelu.py +4 -3
  101. onnx/backend/test/case/node/less.py +4 -3
  102. onnx/backend/test/case/node/less_equal.py +4 -3
  103. onnx/backend/test/case/node/log.py +4 -3
  104. onnx/backend/test/case/node/logsoftmax.py +4 -3
  105. onnx/backend/test/case/node/loop.py +4 -3
  106. onnx/backend/test/case/node/lppool.py +279 -0
  107. onnx/backend/test/case/node/lrn.py +4 -3
  108. onnx/backend/test/case/node/lstm.py +10 -9
  109. onnx/backend/test/case/node/matmul.py +4 -3
  110. onnx/backend/test/case/node/matmulinteger.py +4 -3
  111. onnx/backend/test/case/node/max.py +5 -4
  112. onnx/backend/test/case/node/maxpool.py +9 -4
  113. onnx/backend/test/case/node/maxunpool.py +4 -3
  114. onnx/backend/test/case/node/mean.py +4 -3
  115. onnx/backend/test/case/node/meanvariancenormalization.py +4 -3
  116. onnx/backend/test/case/node/melweightmatrix.py +4 -4
  117. onnx/backend/test/case/node/min.py +5 -4
  118. onnx/backend/test/case/node/mish.py +4 -3
  119. onnx/backend/test/case/node/mod.py +4 -3
  120. onnx/backend/test/case/node/momentum.py +4 -3
  121. onnx/backend/test/case/node/mul.py +4 -3
  122. onnx/backend/test/case/node/neg.py +4 -3
  123. onnx/backend/test/case/node/negativeloglikelihoodloss.py +4 -3
  124. onnx/backend/test/case/node/nonmaxsuppression.py +4 -3
  125. onnx/backend/test/case/node/nonzero.py +4 -3
  126. onnx/backend/test/case/node/not.py +4 -3
  127. onnx/backend/test/case/node/onehot.py +5 -4
  128. onnx/backend/test/case/node/optionalgetelement.py +4 -3
  129. onnx/backend/test/case/node/optionalhaselement.py +4 -3
  130. onnx/backend/test/case/node/or.py +4 -3
  131. onnx/backend/test/case/node/pad.py +36 -5
  132. onnx/backend/test/case/node/pool_op_common.py +20 -2
  133. onnx/backend/test/case/node/pow.py +4 -3
  134. onnx/backend/test/case/node/prelu.py +4 -3
  135. onnx/backend/test/case/node/qlinearconv.py +4 -3
  136. onnx/backend/test/case/node/qlinearmatmul.py +4 -3
  137. onnx/backend/test/case/node/quantizelinear.py +50 -3
  138. onnx/backend/test/case/node/rangeop.py +4 -3
  139. onnx/backend/test/case/node/reciprocal.py +4 -3
  140. onnx/backend/test/case/node/reduce_log_sum.py +4 -3
  141. onnx/backend/test/case/node/reduce_log_sum_exp.py +4 -3
  142. onnx/backend/test/case/node/reducel1.py +4 -3
  143. onnx/backend/test/case/node/reducel2.py +4 -3
  144. onnx/backend/test/case/node/reducemax.py +4 -3
  145. onnx/backend/test/case/node/reducemean.py +4 -3
  146. onnx/backend/test/case/node/reducemin.py +4 -3
  147. onnx/backend/test/case/node/reduceprod.py +4 -3
  148. onnx/backend/test/case/node/reducesum.py +4 -3
  149. onnx/backend/test/case/node/reducesumsquare.py +4 -3
  150. onnx/backend/test/case/node/relu.py +4 -3
  151. onnx/backend/test/case/node/reshape.py +4 -3
  152. onnx/backend/test/case/node/resize.py +73 -321
  153. onnx/backend/test/case/node/reversesequence.py +4 -3
  154. onnx/backend/test/case/node/rnn.py +10 -9
  155. onnx/backend/test/case/node/roialign.py +193 -3
  156. onnx/backend/test/case/node/round.py +4 -3
  157. onnx/backend/test/case/node/scan.py +4 -3
  158. onnx/backend/test/case/node/scatter.py +4 -3
  159. onnx/backend/test/case/node/scatterelements.py +4 -3
  160. onnx/backend/test/case/node/scatternd.py +4 -3
  161. onnx/backend/test/case/node/selu.py +4 -3
  162. onnx/backend/test/case/node/sequence_map.py +4 -4
  163. onnx/backend/test/case/node/sequenceinsert.py +4 -3
  164. onnx/backend/test/case/node/shape.py +4 -3
  165. onnx/backend/test/case/node/shrink.py +4 -3
  166. onnx/backend/test/case/node/sigmoid.py +4 -3
  167. onnx/backend/test/case/node/sign.py +4 -3
  168. onnx/backend/test/case/node/sin.py +4 -3
  169. onnx/backend/test/case/node/sinh.py +4 -3
  170. onnx/backend/test/case/node/size.py +4 -3
  171. onnx/backend/test/case/node/slice.py +4 -3
  172. onnx/backend/test/case/node/softmax.py +4 -3
  173. onnx/backend/test/case/node/softmaxcrossentropy.py +4 -3
  174. onnx/backend/test/case/node/softplus.py +4 -3
  175. onnx/backend/test/case/node/softsign.py +4 -3
  176. onnx/backend/test/case/node/spacetodepth.py +6 -3
  177. onnx/backend/test/case/node/split.py +4 -3
  178. onnx/backend/test/case/node/splittosequence.py +79 -0
  179. onnx/backend/test/case/node/sqrt.py +4 -3
  180. onnx/backend/test/case/node/squeeze.py +2 -0
  181. onnx/backend/test/case/node/stft.py +4 -4
  182. onnx/backend/test/case/node/stringnormalizer.py +4 -4
  183. onnx/backend/test/case/node/sub.py +4 -3
  184. onnx/backend/test/case/node/sum.py +4 -3
  185. onnx/backend/test/case/node/tan.py +4 -3
  186. onnx/backend/test/case/node/tanh.py +4 -3
  187. onnx/backend/test/case/node/tfidfvectorizer.py +4 -3
  188. onnx/backend/test/case/node/thresholdedrelu.py +4 -3
  189. onnx/backend/test/case/node/tile.py +4 -3
  190. onnx/backend/test/case/node/topk.py +4 -3
  191. onnx/backend/test/case/node/transpose.py +8 -7
  192. onnx/backend/test/case/node/trilu.py +4 -3
  193. onnx/backend/test/case/node/unique.py +4 -3
  194. onnx/backend/test/case/node/unsqueeze.py +4 -3
  195. onnx/backend/test/case/node/upsample.py +4 -3
  196. onnx/backend/test/case/node/where.py +4 -3
  197. onnx/backend/test/case/node/xor.py +4 -3
  198. onnx/backend/test/case/test_case.py +2 -0
  199. onnx/backend/test/case/utils.py +9 -0
  200. onnx/backend/test/cmd_tools.py +22 -13
  201. onnx/backend/test/data/light/README.md +16 -0
  202. onnx/backend/test/data/light/light_bvlc_alexnet.onnx +0 -0
  203. onnx/backend/test/data/light/light_bvlc_alexnet_output_0.pb +1 -0
  204. onnx/backend/test/data/light/light_densenet121.onnx +0 -0
  205. onnx/backend/test/data/light/light_densenet121_output_0.pb +1 -0
  206. onnx/backend/test/data/light/light_inception_v1.onnx +0 -0
  207. onnx/backend/test/data/light/light_inception_v1_output_0.pb +1 -0
  208. onnx/backend/test/data/light/light_inception_v2.onnx +0 -0
  209. onnx/backend/test/data/light/light_inception_v2_output_0.pb +1 -0
  210. onnx/backend/test/data/light/light_resnet50.onnx +0 -0
  211. onnx/backend/test/data/light/light_resnet50_output_0.pb +1 -0
  212. onnx/backend/test/data/light/light_shufflenet.onnx +0 -0
  213. onnx/backend/test/data/light/light_shufflenet_output_0.pb +1 -0
  214. onnx/backend/test/data/light/light_squeezenet.onnx +0 -0
  215. onnx/backend/test/data/light/light_squeezenet_output_0.pb +1 -0
  216. onnx/backend/test/data/light/light_vgg19.onnx +0 -0
  217. onnx/backend/test/data/light/light_vgg19_output_0.pb +1 -0
  218. onnx/backend/test/data/light/light_zfnet512.onnx +0 -0
  219. onnx/backend/test/data/light/light_zfnet512_output_0.pb +1 -0
  220. onnx/backend/test/data/node/test_acos/test_data_set_0/output_0.pb +0 -0
  221. onnx/backend/test/data/node/test_acosh/test_data_set_0/output_0.pb +1 -1
  222. onnx/backend/test/data/node/test_ai_onnx_ml_array_feature_extractor/model.onnx +19 -0
  223. onnx/backend/test/data/node/test_ai_onnx_ml_array_feature_extractor/test_data_set_0/input_0.pb +0 -0
  224. onnx/backend/test/data/node/test_ai_onnx_ml_array_feature_extractor/test_data_set_0/input_1.pb +0 -0
  225. onnx/backend/test/data/node/test_ai_onnx_ml_array_feature_extractor/test_data_set_0/output_0.pb +0 -0
  226. onnx/backend/test/data/node/test_ai_onnx_ml_binarizer/model.onnx +0 -0
  227. onnx/backend/test/data/node/test_ai_onnx_ml_binarizer/test_data_set_0/input_0.pb +1 -0
  228. onnx/backend/test/data/node/test_ai_onnx_ml_binarizer/test_data_set_0/output_0.pb +0 -0
  229. onnx/backend/test/data/node/test_asin/test_data_set_0/output_0.pb +1 -1
  230. onnx/backend/test/data/node/test_asinh/test_data_set_0/output_0.pb +1 -1
  231. onnx/backend/test/data/node/test_atan/test_data_set_0/output_0.pb +1 -1
  232. onnx/backend/test/data/node/test_atanh/test_data_set_0/output_0.pb +2 -2
  233. onnx/backend/test/data/node/test_averagepool_1d_default/model.onnx +0 -0
  234. onnx/backend/test/data/node/test_averagepool_2d_ceil/model.onnx +0 -0
  235. onnx/backend/test/data/node/test_averagepool_2d_default/model.onnx +0 -0
  236. onnx/backend/test/data/node/test_averagepool_2d_dilations/model.onnx +0 -0
  237. onnx/backend/test/data/node/test_averagepool_2d_dilations/test_data_set_0/input_0.pb +0 -0
  238. onnx/backend/test/data/node/test_averagepool_2d_dilations/test_data_set_0/output_0.pb +0 -0
  239. onnx/backend/test/data/node/test_averagepool_2d_pads/model.onnx +0 -0
  240. onnx/backend/test/data/node/test_averagepool_2d_pads_count_include_pad/model.onnx +0 -0
  241. onnx/backend/test/data/node/test_averagepool_2d_precomputed_pads/model.onnx +0 -0
  242. onnx/backend/test/data/node/test_averagepool_2d_precomputed_pads_count_include_pad/model.onnx +0 -0
  243. onnx/backend/test/data/node/test_averagepool_2d_precomputed_same_upper/model.onnx +0 -0
  244. onnx/backend/test/data/node/test_averagepool_2d_precomputed_strides/model.onnx +0 -0
  245. onnx/backend/test/data/node/test_averagepool_2d_same_lower/model.onnx +0 -0
  246. onnx/backend/test/data/node/test_averagepool_2d_same_upper/model.onnx +0 -0
  247. onnx/backend/test/data/node/test_averagepool_2d_strides/model.onnx +0 -0
  248. onnx/backend/test/data/node/test_averagepool_3d_default/model.onnx +0 -0
  249. onnx/backend/test/data/node/test_basic_deform_conv_with_padding/model.onnx +0 -0
  250. onnx/backend/test/data/node/test_basic_deform_conv_with_padding/test_data_set_0/input_0.pb +0 -0
  251. onnx/backend/test/data/node/test_basic_deform_conv_with_padding/test_data_set_0/input_1.pb +0 -0
  252. onnx/backend/test/data/node/test_basic_deform_conv_with_padding/test_data_set_0/input_2.pb +0 -0
  253. onnx/backend/test/data/node/test_basic_deform_conv_with_padding/test_data_set_0/output_0.pb +0 -0
  254. onnx/backend/test/data/node/test_basic_deform_conv_without_padding/model.onnx +0 -0
  255. onnx/backend/test/data/node/test_basic_deform_conv_without_padding/test_data_set_0/input_0.pb +0 -0
  256. onnx/backend/test/data/node/test_basic_deform_conv_without_padding/test_data_set_0/input_1.pb +0 -0
  257. onnx/backend/test/data/node/test_basic_deform_conv_without_padding/test_data_set_0/input_2.pb +0 -0
  258. onnx/backend/test/data/node/test_basic_deform_conv_without_padding/test_data_set_0/output_0.pb +0 -0
  259. onnx/backend/test/data/node/test_bitwise_and_i16_3d/test_data_set_0/input_0.pb +0 -0
  260. onnx/backend/test/data/node/test_bitwise_and_i16_3d/test_data_set_0/input_1.pb +0 -0
  261. onnx/backend/test/data/node/test_bitwise_and_i16_3d/test_data_set_0/output_0.pb +0 -0
  262. onnx/backend/test/data/node/test_bitwise_and_i32_2d/test_data_set_0/input_0.pb +0 -0
  263. onnx/backend/test/data/node/test_bitwise_and_i32_2d/test_data_set_0/input_1.pb +0 -0
  264. onnx/backend/test/data/node/test_bitwise_and_i32_2d/test_data_set_0/output_0.pb +0 -0
  265. onnx/backend/test/data/node/test_bitwise_and_ui64_bcast_3v1d/test_data_set_0/input_0.pb +0 -0
  266. onnx/backend/test/data/node/test_bitwise_and_ui64_bcast_3v1d/test_data_set_0/input_1.pb +0 -0
  267. onnx/backend/test/data/node/test_bitwise_and_ui64_bcast_3v1d/test_data_set_0/output_0.pb +0 -0
  268. onnx/backend/test/data/node/test_bitwise_and_ui8_bcast_4v3d/test_data_set_0/input_0.pb +0 -0
  269. onnx/backend/test/data/node/test_bitwise_and_ui8_bcast_4v3d/test_data_set_0/input_1.pb +0 -0
  270. onnx/backend/test/data/node/test_bitwise_and_ui8_bcast_4v3d/test_data_set_0/output_0.pb +0 -0
  271. onnx/backend/test/data/node/test_bitwise_not_2d/test_data_set_0/input_0.pb +0 -0
  272. onnx/backend/test/data/node/test_bitwise_not_2d/test_data_set_0/output_0.pb +0 -0
  273. onnx/backend/test/data/node/test_bitwise_not_3d/test_data_set_0/input_0.pb +0 -0
  274. onnx/backend/test/data/node/test_bitwise_not_3d/test_data_set_0/output_0.pb +0 -0
  275. onnx/backend/test/data/node/test_bitwise_not_4d/test_data_set_0/input_0.pb +0 -0
  276. onnx/backend/test/data/node/test_bitwise_not_4d/test_data_set_0/output_0.pb +0 -0
  277. onnx/backend/test/data/node/test_bitwise_or_i16_4d/test_data_set_0/input_0.pb +0 -0
  278. onnx/backend/test/data/node/test_bitwise_or_i16_4d/test_data_set_0/input_1.pb +0 -0
  279. onnx/backend/test/data/node/test_bitwise_or_i16_4d/test_data_set_0/output_0.pb +0 -0
  280. onnx/backend/test/data/node/test_bitwise_or_i32_2d/test_data_set_0/input_0.pb +0 -0
  281. onnx/backend/test/data/node/test_bitwise_or_i32_2d/test_data_set_0/input_1.pb +0 -0
  282. onnx/backend/test/data/node/test_bitwise_or_i32_2d/test_data_set_0/output_0.pb +0 -0
  283. onnx/backend/test/data/node/test_bitwise_or_ui64_bcast_3v1d/test_data_set_0/input_0.pb +0 -0
  284. onnx/backend/test/data/node/test_bitwise_or_ui64_bcast_3v1d/test_data_set_0/input_1.pb +0 -0
  285. onnx/backend/test/data/node/test_bitwise_or_ui64_bcast_3v1d/test_data_set_0/output_0.pb +0 -0
  286. onnx/backend/test/data/node/test_bitwise_or_ui8_bcast_4v3d/test_data_set_0/input_0.pb +0 -0
  287. onnx/backend/test/data/node/test_bitwise_or_ui8_bcast_4v3d/test_data_set_0/input_1.pb +0 -0
  288. onnx/backend/test/data/node/test_bitwise_or_ui8_bcast_4v3d/test_data_set_0/output_0.pb +0 -0
  289. onnx/backend/test/data/node/test_bitwise_xor_i16_3d/test_data_set_0/input_0.pb +0 -0
  290. onnx/backend/test/data/node/test_bitwise_xor_i16_3d/test_data_set_0/input_1.pb +0 -0
  291. onnx/backend/test/data/node/test_bitwise_xor_i16_3d/test_data_set_0/output_0.pb +0 -0
  292. onnx/backend/test/data/node/test_bitwise_xor_i32_2d/test_data_set_0/input_0.pb +0 -0
  293. onnx/backend/test/data/node/test_bitwise_xor_i32_2d/test_data_set_0/input_1.pb +0 -0
  294. onnx/backend/test/data/node/test_bitwise_xor_i32_2d/test_data_set_0/output_0.pb +0 -0
  295. onnx/backend/test/data/node/test_bitwise_xor_ui64_bcast_3v1d/test_data_set_0/input_0.pb +0 -0
  296. onnx/backend/test/data/node/test_bitwise_xor_ui64_bcast_3v1d/test_data_set_0/input_1.pb +0 -0
  297. onnx/backend/test/data/node/test_bitwise_xor_ui64_bcast_3v1d/test_data_set_0/output_0.pb +0 -0
  298. onnx/backend/test/data/node/test_bitwise_xor_ui8_bcast_4v3d/test_data_set_0/input_0.pb +0 -0
  299. onnx/backend/test/data/node/test_bitwise_xor_ui8_bcast_4v3d/test_data_set_0/input_1.pb +0 -0
  300. onnx/backend/test/data/node/test_bitwise_xor_ui8_bcast_4v3d/test_data_set_0/output_0.pb +0 -0
  301. onnx/backend/test/data/node/test_cast_BFLOAT16_to_FLOAT/model.onnx +0 -0
  302. onnx/backend/test/data/node/test_cast_DOUBLE_to_FLOAT/model.onnx +0 -0
  303. onnx/backend/test/data/node/test_cast_DOUBLE_to_FLOAT16/model.onnx +0 -0
  304. onnx/backend/test/data/node/test_cast_FLOAT16_to_DOUBLE/model.onnx +0 -0
  305. onnx/backend/test/data/node/test_cast_FLOAT16_to_FLOAT/model.onnx +0 -0
  306. onnx/backend/test/data/node/test_cast_FLOAT16_to_FLOAT8E4M3FN/model.onnx +0 -0
  307. onnx/backend/test/data/node/test_cast_FLOAT16_to_FLOAT8E4M3FN/test_data_set_0/input_0.pb +2 -0
  308. onnx/backend/test/data/node/test_cast_FLOAT16_to_FLOAT8E4M3FN/test_data_set_0/output_0.pb +0 -0
  309. onnx/backend/test/data/node/test_cast_FLOAT16_to_FLOAT8E4M3FNUZ/model.onnx +0 -0
  310. onnx/backend/test/data/node/test_cast_FLOAT16_to_FLOAT8E4M3FNUZ/test_data_set_0/input_0.pb +2 -0
  311. onnx/backend/test/data/node/test_cast_FLOAT16_to_FLOAT8E4M3FNUZ/test_data_set_0/output_0.pb +0 -0
  312. onnx/backend/test/data/node/test_cast_FLOAT16_to_FLOAT8E5M2/model.onnx +0 -0
  313. onnx/backend/test/data/node/test_cast_FLOAT16_to_FLOAT8E5M2/test_data_set_0/input_0.pb +2 -0
  314. onnx/backend/test/data/node/test_cast_FLOAT16_to_FLOAT8E5M2/test_data_set_0/output_0.pb +0 -0
  315. onnx/backend/test/data/node/test_cast_FLOAT16_to_FLOAT8E5M2FNUZ/model.onnx +0 -0
  316. onnx/backend/test/data/node/test_cast_FLOAT16_to_FLOAT8E5M2FNUZ/test_data_set_0/input_0.pb +2 -0
  317. onnx/backend/test/data/node/test_cast_FLOAT16_to_FLOAT8E5M2FNUZ/test_data_set_0/output_0.pb +0 -0
  318. onnx/backend/test/data/node/test_cast_FLOAT8E4M3FNUZ_to_FLOAT/model.onnx +0 -0
  319. onnx/backend/test/data/node/test_cast_FLOAT8E4M3FNUZ_to_FLOAT/test_data_set_0/input_0.pb +0 -0
  320. onnx/backend/test/data/node/test_cast_FLOAT8E4M3FNUZ_to_FLOAT/test_data_set_0/output_0.pb +0 -0
  321. onnx/backend/test/data/node/test_cast_FLOAT8E4M3FNUZ_to_FLOAT16/model.onnx +0 -0
  322. onnx/backend/test/data/node/test_cast_FLOAT8E4M3FNUZ_to_FLOAT16/test_data_set_0/input_0.pb +0 -0
  323. onnx/backend/test/data/node/test_cast_FLOAT8E4M3FNUZ_to_FLOAT16/test_data_set_0/output_0.pb +0 -0
  324. onnx/backend/test/data/node/test_cast_FLOAT8E4M3FN_to_FLOAT/model.onnx +0 -0
  325. onnx/backend/test/data/node/test_cast_FLOAT8E4M3FN_to_FLOAT/test_data_set_0/input_0.pb +0 -0
  326. onnx/backend/test/data/node/test_cast_FLOAT8E4M3FN_to_FLOAT/test_data_set_0/output_0.pb +0 -0
  327. onnx/backend/test/data/node/test_cast_FLOAT8E4M3FN_to_FLOAT16/model.onnx +0 -0
  328. onnx/backend/test/data/node/test_cast_FLOAT8E4M3FN_to_FLOAT16/test_data_set_0/input_0.pb +0 -0
  329. onnx/backend/test/data/node/test_cast_FLOAT8E4M3FN_to_FLOAT16/test_data_set_0/output_0.pb +0 -0
  330. onnx/backend/test/data/node/test_cast_FLOAT8E5M2FNUZ_to_FLOAT/model.onnx +0 -0
  331. onnx/backend/test/data/node/test_cast_FLOAT8E5M2FNUZ_to_FLOAT/test_data_set_0/input_0.pb +0 -0
  332. onnx/backend/test/data/node/test_cast_FLOAT8E5M2FNUZ_to_FLOAT/test_data_set_0/output_0.pb +0 -0
  333. onnx/backend/test/data/node/test_cast_FLOAT8E5M2FNUZ_to_FLOAT16/model.onnx +0 -0
  334. onnx/backend/test/data/node/test_cast_FLOAT8E5M2FNUZ_to_FLOAT16/test_data_set_0/input_0.pb +0 -0
  335. onnx/backend/test/data/node/test_cast_FLOAT8E5M2FNUZ_to_FLOAT16/test_data_set_0/output_0.pb +0 -0
  336. onnx/backend/test/data/node/test_cast_FLOAT8E5M2_to_FLOAT/model.onnx +0 -0
  337. onnx/backend/test/data/node/test_cast_FLOAT8E5M2_to_FLOAT/test_data_set_0/input_0.pb +0 -0
  338. onnx/backend/test/data/node/test_cast_FLOAT8E5M2_to_FLOAT/test_data_set_0/output_0.pb +0 -0
  339. onnx/backend/test/data/node/test_cast_FLOAT8E5M2_to_FLOAT16/model.onnx +0 -0
  340. onnx/backend/test/data/node/test_cast_FLOAT8E5M2_to_FLOAT16/test_data_set_0/input_0.pb +0 -0
  341. onnx/backend/test/data/node/test_cast_FLOAT8E5M2_to_FLOAT16/test_data_set_0/output_0.pb +0 -0
  342. onnx/backend/test/data/node/test_cast_FLOAT_to_BFLOAT16/model.onnx +0 -0
  343. onnx/backend/test/data/node/test_cast_FLOAT_to_DOUBLE/model.onnx +0 -0
  344. onnx/backend/test/data/node/test_cast_FLOAT_to_FLOAT16/model.onnx +0 -0
  345. onnx/backend/test/data/node/test_cast_FLOAT_to_FLOAT8E4M3FN/model.onnx +0 -0
  346. onnx/backend/test/data/node/test_cast_FLOAT_to_FLOAT8E4M3FN/test_data_set_0/input_0.pb +0 -0
  347. onnx/backend/test/data/node/test_cast_FLOAT_to_FLOAT8E4M3FN/test_data_set_0/output_0.pb +0 -0
  348. onnx/backend/test/data/node/test_cast_FLOAT_to_FLOAT8E4M3FNUZ/model.onnx +0 -0
  349. onnx/backend/test/data/node/test_cast_FLOAT_to_FLOAT8E4M3FNUZ/test_data_set_0/input_0.pb +0 -0
  350. onnx/backend/test/data/node/test_cast_FLOAT_to_FLOAT8E4M3FNUZ/test_data_set_0/output_0.pb +0 -0
  351. onnx/backend/test/data/node/test_cast_FLOAT_to_FLOAT8E5M2/model.onnx +0 -0
  352. onnx/backend/test/data/node/test_cast_FLOAT_to_FLOAT8E5M2/test_data_set_0/input_0.pb +0 -0
  353. onnx/backend/test/data/node/test_cast_FLOAT_to_FLOAT8E5M2/test_data_set_0/output_0.pb +0 -0
  354. onnx/backend/test/data/node/test_cast_FLOAT_to_FLOAT8E5M2FNUZ/model.onnx +0 -0
  355. onnx/backend/test/data/node/test_cast_FLOAT_to_FLOAT8E5M2FNUZ/test_data_set_0/input_0.pb +0 -0
  356. onnx/backend/test/data/node/test_cast_FLOAT_to_FLOAT8E5M2FNUZ/test_data_set_0/output_0.pb +0 -0
  357. onnx/backend/test/data/node/test_cast_FLOAT_to_STRING/model.onnx +0 -0
  358. onnx/backend/test/data/node/test_cast_STRING_to_FLOAT/model.onnx +0 -0
  359. onnx/backend/test/data/node/test_cast_no_saturate_FLOAT16_to_FLOAT8E4M3FN/model.onnx +0 -0
  360. onnx/backend/test/data/node/test_cast_no_saturate_FLOAT16_to_FLOAT8E4M3FN/test_data_set_0/input_0.pb +2 -0
  361. onnx/backend/test/data/node/test_cast_no_saturate_FLOAT16_to_FLOAT8E4M3FN/test_data_set_0/output_0.pb +0 -0
  362. onnx/backend/test/data/node/test_cast_no_saturate_FLOAT16_to_FLOAT8E4M3FNUZ/model.onnx +0 -0
  363. onnx/backend/test/data/node/test_cast_no_saturate_FLOAT16_to_FLOAT8E4M3FNUZ/test_data_set_0/input_0.pb +2 -0
  364. onnx/backend/test/data/node/test_cast_no_saturate_FLOAT16_to_FLOAT8E4M3FNUZ/test_data_set_0/output_0.pb +0 -0
  365. onnx/backend/test/data/node/test_cast_no_saturate_FLOAT16_to_FLOAT8E5M2/model.onnx +0 -0
  366. onnx/backend/test/data/node/test_cast_no_saturate_FLOAT16_to_FLOAT8E5M2/test_data_set_0/input_0.pb +2 -0
  367. onnx/backend/test/data/node/test_cast_no_saturate_FLOAT16_to_FLOAT8E5M2/test_data_set_0/output_0.pb +0 -0
  368. onnx/backend/test/data/node/test_cast_no_saturate_FLOAT16_to_FLOAT8E5M2FNUZ/model.onnx +0 -0
  369. onnx/backend/test/data/node/test_cast_no_saturate_FLOAT16_to_FLOAT8E5M2FNUZ/test_data_set_0/input_0.pb +2 -0
  370. onnx/backend/test/data/node/test_cast_no_saturate_FLOAT16_to_FLOAT8E5M2FNUZ/test_data_set_0/output_0.pb +0 -0
  371. onnx/backend/test/data/node/test_cast_no_saturate_FLOAT_to_FLOAT8E4M3FN/model.onnx +0 -0
  372. onnx/backend/test/data/node/test_cast_no_saturate_FLOAT_to_FLOAT8E4M3FN/test_data_set_0/input_0.pb +0 -0
  373. onnx/backend/test/data/node/test_cast_no_saturate_FLOAT_to_FLOAT8E4M3FN/test_data_set_0/output_0.pb +0 -0
  374. onnx/backend/test/data/node/test_cast_no_saturate_FLOAT_to_FLOAT8E4M3FNUZ/model.onnx +0 -0
  375. onnx/backend/test/data/node/test_cast_no_saturate_FLOAT_to_FLOAT8E4M3FNUZ/test_data_set_0/input_0.pb +0 -0
  376. onnx/backend/test/data/node/test_cast_no_saturate_FLOAT_to_FLOAT8E4M3FNUZ/test_data_set_0/output_0.pb +0 -0
  377. onnx/backend/test/data/node/test_cast_no_saturate_FLOAT_to_FLOAT8E5M2/model.onnx +0 -0
  378. onnx/backend/test/data/node/test_cast_no_saturate_FLOAT_to_FLOAT8E5M2/test_data_set_0/input_0.pb +0 -0
  379. onnx/backend/test/data/node/test_cast_no_saturate_FLOAT_to_FLOAT8E5M2/test_data_set_0/output_0.pb +0 -0
  380. onnx/backend/test/data/node/test_cast_no_saturate_FLOAT_to_FLOAT8E5M2FNUZ/model.onnx +0 -0
  381. onnx/backend/test/data/node/test_cast_no_saturate_FLOAT_to_FLOAT8E5M2FNUZ/test_data_set_0/input_0.pb +0 -0
  382. onnx/backend/test/data/node/test_cast_no_saturate_FLOAT_to_FLOAT8E5M2FNUZ/test_data_set_0/output_0.pb +0 -0
  383. onnx/backend/test/data/node/test_castlike_BFLOAT16_to_FLOAT/model.onnx +0 -0
  384. onnx/backend/test/data/node/test_castlike_BFLOAT16_to_FLOAT_expanded/model.onnx +0 -0
  385. onnx/backend/test/data/node/test_castlike_DOUBLE_to_FLOAT/model.onnx +0 -0
  386. onnx/backend/test/data/node/test_castlike_DOUBLE_to_FLOAT16/model.onnx +0 -0
  387. onnx/backend/test/data/node/test_castlike_DOUBLE_to_FLOAT16_expanded/model.onnx +0 -0
  388. onnx/backend/test/data/node/test_castlike_DOUBLE_to_FLOAT_expanded/model.onnx +0 -0
  389. onnx/backend/test/data/node/test_castlike_FLOAT16_to_DOUBLE/model.onnx +0 -0
  390. onnx/backend/test/data/node/test_castlike_FLOAT16_to_DOUBLE_expanded/model.onnx +0 -0
  391. onnx/backend/test/data/node/test_castlike_FLOAT16_to_FLOAT/model.onnx +0 -0
  392. onnx/backend/test/data/node/test_castlike_FLOAT16_to_FLOAT_expanded/model.onnx +0 -0
  393. onnx/backend/test/data/node/test_castlike_FLOAT8E4M3FNUZ_to_FLOAT/model.onnx +0 -0
  394. onnx/backend/test/data/node/test_castlike_FLOAT8E4M3FNUZ_to_FLOAT/test_data_set_0/input_0.pb +1 -0
  395. onnx/backend/test/data/node/test_castlike_FLOAT8E4M3FNUZ_to_FLOAT/test_data_set_0/input_1.pb +0 -0
  396. onnx/backend/test/data/node/test_castlike_FLOAT8E4M3FNUZ_to_FLOAT/test_data_set_0/output_0.pb +0 -0
  397. onnx/backend/test/data/node/test_castlike_FLOAT8E4M3FNUZ_to_FLOAT_expanded/model.onnx +0 -0
  398. onnx/backend/test/data/node/test_castlike_FLOAT8E4M3FNUZ_to_FLOAT_expanded/test_data_set_0/input_0.pb +1 -0
  399. onnx/backend/test/data/node/test_castlike_FLOAT8E4M3FNUZ_to_FLOAT_expanded/test_data_set_0/input_1.pb +0 -0
  400. onnx/backend/test/data/node/test_castlike_FLOAT8E4M3FNUZ_to_FLOAT_expanded/test_data_set_0/output_0.pb +0 -0
  401. onnx/backend/test/data/node/test_castlike_FLOAT8E4M3FN_to_FLOAT/model.onnx +0 -0
  402. onnx/backend/test/data/node/test_castlike_FLOAT8E4M3FN_to_FLOAT/test_data_set_0/input_0.pb +1 -0
  403. onnx/backend/test/data/node/test_castlike_FLOAT8E4M3FN_to_FLOAT/test_data_set_0/input_1.pb +0 -0
  404. onnx/backend/test/data/node/test_castlike_FLOAT8E4M3FN_to_FLOAT/test_data_set_0/output_0.pb +0 -0
  405. onnx/backend/test/data/node/test_castlike_FLOAT8E4M3FN_to_FLOAT_expanded/model.onnx +0 -0
  406. onnx/backend/test/data/node/test_castlike_FLOAT8E4M3FN_to_FLOAT_expanded/test_data_set_0/input_0.pb +1 -0
  407. onnx/backend/test/data/node/test_castlike_FLOAT8E4M3FN_to_FLOAT_expanded/test_data_set_0/input_1.pb +0 -0
  408. onnx/backend/test/data/node/test_castlike_FLOAT8E4M3FN_to_FLOAT_expanded/test_data_set_0/output_0.pb +0 -0
  409. onnx/backend/test/data/node/test_castlike_FLOAT8E5M2FNUZ_to_FLOAT/model.onnx +0 -0
  410. onnx/backend/test/data/node/test_castlike_FLOAT8E5M2FNUZ_to_FLOAT/test_data_set_0/input_0.pb +1 -0
  411. onnx/backend/test/data/node/test_castlike_FLOAT8E5M2FNUZ_to_FLOAT/test_data_set_0/input_1.pb +0 -0
  412. onnx/backend/test/data/node/test_castlike_FLOAT8E5M2FNUZ_to_FLOAT/test_data_set_0/output_0.pb +0 -0
  413. onnx/backend/test/data/node/test_castlike_FLOAT8E5M2FNUZ_to_FLOAT_expanded/model.onnx +0 -0
  414. onnx/backend/test/data/node/test_castlike_FLOAT8E5M2FNUZ_to_FLOAT_expanded/test_data_set_0/input_0.pb +1 -0
  415. onnx/backend/test/data/node/test_castlike_FLOAT8E5M2FNUZ_to_FLOAT_expanded/test_data_set_0/input_1.pb +0 -0
  416. onnx/backend/test/data/node/test_castlike_FLOAT8E5M2FNUZ_to_FLOAT_expanded/test_data_set_0/output_0.pb +0 -0
  417. onnx/backend/test/data/node/test_castlike_FLOAT8E5M2_to_FLOAT/model.onnx +0 -0
  418. onnx/backend/test/data/node/test_castlike_FLOAT8E5M2_to_FLOAT/test_data_set_0/input_0.pb +1 -0
  419. onnx/backend/test/data/node/test_castlike_FLOAT8E5M2_to_FLOAT/test_data_set_0/input_1.pb +0 -0
  420. onnx/backend/test/data/node/test_castlike_FLOAT8E5M2_to_FLOAT/test_data_set_0/output_0.pb +0 -0
  421. onnx/backend/test/data/node/test_castlike_FLOAT8E5M2_to_FLOAT_expanded/model.onnx +0 -0
  422. onnx/backend/test/data/node/test_castlike_FLOAT8E5M2_to_FLOAT_expanded/test_data_set_0/input_0.pb +1 -0
  423. onnx/backend/test/data/node/test_castlike_FLOAT8E5M2_to_FLOAT_expanded/test_data_set_0/input_1.pb +0 -0
  424. onnx/backend/test/data/node/test_castlike_FLOAT8E5M2_to_FLOAT_expanded/test_data_set_0/output_0.pb +0 -0
  425. onnx/backend/test/data/node/test_castlike_FLOAT_to_BFLOAT16/model.onnx +0 -0
  426. onnx/backend/test/data/node/test_castlike_FLOAT_to_BFLOAT16_expanded/model.onnx +0 -0
  427. onnx/backend/test/data/node/test_castlike_FLOAT_to_DOUBLE/model.onnx +0 -0
  428. onnx/backend/test/data/node/test_castlike_FLOAT_to_DOUBLE_expanded/model.onnx +0 -0
  429. onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT16/model.onnx +0 -0
  430. onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT16_expanded/model.onnx +0 -0
  431. onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT8E4M3FN/model.onnx +0 -0
  432. onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT8E4M3FN/test_data_set_0/input_0.pb +0 -0
  433. onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT8E4M3FN/test_data_set_0/input_1.pb +1 -0
  434. onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT8E4M3FN/test_data_set_0/output_0.pb +1 -0
  435. onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT8E4M3FNUZ/model.onnx +0 -0
  436. onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT8E4M3FNUZ/test_data_set_0/input_0.pb +0 -0
  437. onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT8E4M3FNUZ/test_data_set_0/input_1.pb +1 -0
  438. onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT8E4M3FNUZ/test_data_set_0/output_0.pb +1 -0
  439. onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT8E4M3FNUZ_expanded/model.onnx +0 -0
  440. onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT8E4M3FNUZ_expanded/test_data_set_0/input_0.pb +0 -0
  441. onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT8E4M3FNUZ_expanded/test_data_set_0/input_1.pb +1 -0
  442. onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT8E4M3FNUZ_expanded/test_data_set_0/output_0.pb +1 -0
  443. onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT8E4M3FN_expanded/model.onnx +0 -0
  444. onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT8E4M3FN_expanded/test_data_set_0/input_0.pb +0 -0
  445. onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT8E4M3FN_expanded/test_data_set_0/input_1.pb +1 -0
  446. onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT8E4M3FN_expanded/test_data_set_0/output_0.pb +1 -0
  447. onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT8E5M2/model.onnx +0 -0
  448. onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT8E5M2/test_data_set_0/input_0.pb +0 -0
  449. onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT8E5M2/test_data_set_0/input_1.pb +1 -0
  450. onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT8E5M2/test_data_set_0/output_0.pb +1 -0
  451. onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT8E5M2FNUZ/model.onnx +0 -0
  452. onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT8E5M2FNUZ/test_data_set_0/input_0.pb +0 -0
  453. onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT8E5M2FNUZ/test_data_set_0/input_1.pb +1 -0
  454. onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT8E5M2FNUZ/test_data_set_0/output_0.pb +1 -0
  455. onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT8E5M2FNUZ_expanded/model.onnx +0 -0
  456. onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT8E5M2FNUZ_expanded/test_data_set_0/input_0.pb +0 -0
  457. onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT8E5M2FNUZ_expanded/test_data_set_0/input_1.pb +1 -0
  458. onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT8E5M2FNUZ_expanded/test_data_set_0/output_0.pb +1 -0
  459. onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT8E5M2_expanded/model.onnx +0 -0
  460. onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT8E5M2_expanded/test_data_set_0/input_0.pb +0 -0
  461. onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT8E5M2_expanded/test_data_set_0/input_1.pb +1 -0
  462. onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT8E5M2_expanded/test_data_set_0/output_0.pb +1 -0
  463. onnx/backend/test/data/node/test_castlike_FLOAT_to_STRING/model.onnx +0 -0
  464. onnx/backend/test/data/node/test_castlike_FLOAT_to_STRING_expanded/model.onnx +0 -0
  465. onnx/backend/test/data/node/test_castlike_STRING_to_FLOAT/model.onnx +0 -0
  466. onnx/backend/test/data/node/test_castlike_STRING_to_FLOAT_expanded/model.onnx +0 -0
  467. onnx/backend/test/data/node/test_center_crop_pad_crop_negative_axes_hwc/model.onnx +0 -0
  468. onnx/backend/test/data/node/test_center_crop_pad_crop_negative_axes_hwc/test_data_set_0/input_0.pb +0 -0
  469. onnx/backend/test/data/node/test_center_crop_pad_crop_negative_axes_hwc/test_data_set_0/input_1.pb +0 -0
  470. onnx/backend/test/data/node/test_center_crop_pad_crop_negative_axes_hwc/test_data_set_0/output_0.pb +0 -0
  471. onnx/backend/test/data/node/test_center_crop_pad_crop_negative_axes_hwc_expanded/model.onnx +0 -0
  472. onnx/backend/test/data/node/test_center_crop_pad_crop_negative_axes_hwc_expanded/test_data_set_0/input_0.pb +0 -0
  473. onnx/backend/test/data/node/test_center_crop_pad_crop_negative_axes_hwc_expanded/test_data_set_0/input_1.pb +0 -0
  474. onnx/backend/test/data/node/test_center_crop_pad_crop_negative_axes_hwc_expanded/test_data_set_0/output_0.pb +0 -0
  475. onnx/backend/test/data/node/test_col2im_pads/test_data_set_0/output_0.pb +0 -0
  476. onnx/backend/test/data/node/test_constant/model.onnx +0 -0
  477. onnx/backend/test/data/node/test_constant_pad/model.onnx +0 -0
  478. onnx/backend/test/data/node/test_constant_pad_axes/model.onnx +0 -0
  479. onnx/backend/test/data/node/test_constant_pad_negative_axes/model.onnx +0 -0
  480. onnx/backend/test/data/node/test_constant_pad_negative_axes/test_data_set_0/input_0.pb +1 -0
  481. onnx/backend/test/data/node/test_constant_pad_negative_axes/test_data_set_0/input_1.pb +0 -0
  482. onnx/backend/test/data/node/test_constant_pad_negative_axes/test_data_set_0/input_2.pb +1 -0
  483. onnx/backend/test/data/node/test_constant_pad_negative_axes/test_data_set_0/input_3.pb +1 -0
  484. onnx/backend/test/data/node/test_constant_pad_negative_axes/test_data_set_0/output_0.pb +1 -0
  485. onnx/backend/test/data/node/test_cosh/test_data_set_0/output_0.pb +1 -1
  486. onnx/backend/test/data/node/test_cosh_example/test_data_set_0/output_0.pb +0 -0
  487. onnx/backend/test/data/node/test_deform_conv_with_mask_bias/model.onnx +0 -0
  488. onnx/backend/test/data/node/test_deform_conv_with_mask_bias/test_data_set_0/input_0.pb +0 -0
  489. onnx/backend/test/data/node/test_deform_conv_with_mask_bias/test_data_set_0/input_1.pb +0 -0
  490. onnx/backend/test/data/node/test_deform_conv_with_mask_bias/test_data_set_0/input_2.pb +0 -0
  491. onnx/backend/test/data/node/test_deform_conv_with_mask_bias/test_data_set_0/input_3.pb +0 -0
  492. onnx/backend/test/data/node/test_deform_conv_with_mask_bias/test_data_set_0/input_4.pb +0 -0
  493. onnx/backend/test/data/node/test_deform_conv_with_mask_bias/test_data_set_0/output_0.pb +0 -0
  494. onnx/backend/test/data/node/test_deform_conv_with_multiple_offset_groups/model.onnx +0 -0
  495. onnx/backend/test/data/node/test_deform_conv_with_multiple_offset_groups/test_data_set_0/input_0.pb +0 -0
  496. onnx/backend/test/data/node/test_deform_conv_with_multiple_offset_groups/test_data_set_0/input_1.pb +0 -0
  497. onnx/backend/test/data/node/test_deform_conv_with_multiple_offset_groups/test_data_set_0/input_2.pb +0 -0
  498. onnx/backend/test/data/node/test_deform_conv_with_multiple_offset_groups/test_data_set_0/output_0.pb +0 -0
  499. onnx/backend/test/data/node/test_dequantizelinear/model.onnx +0 -0
  500. onnx/backend/test/data/node/test_dequantizelinear_axis/model.onnx +0 -0
  501. onnx/backend/test/data/node/test_dequantizelinear_e4m3fn/model.onnx +0 -0
  502. onnx/backend/test/data/node/test_dequantizelinear_e4m3fn/test_data_set_0/input_0.pb +0 -0
  503. onnx/backend/test/data/node/test_dequantizelinear_e4m3fn/test_data_set_0/input_1.pb +0 -0
  504. onnx/backend/test/data/node/test_dequantizelinear_e4m3fn/test_data_set_0/output_0.pb +0 -0
  505. onnx/backend/test/data/node/test_dequantizelinear_e5m2/model.onnx +0 -0
  506. onnx/backend/test/data/node/test_dequantizelinear_e5m2/test_data_set_0/input_0.pb +0 -0
  507. onnx/backend/test/data/node/test_dequantizelinear_e5m2/test_data_set_0/input_1.pb +0 -0
  508. onnx/backend/test/data/node/test_dequantizelinear_e5m2/test_data_set_0/output_0.pb +0 -0
  509. onnx/backend/test/data/node/test_edge_pad/model.onnx +0 -0
  510. onnx/backend/test/data/node/test_equal/model.onnx +0 -0
  511. onnx/backend/test/data/node/test_equal_bcast/model.onnx +0 -0
  512. onnx/backend/test/data/node/test_equal_string/model.onnx +0 -0
  513. onnx/backend/test/data/node/test_equal_string/test_data_set_0/input_0.pb +1 -0
  514. onnx/backend/test/data/node/test_equal_string/test_data_set_0/input_1.pb +1 -0
  515. onnx/backend/test/data/node/test_equal_string/test_data_set_0/output_0.pb +0 -0
  516. onnx/backend/test/data/node/test_equal_string_broadcast/model.onnx +0 -0
  517. onnx/backend/test/data/node/test_equal_string_broadcast/test_data_set_0/input_0.pb +1 -0
  518. onnx/backend/test/data/node/test_equal_string_broadcast/test_data_set_0/input_1.pb +1 -0
  519. onnx/backend/test/data/node/test_equal_string_broadcast/test_data_set_0/output_0.pb +0 -0
  520. onnx/backend/test/data/node/test_identity/model.onnx +0 -0
  521. onnx/backend/test/data/node/test_identity_sequence/model.onnx +0 -0
  522. onnx/backend/test/data/node/test_lppool_1d_default/model.onnx +0 -0
  523. onnx/backend/test/data/node/test_lppool_1d_default/test_data_set_0/input_0.pb +1 -0
  524. onnx/backend/test/data/node/test_lppool_1d_default/test_data_set_0/output_0.pb +2 -0
  525. onnx/backend/test/data/node/test_lppool_2d_default/model.onnx +0 -0
  526. onnx/backend/test/data/node/test_lppool_2d_default/test_data_set_0/input_0.pb +0 -0
  527. onnx/backend/test/data/node/test_lppool_2d_default/test_data_set_0/output_0.pb +0 -0
  528. onnx/backend/test/data/node/test_lppool_2d_dilations/model.onnx +0 -0
  529. onnx/backend/test/data/node/test_lppool_2d_dilations/test_data_set_0/input_0.pb +0 -0
  530. onnx/backend/test/data/node/test_lppool_2d_dilations/test_data_set_0/output_0.pb +1 -0
  531. onnx/backend/test/data/node/test_lppool_2d_pads/model.onnx +0 -0
  532. onnx/backend/test/data/node/test_lppool_2d_pads/test_data_set_0/input_0.pb +0 -0
  533. onnx/backend/test/data/node/test_lppool_2d_pads/test_data_set_0/output_0.pb +0 -0
  534. onnx/backend/test/data/node/test_lppool_2d_same_lower/model.onnx +0 -0
  535. onnx/backend/test/data/node/test_lppool_2d_same_lower/test_data_set_0/input_0.pb +0 -0
  536. onnx/backend/test/data/node/test_lppool_2d_same_lower/test_data_set_0/output_0.pb +0 -0
  537. onnx/backend/test/data/node/test_lppool_2d_same_upper/model.onnx +0 -0
  538. onnx/backend/test/data/node/test_lppool_2d_same_upper/test_data_set_0/input_0.pb +0 -0
  539. onnx/backend/test/data/node/test_lppool_2d_same_upper/test_data_set_0/output_0.pb +0 -0
  540. onnx/backend/test/data/node/test_lppool_2d_strides/model.onnx +0 -0
  541. onnx/backend/test/data/node/test_lppool_2d_strides/test_data_set_0/input_0.pb +0 -0
  542. onnx/backend/test/data/node/test_lppool_2d_strides/test_data_set_0/output_0.pb +0 -0
  543. onnx/backend/test/data/node/test_lppool_3d_default/model.onnx +0 -0
  544. onnx/backend/test/data/node/test_lppool_3d_default/test_data_set_0/input_0.pb +0 -0
  545. onnx/backend/test/data/node/test_lppool_3d_default/test_data_set_0/output_0.pb +0 -0
  546. onnx/backend/test/data/node/test_mish/test_data_set_0/output_0.pb +0 -0
  547. onnx/backend/test/data/node/test_mish_expanded/test_data_set_0/output_0.pb +0 -0
  548. onnx/backend/test/data/node/test_quantizelinear/model.onnx +0 -0
  549. onnx/backend/test/data/node/test_quantizelinear_axis/model.onnx +0 -0
  550. onnx/backend/test/data/node/test_quantizelinear_e4m3fn/model.onnx +0 -0
  551. onnx/backend/test/data/node/test_quantizelinear_e4m3fn/test_data_set_0/input_0.pb +0 -0
  552. onnx/backend/test/data/node/test_quantizelinear_e4m3fn/test_data_set_0/input_1.pb +0 -0
  553. onnx/backend/test/data/node/test_quantizelinear_e4m3fn/test_data_set_0/input_2.pb +0 -0
  554. onnx/backend/test/data/node/test_quantizelinear_e4m3fn/test_data_set_0/output_0.pb +0 -0
  555. onnx/backend/test/data/node/test_quantizelinear_e5m2/model.onnx +0 -0
  556. onnx/backend/test/data/node/test_quantizelinear_e5m2/test_data_set_0/input_0.pb +0 -0
  557. onnx/backend/test/data/node/test_quantizelinear_e5m2/test_data_set_0/input_1.pb +0 -0
  558. onnx/backend/test/data/node/test_quantizelinear_e5m2/test_data_set_0/input_2.pb +0 -0
  559. onnx/backend/test/data/node/test_quantizelinear_e5m2/test_data_set_0/output_0.pb +0 -0
  560. onnx/backend/test/data/node/test_reflect_pad/model.onnx +0 -0
  561. onnx/backend/test/data/node/test_reshape_allowzero_reordered/model.onnx +0 -0
  562. onnx/backend/test/data/node/test_reshape_extended_dims/model.onnx +0 -0
  563. onnx/backend/test/data/node/test_reshape_negative_dim/model.onnx +0 -0
  564. onnx/backend/test/data/node/test_reshape_negative_extended_dims/model.onnx +0 -0
  565. onnx/backend/test/data/node/test_reshape_one_dim/model.onnx +0 -0
  566. onnx/backend/test/data/node/test_reshape_reduced_dims/model.onnx +0 -0
  567. onnx/backend/test/data/node/test_reshape_reordered_all_dims/model.onnx +0 -0
  568. onnx/backend/test/data/node/test_reshape_reordered_last_dims/model.onnx +0 -0
  569. onnx/backend/test/data/node/test_reshape_zero_and_negative_dim/model.onnx +0 -0
  570. onnx/backend/test/data/node/test_reshape_zero_dim/model.onnx +0 -0
  571. onnx/backend/test/data/node/test_resize_downsample_scales_cubic/model.onnx +0 -0
  572. onnx/backend/test/data/node/test_resize_downsample_scales_cubic_A_n0p5_exclude_outside/model.onnx +0 -0
  573. onnx/backend/test/data/node/test_resize_downsample_scales_cubic_align_corners/model.onnx +0 -0
  574. onnx/backend/test/data/node/test_resize_downsample_scales_cubic_antialias/model.onnx +0 -0
  575. onnx/backend/test/data/node/test_resize_downsample_scales_linear/model.onnx +0 -0
  576. onnx/backend/test/data/node/test_resize_downsample_scales_linear_align_corners/model.onnx +0 -0
  577. onnx/backend/test/data/node/test_resize_downsample_scales_linear_antialias/model.onnx +0 -0
  578. onnx/backend/test/data/node/test_resize_downsample_scales_linear_half_pixel_symmetric/model.onnx +0 -0
  579. onnx/backend/test/data/node/test_resize_downsample_scales_linear_half_pixel_symmetric/test_data_set_0/input_0.pb +0 -0
  580. onnx/backend/test/data/node/test_resize_downsample_scales_linear_half_pixel_symmetric/test_data_set_0/input_1.pb +0 -0
  581. onnx/backend/test/data/node/test_resize_downsample_scales_linear_half_pixel_symmetric/test_data_set_0/output_0.pb +1 -0
  582. onnx/backend/test/data/node/test_resize_downsample_scales_nearest/model.onnx +0 -0
  583. onnx/backend/test/data/node/test_resize_downsample_sizes_cubic/model.onnx +0 -0
  584. onnx/backend/test/data/node/test_resize_downsample_sizes_cubic_antialias/model.onnx +0 -0
  585. onnx/backend/test/data/node/test_resize_downsample_sizes_linear_antialias/model.onnx +0 -0
  586. onnx/backend/test/data/node/test_resize_downsample_sizes_linear_pytorch_half_pixel/model.onnx +0 -0
  587. onnx/backend/test/data/node/test_resize_downsample_sizes_nearest/model.onnx +0 -0
  588. onnx/backend/test/data/node/test_resize_downsample_sizes_nearest_not_larger/model.onnx +0 -0
  589. onnx/backend/test/data/node/test_resize_downsample_sizes_nearest_not_smaller/model.onnx +0 -0
  590. onnx/backend/test/data/node/test_resize_tf_crop_and_resize/model.onnx +0 -0
  591. onnx/backend/test/data/node/test_resize_tf_crop_and_resize_axes_2_3/model.onnx +0 -0
  592. onnx/backend/test/data/node/test_resize_tf_crop_and_resize_axes_3_2/model.onnx +0 -0
  593. onnx/backend/test/data/node/test_resize_upsample_scales_cubic/model.onnx +0 -0
  594. onnx/backend/test/data/node/test_resize_upsample_scales_cubic_A_n0p5_exclude_outside/model.onnx +0 -0
  595. onnx/backend/test/data/node/test_resize_upsample_scales_cubic_align_corners/model.onnx +0 -0
  596. onnx/backend/test/data/node/test_resize_upsample_scales_cubic_asymmetric/model.onnx +0 -0
  597. onnx/backend/test/data/node/test_resize_upsample_scales_linear/model.onnx +0 -0
  598. onnx/backend/test/data/node/test_resize_upsample_scales_linear_align_corners/model.onnx +0 -0
  599. onnx/backend/test/data/node/test_resize_upsample_scales_linear_half_pixel_symmetric/model.onnx +0 -0
  600. onnx/backend/test/data/node/test_resize_upsample_scales_linear_half_pixel_symmetric/test_data_set_0/input_0.pb +0 -0
  601. onnx/backend/test/data/node/test_resize_upsample_scales_linear_half_pixel_symmetric/test_data_set_0/input_1.pb +0 -0
  602. onnx/backend/test/data/node/test_resize_upsample_scales_linear_half_pixel_symmetric/test_data_set_0/output_0.pb +0 -0
  603. onnx/backend/test/data/node/test_resize_upsample_scales_nearest/model.onnx +0 -0
  604. onnx/backend/test/data/node/test_resize_upsample_scales_nearest_axes_2_3/model.onnx +0 -0
  605. onnx/backend/test/data/node/test_resize_upsample_scales_nearest_axes_3_2/model.onnx +0 -0
  606. onnx/backend/test/data/node/test_resize_upsample_sizes_cubic/model.onnx +0 -0
  607. onnx/backend/test/data/node/test_resize_upsample_sizes_nearest/model.onnx +0 -0
  608. onnx/backend/test/data/node/test_resize_upsample_sizes_nearest_axes_2_3/model.onnx +0 -0
  609. onnx/backend/test/data/node/test_resize_upsample_sizes_nearest_axes_3_2/model.onnx +0 -0
  610. onnx/backend/test/data/node/test_resize_upsample_sizes_nearest_ceil_half_pixel/model.onnx +0 -0
  611. onnx/backend/test/data/node/test_resize_upsample_sizes_nearest_floor_align_corners/model.onnx +0 -0
  612. onnx/backend/test/data/node/test_resize_upsample_sizes_nearest_not_larger/model.onnx +0 -0
  613. onnx/backend/test/data/node/test_resize_upsample_sizes_nearest_round_prefer_ceil_asymmetric/model.onnx +0 -0
  614. onnx/backend/test/data/node/test_roialign_mode_max/model.onnx +0 -0
  615. onnx/backend/test/data/node/test_roialign_mode_max/test_data_set_0/input_0.pb +0 -0
  616. onnx/backend/test/data/node/test_roialign_mode_max/test_data_set_0/input_1.pb +0 -0
  617. onnx/backend/test/data/node/test_roialign_mode_max/test_data_set_0/input_2.pb +0 -0
  618. onnx/backend/test/data/node/test_roialign_mode_max/test_data_set_0/output_0.pb +2 -0
  619. onnx/backend/test/data/node/test_shape/model.onnx +0 -0
  620. onnx/backend/test/data/node/test_shape_clip_end/model.onnx +0 -0
  621. onnx/backend/test/data/node/test_shape_clip_start/model.onnx +0 -0
  622. onnx/backend/test/data/node/test_shape_end_1/model.onnx +0 -0
  623. onnx/backend/test/data/node/test_shape_end_negative_1/model.onnx +0 -0
  624. onnx/backend/test/data/node/test_shape_example/model.onnx +0 -0
  625. onnx/backend/test/data/node/test_shape_start_1/model.onnx +0 -0
  626. onnx/backend/test/data/node/test_shape_start_1_end_2/model.onnx +0 -0
  627. onnx/backend/test/data/node/test_shape_start_1_end_negative_1/model.onnx +0 -0
  628. onnx/backend/test/data/node/test_shape_start_negative_1/model.onnx +0 -0
  629. onnx/backend/test/data/node/test_sinh/test_data_set_0/output_0.pb +1 -1
  630. onnx/backend/test/data/node/test_size/model.onnx +0 -0
  631. onnx/backend/test/data/node/test_size_example/model.onnx +0 -0
  632. onnx/backend/test/data/node/test_softplus_example_expanded_ver18/model.onnx +0 -0
  633. onnx/backend/test/data/node/{test_softplus_expanded → test_softplus_expanded_ver18}/model.onnx +0 -0
  634. onnx/backend/test/data/node/test_split_to_sequence_1/model.onnx +0 -0
  635. onnx/backend/test/data/node/test_split_to_sequence_1/test_data_set_0/input_0.pb +0 -0
  636. onnx/backend/test/data/node/test_split_to_sequence_1/test_data_set_0/input_1.pb +0 -0
  637. onnx/backend/test/data/node/test_split_to_sequence_1/test_data_set_0/output_0.pb +0 -0
  638. onnx/backend/test/data/node/test_split_to_sequence_2/model.onnx +0 -0
  639. onnx/backend/test/data/node/test_split_to_sequence_2/test_data_set_0/input_0.pb +0 -0
  640. onnx/backend/test/data/node/test_split_to_sequence_2/test_data_set_0/input_1.pb +0 -0
  641. onnx/backend/test/data/node/test_split_to_sequence_2/test_data_set_0/output_0.pb +0 -0
  642. onnx/backend/test/data/node/test_split_to_sequence_nokeepdims/model.onnx +0 -0
  643. onnx/backend/test/data/node/test_split_to_sequence_nokeepdims/test_data_set_0/input_0.pb +0 -0
  644. onnx/backend/test/data/node/test_split_to_sequence_nokeepdims/test_data_set_0/output_0.pb +0 -0
  645. onnx/backend/test/data/node/test_tan/test_data_set_0/output_0.pb +1 -1
  646. onnx/backend/test/data/node/test_wrap_pad/model.onnx +0 -0
  647. onnx/backend/test/data/node/test_wrap_pad/test_data_set_0/input_0.pb +0 -0
  648. onnx/backend/test/data/node/test_wrap_pad/test_data_set_0/input_1.pb +0 -0
  649. onnx/backend/test/data/node/test_wrap_pad/test_data_set_0/output_0.pb +0 -0
  650. onnx/backend/test/data/real/test_bvlc_alexnet/data.json +1 -1
  651. onnx/backend/test/data/real/test_densenet121/data.json +1 -1
  652. onnx/backend/test/data/real/test_inception_v1/data.json +1 -1
  653. onnx/backend/test/data/real/test_inception_v2/data.json +1 -1
  654. onnx/backend/test/data/real/test_resnet50/data.json +1 -1
  655. onnx/backend/test/data/real/test_shufflenet/data.json +1 -1
  656. onnx/backend/test/data/real/test_squeezenet/data.json +1 -1
  657. onnx/backend/test/data/real/test_vgg19/data.json +1 -1
  658. onnx/backend/test/data/real/test_zfnet512/data.json +1 -1
  659. onnx/backend/test/loader/__init__.py +3 -1
  660. onnx/backend/test/report/__init__.py +3 -1
  661. onnx/backend/test/report/base.py +2 -0
  662. onnx/backend/test/report/coverage.py +8 -14
  663. onnx/backend/test/runner/__init__.py +146 -39
  664. onnx/backend/test/runner/item.py +2 -0
  665. onnx/backend/test/stat_coverage.py +23 -26
  666. onnx/bin/__init__.py +2 -0
  667. onnx/bin/checker.py +2 -0
  668. onnx/checker.cc +26 -9
  669. onnx/checker.h +3 -3
  670. onnx/checker.py +22 -5
  671. onnx/common/array_ref.h +2 -0
  672. onnx/common/assertions.cc +2 -0
  673. onnx/common/assertions.h +2 -0
  674. onnx/common/common.h +2 -0
  675. onnx/common/constants.h +3 -3
  676. onnx/common/file_utils.h +3 -1
  677. onnx/common/graph_node_list.h +2 -0
  678. onnx/common/interned_strings.cc +2 -0
  679. onnx/common/interned_strings.h +2 -0
  680. onnx/common/ir.h +2 -0
  681. onnx/common/ir_pb_converter.cc +7 -1
  682. onnx/common/ir_pb_converter.h +2 -0
  683. onnx/common/model_helpers.cc +3 -3
  684. onnx/common/model_helpers.h +3 -3
  685. onnx/common/path.cc +0 -1
  686. onnx/common/path.h +0 -1
  687. onnx/common/platform_helpers.h +2 -0
  688. onnx/common/status.cc +2 -0
  689. onnx/common/status.h +2 -0
  690. onnx/common/stl_backports.h +3 -3
  691. onnx/common/tensor.h +24 -171
  692. onnx/common/version.h +3 -1
  693. onnx/compose.py +40 -32
  694. onnx/cpp2py_export.cc +268 -89
  695. onnx/defs/__init__.py +9 -7
  696. onnx/defs/attr_proto_util.cc +2 -0
  697. onnx/defs/attr_proto_util.h +2 -0
  698. onnx/defs/controlflow/defs.cc +25 -369
  699. onnx/defs/controlflow/old.cc +444 -0
  700. onnx/defs/controlflow/utils.cc +357 -0
  701. onnx/defs/controlflow/utils.h +21 -0
  702. onnx/defs/data_propagators.h +2 -0
  703. onnx/defs/data_type_utils.cc +6 -2
  704. onnx/defs/gen_doc.py +32 -46
  705. onnx/defs/gen_shape_inference_information.py +2 -0
  706. onnx/defs/generator/defs.cc +21 -19
  707. onnx/defs/generator/old.cc +159 -0
  708. onnx/defs/logical/defs.cc +17 -16
  709. onnx/defs/logical/old.cc +23 -0
  710. onnx/defs/math/defs.cc +155 -131
  711. onnx/defs/math/old.cc +1 -1
  712. onnx/defs/nn/defs.cc +135 -45
  713. onnx/defs/nn/old.cc +142 -9
  714. onnx/defs/operator_sets.h +45 -0
  715. onnx/defs/optional/defs.cc +8 -4
  716. onnx/defs/parser.cc +50 -3
  717. onnx/defs/parser.h +43 -31
  718. onnx/defs/printer.cc +7 -1
  719. onnx/defs/printer.h +1 -1
  720. onnx/defs/quantization/defs.cc +63 -26
  721. onnx/defs/quantization/old.cc +102 -1
  722. onnx/defs/reduction/defs.cc +1 -1
  723. onnx/defs/reduction/utils.cc +5 -4
  724. onnx/defs/rnn/defs.cc +95 -173
  725. onnx/defs/schema.cc +45 -29
  726. onnx/defs/schema.h +125 -15
  727. onnx/defs/sequence/defs.cc +11 -8
  728. onnx/defs/shape_inference.cc +25 -4
  729. onnx/defs/shape_inference.h +29 -1
  730. onnx/defs/tensor/defs.cc +500 -566
  731. onnx/defs/tensor/old.cc +777 -47
  732. onnx/defs/tensor/utils.cc +130 -8
  733. onnx/defs/tensor/utils.h +2 -0
  734. onnx/defs/tensor_proto_util.cc +3 -0
  735. onnx/defs/traditionalml/defs.cc +19 -2
  736. onnx/examples/Protobufs.ipynb +129 -31
  737. onnx/examples/check_model.ipynb +29 -21
  738. onnx/examples/load_model.ipynb +25 -3
  739. onnx/examples/make_model.ipynb +32 -23
  740. onnx/external_data_helper.py +6 -6
  741. onnx/frontend/__init__.py +2 -0
  742. onnx/gen_proto.py +18 -24
  743. onnx/helper.py +393 -108
  744. onnx/hub.py +189 -20
  745. onnx/mapping.py +29 -3
  746. onnx/numpy_helper.py +263 -52
  747. onnx/onnx-ml.proto +28 -6
  748. onnx/onnx-operators-ml.proto +1 -1
  749. onnx/onnx-operators.in.proto +1 -1
  750. onnx/onnx-operators.proto +1 -1
  751. onnx/onnx.in.proto +28 -6
  752. onnx/onnx.proto +28 -6
  753. onnx/onnx_cpp2py_export.cp37-win_amd64.pyd +0 -0
  754. onnx/onnx_data_pb2.pyi +2 -1
  755. onnx/onnx_ml_pb2.py +33 -33
  756. onnx/onnx_ml_pb2.pyi +12 -2
  757. onnx/onnx_operators_ml_pb2.pyi +2 -1
  758. onnx/parser.py +29 -13
  759. onnx/printer.py +6 -4
  760. onnx/proto_utils.h +3 -3
  761. onnx/py_utils.h +3 -3
  762. onnx/reference/__init__.py +2 -0
  763. onnx/reference/custom_element_types.py +11 -0
  764. onnx/reference/op_run.py +84 -8
  765. onnx/reference/ops/__init__.py +5 -1
  766. onnx/reference/ops/_helpers.py +55 -0
  767. onnx/reference/ops/_op.py +19 -12
  768. onnx/reference/ops/_op_common_indices.py +2 -0
  769. onnx/reference/ops/_op_common_pool.py +4 -9
  770. onnx/reference/ops/_op_common_random.py +2 -0
  771. onnx/reference/ops/_op_common_window.py +2 -0
  772. onnx/reference/ops/_op_list.py +208 -214
  773. onnx/reference/ops/aionnx_preview_training/__init__.py +4 -2
  774. onnx/reference/ops/aionnx_preview_training/_op_list.py +15 -38
  775. onnx/reference/ops/aionnx_preview_training/_op_run_training.py +2 -0
  776. onnx/reference/ops/aionnx_preview_training/op_adagrad.py +3 -1
  777. onnx/reference/ops/aionnx_preview_training/op_adam.py +3 -1
  778. onnx/reference/ops/aionnx_preview_training/op_momentum.py +3 -1
  779. onnx/reference/ops/aionnxml/__init__.py +3 -0
  780. onnx/reference/ops/aionnxml/_common_classifier.py +81 -0
  781. onnx/reference/ops/aionnxml/_op_list.py +97 -0
  782. onnx/reference/ops/aionnxml/_op_run_aionnxml.py +8 -0
  783. onnx/reference/ops/aionnxml/op_array_feature_extractor.py +50 -0
  784. onnx/reference/ops/aionnxml/op_binarizer.py +15 -0
  785. onnx/reference/ops/aionnxml/op_dict_vectorizer.py +56 -0
  786. onnx/reference/ops/aionnxml/op_feature_vectorizer.py +30 -0
  787. onnx/reference/ops/aionnxml/op_imputer.py +47 -0
  788. onnx/reference/ops/aionnxml/op_label_encoder.py +52 -0
  789. onnx/reference/ops/aionnxml/op_linear_classifier.py +99 -0
  790. onnx/reference/ops/aionnxml/op_linear_regressor.py +26 -0
  791. onnx/reference/ops/aionnxml/op_normalizer.py +41 -0
  792. onnx/reference/ops/aionnxml/op_one_hot_encoder.py +55 -0
  793. onnx/reference/ops/aionnxml/op_scaler.py +12 -0
  794. onnx/reference/ops/aionnxml/op_svm_classifier.py +334 -0
  795. onnx/reference/ops/aionnxml/op_svm_helper.py +99 -0
  796. onnx/reference/ops/aionnxml/op_svm_regressor.py +45 -0
  797. onnx/reference/ops/aionnxml/op_tree_ensemble_classifier.py +132 -0
  798. onnx/reference/ops/aionnxml/op_tree_ensemble_helper.py +109 -0
  799. onnx/reference/ops/aionnxml/op_tree_ensemble_regressor.py +105 -0
  800. onnx/reference/ops/experimental/__init__.py +3 -1
  801. onnx/reference/ops/experimental/_op_list.py +15 -36
  802. onnx/reference/ops/experimental/_op_run_experimental.py +2 -0
  803. onnx/reference/ops/experimental/op_im2col.py +3 -2
  804. onnx/reference/ops/op_abs.py +3 -1
  805. onnx/reference/ops/op_acos.py +3 -1
  806. onnx/reference/ops/op_acosh.py +3 -1
  807. onnx/reference/ops/op_add.py +3 -1
  808. onnx/reference/ops/op_and.py +3 -1
  809. onnx/reference/ops/op_argmax.py +4 -9
  810. onnx/reference/ops/op_argmin.py +4 -9
  811. onnx/reference/ops/op_asin.py +3 -1
  812. onnx/reference/ops/op_asinh.py +3 -1
  813. onnx/reference/ops/op_atan.py +3 -1
  814. onnx/reference/ops/op_atanh.py +3 -1
  815. onnx/reference/ops/op_attribute_has_value.py +2 -0
  816. onnx/reference/ops/op_average_pool.py +80 -2
  817. onnx/reference/ops/op_batch_normalization.py +14 -11
  818. onnx/reference/ops/op_bernoulli.py +3 -2
  819. onnx/reference/ops/op_bitshift.py +3 -1
  820. onnx/reference/ops/op_bitwise_and.py +3 -1
  821. onnx/reference/ops/op_bitwise_not.py +3 -1
  822. onnx/reference/ops/op_bitwise_or.py +3 -1
  823. onnx/reference/ops/op_bitwise_xor.py +3 -1
  824. onnx/reference/ops/op_blackman_window.py +3 -1
  825. onnx/reference/ops/op_cast.py +91 -10
  826. onnx/reference/ops/op_cast_like.py +32 -7
  827. onnx/reference/ops/op_ceil.py +3 -1
  828. onnx/reference/ops/op_celu.py +3 -1
  829. onnx/reference/ops/op_center_crop_pad.py +7 -3
  830. onnx/reference/ops/op_clip.py +2 -7
  831. onnx/reference/ops/op_col2im.py +3 -2
  832. onnx/reference/ops/op_compress.py +2 -0
  833. onnx/reference/ops/op_concat.py +6 -5
  834. onnx/reference/ops/op_concat_from_sequence.py +2 -0
  835. onnx/reference/ops/op_constant.py +46 -35
  836. onnx/reference/ops/op_constant_of_shape.py +4 -0
  837. onnx/reference/ops/op_conv.py +62 -39
  838. onnx/reference/ops/op_conv_integer.py +3 -2
  839. onnx/reference/ops/op_conv_transpose.py +4 -3
  840. onnx/reference/ops/op_cos.py +3 -1
  841. onnx/reference/ops/op_cosh.py +3 -1
  842. onnx/reference/ops/op_cum_sum.py +2 -0
  843. onnx/reference/ops/op_deform_conv.py +178 -0
  844. onnx/reference/ops/op_depth_to_space.py +2 -0
  845. onnx/reference/ops/op_dequantize_linear.py +72 -21
  846. onnx/reference/ops/op_det.py +3 -4
  847. onnx/reference/ops/op_dft.py +2 -0
  848. onnx/reference/ops/op_div.py +3 -1
  849. onnx/reference/ops/op_dropout.py +2 -7
  850. onnx/reference/ops/op_dynamic_quantize_linear.py +2 -0
  851. onnx/reference/ops/op_einsum.py +2 -0
  852. onnx/reference/ops/op_elu.py +4 -2
  853. onnx/reference/ops/op_equal.py +3 -1
  854. onnx/reference/ops/op_erf.py +3 -1
  855. onnx/reference/ops/op_exp.py +4 -2
  856. onnx/reference/ops/op_expand.py +2 -0
  857. onnx/reference/ops/op_eyelike.py +9 -4
  858. onnx/reference/ops/op_flatten.py +3 -1
  859. onnx/reference/ops/op_floor.py +3 -1
  860. onnx/reference/ops/op_gather.py +2 -0
  861. onnx/reference/ops/op_gather_elements.py +2 -0
  862. onnx/reference/ops/op_gathernd.py +3 -1
  863. onnx/reference/ops/op_gemm.py +5 -10
  864. onnx/reference/ops/op_global_average_pool.py +6 -5
  865. onnx/reference/ops/op_global_max_pool.py +2 -0
  866. onnx/reference/ops/op_greater.py +3 -1
  867. onnx/reference/ops/op_greater_or_equal.py +3 -1
  868. onnx/reference/ops/op_grid_sample.py +3 -1
  869. onnx/reference/ops/op_gru.py +4 -1
  870. onnx/reference/ops/op_hamming_window.py +3 -1
  871. onnx/reference/ops/op_hann_window.py +3 -1
  872. onnx/reference/ops/op_hard_sigmoid.py +3 -1
  873. onnx/reference/ops/op_hardmax.py +3 -1
  874. onnx/reference/ops/op_identity.py +3 -1
  875. onnx/reference/ops/op_if.py +16 -7
  876. onnx/reference/ops/op_instance_normalization.py +2 -0
  877. onnx/reference/ops/op_isinf.py +2 -0
  878. onnx/reference/ops/op_isnan.py +3 -1
  879. onnx/reference/ops/op_layer_normalization.py +2 -0
  880. onnx/reference/ops/op_leaky_relu.py +4 -2
  881. onnx/reference/ops/op_less.py +3 -1
  882. onnx/reference/ops/op_less_or_equal.py +3 -1
  883. onnx/reference/ops/op_log.py +4 -2
  884. onnx/reference/ops/op_log_softmax.py +3 -1
  885. onnx/reference/ops/op_loop.py +4 -2
  886. onnx/reference/ops/op_lp_normalization.py +4 -2
  887. onnx/reference/ops/op_lp_pool.py +41 -0
  888. onnx/reference/ops/op_lrn.py +9 -5
  889. onnx/reference/ops/op_lstm.py +4 -2
  890. onnx/reference/ops/op_matmul.py +3 -1
  891. onnx/reference/ops/op_matmul_integer.py +2 -0
  892. onnx/reference/ops/op_max.py +3 -1
  893. onnx/reference/ops/op_max_pool.py +3 -1
  894. onnx/reference/ops/op_max_unpool.py +2 -0
  895. onnx/reference/ops/op_mean.py +3 -1
  896. onnx/reference/ops/op_mel_weight_matrix.py +2 -0
  897. onnx/reference/ops/op_min.py +3 -1
  898. onnx/reference/ops/op_mod.py +2 -0
  899. onnx/reference/ops/op_mul.py +3 -1
  900. onnx/reference/ops/op_neg.py +3 -1
  901. onnx/reference/ops/op_negative_log_likelihood_loss.py +3 -1
  902. onnx/reference/ops/op_non_max_suppression.py +22 -19
  903. onnx/reference/ops/op_non_zero.py +4 -1
  904. onnx/reference/ops/op_not.py +3 -1
  905. onnx/reference/ops/op_one_hot.py +3 -1
  906. onnx/reference/ops/op_optional.py +2 -0
  907. onnx/reference/ops/op_optional_get_element.py +4 -8
  908. onnx/reference/ops/op_optional_has_element.py +3 -9
  909. onnx/reference/ops/op_or.py +3 -1
  910. onnx/reference/ops/op_pad.py +18 -29
  911. onnx/reference/ops/op_pow.py +2 -0
  912. onnx/reference/ops/op_prelu.py +4 -2
  913. onnx/reference/ops/op_qlinear_conv.py +3 -2
  914. onnx/reference/ops/op_qlinear_matmul.py +2 -0
  915. onnx/reference/ops/op_quantize_linear.py +100 -15
  916. onnx/reference/ops/op_random_normal.py +3 -1
  917. onnx/reference/ops/op_random_normal_like.py +3 -2
  918. onnx/reference/ops/op_random_uniform.py +3 -1
  919. onnx/reference/ops/op_random_uniform_like.py +3 -2
  920. onnx/reference/ops/op_range.py +2 -0
  921. onnx/reference/ops/op_reciprocal.py +4 -2
  922. onnx/reference/ops/op_reduce_l1.py +17 -31
  923. onnx/reference/ops/op_reduce_l2.py +17 -35
  924. onnx/reference/ops/op_reduce_log_sum.py +6 -29
  925. onnx/reference/ops/op_reduce_log_sum_exp.py +6 -29
  926. onnx/reference/ops/op_reduce_max.py +15 -36
  927. onnx/reference/ops/op_reduce_mean.py +15 -33
  928. onnx/reference/ops/op_reduce_min.py +15 -32
  929. onnx/reference/ops/op_reduce_prod.py +15 -29
  930. onnx/reference/ops/op_reduce_sum.py +17 -45
  931. onnx/reference/ops/op_reduce_sum_square.py +15 -29
  932. onnx/reference/ops/op_relu.py +3 -1
  933. onnx/reference/ops/op_reshape.py +2 -7
  934. onnx/reference/ops/op_resize.py +59 -26
  935. onnx/reference/ops/op_reverse_sequence.py +2 -0
  936. onnx/reference/ops/op_rnn.py +3 -7
  937. onnx/reference/ops/op_roi_align.py +7 -5
  938. onnx/reference/ops/op_round.py +4 -2
  939. onnx/reference/ops/op_scan.py +5 -2
  940. onnx/reference/ops/op_scatter_elements.py +17 -4
  941. onnx/reference/ops/op_scatternd.py +2 -0
  942. onnx/reference/ops/op_selu.py +5 -1
  943. onnx/reference/ops/op_sequence_at.py +2 -0
  944. onnx/reference/ops/op_sequence_construct.py +2 -0
  945. onnx/reference/ops/op_sequence_empty.py +2 -0
  946. onnx/reference/ops/op_sequence_erase.py +2 -0
  947. onnx/reference/ops/op_sequence_insert.py +4 -2
  948. onnx/reference/ops/op_sequence_length.py +7 -1
  949. onnx/reference/ops/op_sequence_map.py +4 -2
  950. onnx/reference/ops/op_shape.py +2 -7
  951. onnx/reference/ops/op_shrink.py +3 -1
  952. onnx/reference/ops/op_sigmoid.py +7 -1
  953. onnx/reference/ops/op_sign.py +3 -1
  954. onnx/reference/ops/op_sin.py +3 -1
  955. onnx/reference/ops/op_sinh.py +3 -1
  956. onnx/reference/ops/op_size.py +2 -0
  957. onnx/reference/ops/op_slice.py +3 -9
  958. onnx/reference/ops/op_softmax.py +4 -2
  959. onnx/reference/ops/op_softmax_cross_entropy_loss.py +4 -1
  960. onnx/reference/ops/op_softplus.py +4 -2
  961. onnx/reference/ops/op_softsign.py +3 -1
  962. onnx/reference/ops/op_space_to_depth.py +3 -1
  963. onnx/reference/ops/op_split.py +7 -9
  964. onnx/reference/ops/op_split_to_sequence.py +41 -10
  965. onnx/reference/ops/op_sqrt.py +4 -2
  966. onnx/reference/ops/op_squeeze.py +3 -12
  967. onnx/reference/ops/op_stft.py +8 -7
  968. onnx/reference/ops/op_string_normalizer.py +4 -3
  969. onnx/reference/ops/op_sub.py +3 -1
  970. onnx/reference/ops/op_sum.py +3 -1
  971. onnx/reference/ops/op_tan.py +3 -1
  972. onnx/reference/ops/op_tanh.py +3 -1
  973. onnx/reference/ops/op_tfidf_vectorizer.py +15 -13
  974. onnx/reference/ops/op_thresholded_relu.py +4 -2
  975. onnx/reference/ops/op_tile.py +2 -0
  976. onnx/reference/ops/op_topk.py +12 -19
  977. onnx/reference/ops/op_transpose.py +2 -0
  978. onnx/reference/ops/op_trilu.py +3 -1
  979. onnx/reference/ops/op_unique.py +2 -0
  980. onnx/reference/ops/op_unsqueeze.py +2 -9
  981. onnx/reference/ops/op_upsample.py +9 -8
  982. onnx/reference/ops/op_where.py +7 -1
  983. onnx/reference/ops/op_xor.py +3 -1
  984. onnx/reference/reference_evaluator.py +64 -20
  985. onnx/shape_inference/implementation.cc +204 -43
  986. onnx/shape_inference/implementation.h +33 -13
  987. onnx/shape_inference.py +37 -12
  988. onnx/string_utils.h +3 -3
  989. onnx/test/cpp/common_path_test.cc +2 -0
  990. onnx/test/cpp/data_propagation_test.cc +2 -0
  991. onnx/test/cpp/function_context_test.cc +2 -0
  992. onnx/test/cpp/function_get_test.cc +2 -0
  993. onnx/test/cpp/function_verify_test.cc +176 -0
  994. onnx/test/cpp/op_reg_test.cc +2 -0
  995. onnx/test/cpp/parser_test.cc +37 -1
  996. onnx/test/cpp/schema_registration_test.cc +2 -0
  997. onnx/test/cpp/shape_inference_test.cc +2 -0
  998. onnx/test/cpp/test_main.cc +2 -0
  999. onnx/tools/__init__.py +2 -0
  1000. onnx/tools/net_drawer.py +13 -9
  1001. onnx/tools/replace_constants.py +429 -0
  1002. onnx/tools/update_model_dims.py +7 -9
  1003. onnx/utils.py +16 -6
  1004. onnx/version.py +2 -2
  1005. onnx/version_converter/BaseConverter.h +2 -0
  1006. onnx/version_converter/adapters/adapter.h +2 -0
  1007. onnx/version_converter/adapters/axes_attribute_to_input.h +2 -0
  1008. onnx/version_converter/adapters/axes_input_to_attribute.h +2 -0
  1009. onnx/version_converter/adapters/batch_normalization_13_14.h +2 -0
  1010. onnx/version_converter/adapters/broadcast_backward_compatibility.h +2 -0
  1011. onnx/version_converter/adapters/broadcast_forward_compatibility.h +2 -0
  1012. onnx/version_converter/adapters/cast_9_8.h +2 -0
  1013. onnx/version_converter/adapters/clip_10_11.h +2 -0
  1014. onnx/version_converter/adapters/compatible.h +2 -0
  1015. onnx/version_converter/adapters/dropout_11_12.h +2 -0
  1016. onnx/version_converter/adapters/extend_supported_types.h +2 -0
  1017. onnx/version_converter/adapters/gemm_6_7.h +2 -0
  1018. onnx/version_converter/adapters/gemm_7_6.h +2 -0
  1019. onnx/version_converter/adapters/maxpool_8_7.h +2 -0
  1020. onnx/version_converter/adapters/no_previous_version.h +2 -0
  1021. onnx/version_converter/adapters/pad_10_11.h +4 -0
  1022. onnx/version_converter/adapters/remove_consumed_inputs.h +2 -0
  1023. onnx/version_converter/adapters/reshape_4_5.h +2 -0
  1024. onnx/version_converter/adapters/reshape_5_4.h +2 -0
  1025. onnx/version_converter/adapters/resize_10_11.h +2 -0
  1026. onnx/version_converter/adapters/scan_8_9.h +2 -0
  1027. onnx/version_converter/adapters/scan_9_8.h +2 -0
  1028. onnx/version_converter/adapters/scatter_10_11.h +2 -0
  1029. onnx/version_converter/adapters/slice_9_10.h +2 -0
  1030. onnx/version_converter/adapters/softmax_12_13.h +20 -28
  1031. onnx/version_converter/adapters/split_12_13.h +2 -0
  1032. onnx/version_converter/adapters/split_13_12.h +2 -0
  1033. onnx/version_converter/adapters/split_17_18.h +2 -0
  1034. onnx/version_converter/adapters/sum_8_7.h +2 -0
  1035. onnx/version_converter/adapters/topk_9_10.h +2 -0
  1036. onnx/version_converter/adapters/transformers.h +3 -1
  1037. onnx/version_converter/adapters/type_restriction.h +2 -0
  1038. onnx/version_converter/adapters/upsample_6_7.h +2 -0
  1039. onnx/version_converter/adapters/upsample_8_9.h +2 -0
  1040. onnx/version_converter/adapters/upsample_9_10.h +2 -0
  1041. onnx/version_converter/adapters/upsample_9_8.h +2 -0
  1042. onnx/version_converter/convert.cc +14 -7
  1043. onnx/version_converter/convert.h +20 -0
  1044. onnx/version_converter/helper.cc +3 -3
  1045. onnx/version_converter/helper.h +3 -3
  1046. onnx/version_converter.py +6 -3
  1047. {onnx-1.13.1.dist-info → onnx-1.14.1.dist-info}/METADATA +96 -52
  1048. {onnx-1.13.1.dist-info → onnx-1.14.1.dist-info}/RECORD +1056 -743
  1049. {onnx-1.13.1.dist-info → onnx-1.14.1.dist-info}/WHEEL +1 -1
  1050. onnx/backend/test/data/node/test_softplus_example_expanded/model.onnx +0 -0
  1051. /onnx/backend/test/data/node/{test_softplus_example_expanded → test_softplus_example_expanded_ver18}/test_data_set_0/input_0.pb +0 -0
  1052. /onnx/backend/test/data/node/{test_softplus_example_expanded → test_softplus_example_expanded_ver18}/test_data_set_0/output_0.pb +0 -0
  1053. /onnx/backend/test/data/node/{test_softplus_expanded → test_softplus_expanded_ver18}/test_data_set_0/input_0.pb +0 -0
  1054. /onnx/backend/test/data/node/{test_softplus_expanded → test_softplus_expanded_ver18}/test_data_set_0/output_0.pb +0 -0
  1055. {onnx-1.13.1.dist-info → onnx-1.14.1.dist-info}/LICENSE +0 -0
  1056. {onnx-1.13.1.dist-info → onnx-1.14.1.dist-info}/entry_points.txt +0 -0
  1057. {onnx-1.13.1.dist-info → onnx-1.14.1.dist-info}/top_level.txt +0 -0
onnx/defs/parser.h CHANGED
@@ -72,22 +72,26 @@ class StringIntMap {
72
72
  class PrimitiveTypeNameMap : public StringIntMap<PrimitiveTypeNameMap> {
73
73
  public:
74
74
  PrimitiveTypeNameMap() : StringIntMap() {
75
- map_["float"] = 1;
76
- map_["uint8"] = 2;
77
- map_["int8"] = 3;
78
- map_["uint16"] = 4;
79
- map_["int16"] = 5;
80
- map_["int32"] = 6;
81
- map_["int64"] = 7;
82
- map_["string"] = 8;
83
- map_["bool"] = 9;
84
- map_["float16"] = 10;
85
- map_["double"] = 11;
86
- map_["uint32"] = 12;
87
- map_["uint64"] = 13;
88
- map_["complex64"] = 14;
89
- map_["complex128"] = 15;
90
- map_["bfloat16"] = 16;
75
+ map_["float"] = TensorProto_DataType_FLOAT;
76
+ map_["uint8"] = TensorProto_DataType_UINT8;
77
+ map_["int8"] = TensorProto_DataType_INT8;
78
+ map_["uint16"] = TensorProto_DataType_UINT16;
79
+ map_["int16"] = TensorProto_DataType_INT16;
80
+ map_["int32"] = TensorProto_DataType_INT32;
81
+ map_["int64"] = TensorProto_DataType_INT64;
82
+ map_["string"] = TensorProto_DataType_STRING;
83
+ map_["bool"] = TensorProto_DataType_BOOL;
84
+ map_["float16"] = TensorProto_DataType_FLOAT16;
85
+ map_["double"] = TensorProto_DataType_DOUBLE;
86
+ map_["uint32"] = TensorProto_DataType_UINT32;
87
+ map_["uint64"] = TensorProto_DataType_UINT64;
88
+ map_["complex64"] = TensorProto_DataType_COMPLEX64;
89
+ map_["complex128"] = TensorProto_DataType_COMPLEX128;
90
+ map_["bfloat16"] = TensorProto_DataType_BFLOAT16;
91
+ map_["float8e4m3fn"] = TensorProto_DataType_FLOAT8E4M3FN;
92
+ map_["float8e4m3fnuz"] = TensorProto_DataType_FLOAT8E4M3FNUZ;
93
+ map_["float8e5m2"] = TensorProto_DataType_FLOAT8E5M2;
94
+ map_["float8e5m2fnuz"] = TensorProto_DataType_FLOAT8E5M2FNUZ;
91
95
  }
92
96
 
93
97
  static bool IsTypeName(const std::string& dtype) {
@@ -98,20 +102,20 @@ class PrimitiveTypeNameMap : public StringIntMap<PrimitiveTypeNameMap> {
98
102
  class AttributeTypeNameMap : public StringIntMap<AttributeTypeNameMap> {
99
103
  public:
100
104
  AttributeTypeNameMap() : StringIntMap() {
101
- map_["float"] = 1;
102
- map_["int"] = 2;
103
- map_["string"] = 3;
104
- map_["tensor"] = 4;
105
- map_["graph"] = 5;
106
- map_["sparse_tensor"] = 11;
107
- map_["type_proto"] = 13;
108
- map_["floats"] = 6;
109
- map_["ints"] = 7;
110
- map_["strings"] = 8;
111
- map_["tensors"] = 9;
112
- map_["graphs"] = 10;
113
- map_["sparse_tensors"] = 12;
114
- map_["type_protos"] = 14;
105
+ map_["float"] = AttributeProto_AttributeType_FLOAT;
106
+ map_["int"] = AttributeProto_AttributeType_INT;
107
+ map_["string"] = AttributeProto_AttributeType_STRING;
108
+ map_["tensor"] = AttributeProto_AttributeType_TENSOR;
109
+ map_["graph"] = AttributeProto_AttributeType_GRAPH;
110
+ map_["sparse_tensor"] = AttributeProto_AttributeType_SPARSE_TENSOR;
111
+ map_["type_proto"] = AttributeProto_AttributeType_TYPE_PROTO;
112
+ map_["floats"] = AttributeProto_AttributeType_FLOATS;
113
+ map_["ints"] = AttributeProto_AttributeType_INTS;
114
+ map_["strings"] = AttributeProto_AttributeType_STRINGS;
115
+ map_["tensors"] = AttributeProto_AttributeType_TENSORS;
116
+ map_["graphs"] = AttributeProto_AttributeType_GRAPHS;
117
+ map_["sparse_tensors"] = AttributeProto_AttributeType_SPARSE_TENSORS;
118
+ map_["type_protos"] = AttributeProto_AttributeType_TYPE_PROTOS;
115
119
  }
116
120
  };
117
121
 
@@ -386,6 +390,8 @@ class OnnxParser : public ParserBase {
386
390
 
387
391
  Status Parse(AttributeProto& attr);
388
392
 
393
+ Status Parse(AttributeProto& attr, std::string& name);
394
+
389
395
  Status Parse(AttrList& attrlist);
390
396
 
391
397
  Status Parse(NodeProto& node);
@@ -411,6 +417,10 @@ class OnnxParser : public ParserBase {
411
417
 
412
418
  Status Parse(char open, IdList& idlist, char close);
413
419
 
420
+ Status Parse(IdList& idlist, AttrList& attrlist);
421
+
422
+ Status Parse(char open, IdList& idlist, AttrList& attrlist, char close);
423
+
414
424
  Status ParseSingleAttributeValue(AttributeProto& attr);
415
425
 
416
426
  Status Parse(ValueInfoProto& valueinfo);
@@ -426,6 +436,8 @@ class OnnxParser : public ParserBase {
426
436
  Status Parse(OpsetIdList& opsets);
427
437
 
428
438
  bool NextIsType();
439
+
440
+ bool NextIsIdentifier();
429
441
  };
430
442
 
431
- } // namespace ONNX_NAMESPACE
443
+ } // namespace ONNX_NAMESPACE
onnx/defs/printer.cc CHANGED
@@ -307,6 +307,12 @@ void ProtoPrinter::print(const AttributeProto& attr) {
307
307
  case AttributeProto_AttributeType_TENSORS:
308
308
  printSet("[", ", ", "]", attr.tensors());
309
309
  break;
310
+ case AttributeProto_AttributeType_TYPE_PROTO:
311
+ print(attr.tp());
312
+ break;
313
+ case AttributeProto_AttributeType_TYPE_PROTOS:
314
+ printSet("[", ", ", "]", attr.type_protos());
315
+ break;
310
316
  default:
311
317
  break;
312
318
  }
@@ -436,4 +442,4 @@ DEF_OP(FunctionProto)
436
442
 
437
443
  DEF_OP(ModelProto)
438
444
 
439
- } // namespace ONNX_NAMESPACE
445
+ } // namespace ONNX_NAMESPACE
onnx/defs/printer.h CHANGED
@@ -47,4 +47,4 @@ std::string ProtoToString(const ProtoType& proto) {
47
47
  return ss.str();
48
48
  }
49
49
 
50
- } // namespace ONNX_NAMESPACE
50
+ } // namespace ONNX_NAMESPACE
@@ -7,17 +7,21 @@
7
7
 
8
8
  namespace ONNX_NAMESPACE {
9
9
 
10
- static const char* QuantizeLinear_ver13_doc = R"DOC(
10
+ static const char* QuantizeLinear_ver19_doc = R"DOC(
11
11
  The linear quantization operator. It consumes a high precision tensor, a scale, and a zero point to compute the low precision / quantized tensor.
12
12
  The scale factor and zero point must have same shape, and can be either a scalar for per-tensor / per layer quantization, or a 1-D tensor for per-axis quantization.
13
- The quantization formula is y = saturate ((x / y_scale) + y_zero_point).
13
+ The quantization formula is `y = saturate ((x / y_scale) + y_zero_point)`.
14
14
  For saturation, it saturates to [0, 255] if it's uint8, or [-128, 127] if it's int8.
15
- For (x / y_scale), it's rounding to nearest ties to even. Refer to https://en.wikipedia.org/wiki/Rounding for details. 'y_zero_point' and 'y' must have same type.
15
+ For (x / y_scale), it's rounding to the nearest even. Refer to https://en.wikipedia.org/wiki/Rounding for details.
16
+ 'y_zero_point' and 'y' must have same type.
17
+ 'y_zero_point' is usually not used for quantization to float8e4m3fn, float8e4m3fnuz, float8e5m2, float8e5m2fnuz,
18
+ but the quantization formula remains the same for consistency and
19
+ the type of the attribute 'y_zero_point' still determines the quantization type.
16
20
  )DOC";
17
21
 
18
22
  ONNX_OPERATOR_SET_SCHEMA(
19
23
  QuantizeLinear,
20
- 13,
24
+ 19,
21
25
  OpSchema()
22
26
  .Input(0, "x", "N-D full precision Input tensor to be quantized.", "T1")
23
27
  .Input(
@@ -25,7 +29,7 @@ ONNX_OPERATOR_SET_SCHEMA(
25
29
  "y_scale",
26
30
  "Scale for doing quantization to get 'y'. It can be a scalar, which means per-tensor/layer quantization, "
27
31
  "or a 1-D Tensor for per-axis quantization.",
28
- "tensor(float)")
32
+ "T1")
29
33
  .Input(
30
34
  2,
31
35
  "y_zero_point",
@@ -39,12 +43,28 @@ ONNX_OPERATOR_SET_SCHEMA(
39
43
  "(Optional) The axis of the quantization dimension of the input tensor. Ignored for per-tensor quantization. Negative value means counting dimensions from the back. Accepted range is [-r, r-1] where r = rank(input).",
40
44
  AttributeProto::INT,
41
45
  static_cast<int64_t>(1))
42
- .TypeConstraint("T1", {"tensor(float)", "tensor(int32)"}, "Constrain 'x' to float or int32 tensor.")
46
+ .Attr(
47
+ "saturate",
48
+ "The parameter defines how the conversion behaves if an input value is out of "
49
+ "range of the destination type. It only applies for float 8 quantization "
50
+ "(float8e4m3fn, float8e4m3fnuz, float8e5m2, float8e5m2fnuz). It is true by default. "
51
+ "All cases are fully described in two tables inserted in the operator description.",
52
+ AttributeProto::INT,
53
+ static_cast<int64_t>(1))
54
+ .TypeConstraint(
55
+ "T1",
56
+ {"tensor(float)", "tensor(float16)", "tensor(bfloat16)", "tensor(int32)"},
57
+ "Constrain 'x' to float, float16, bfloat16 or int32 tensor.")
43
58
  .TypeConstraint(
44
59
  "T2",
45
- {"tensor(int8)", "tensor(uint8)"},
46
- "Constrain 'y_zero_point' and 'y' to 8-bit integer tensor.")
47
- .SetDoc(QuantizeLinear_ver13_doc)
60
+ {"tensor(int8)",
61
+ "tensor(uint8)",
62
+ "tensor(float8e4m3fn)",
63
+ "tensor(float8e4m3fnuz)",
64
+ "tensor(float8e5m2)",
65
+ "tensor(float8e5m2fnuz)"},
66
+ "Constrain 'y_zero_point' and 'y' to 8-bit integer/float tensor.")
67
+ .SetDoc(QuantizeLinear_ver19_doc)
48
68
  .TypeAndShapeInferenceFunction([](ONNX_NAMESPACE::InferenceContext& ctx) {
49
69
  if (ctx.hasInput(2)) {
50
70
  propagateElemTypeFromInputToOutput(ctx, 2, 0);
@@ -59,43 +79,55 @@ ONNX_OPERATOR_SET_SCHEMA(
59
79
  updateOutputShape(ctx, 0, input_shape);
60
80
  }));
61
81
 
62
- static const char* DequantizeLinear_ver13_doc = R"DOC(
82
+ static const char* DequantizeLinear_ver19_doc = R"DOC(
63
83
  The linear dequantization operator. It consumes a quantized tensor, a scale, and a zero point to compute the full precision tensor.
64
- The dequantization formula is y = (x - x_zero_point) * x_scale. 'x_scale' and 'x_zero_point' must have same shape, and can be either a scalar
84
+ The dequantization formula is `y = (x - x_zero_point) * x_scale`. `x_scale` and `x_zero_point` must have same shape, and can be either a scalar
65
85
  for per-tensor / per layer quantization, or a 1-D tensor for per-axis quantization.
66
- 'x_zero_point' and 'x' must have same type. 'x' and 'y' must have same shape. In the case of dequantizing int32,
86
+ `x_zero_point` and `x` must have same type. `x` and `y` must have same shape. In the case of dequantizing int32,
67
87
  there's no zero point (zero point is supposed to be 0).
88
+ `zero-point` is usually not used in the case of float8e4m3fn, float8e4m3fnuz, float8e5m2, float8e5m2fnuz quantization,
89
+ but the dequantization formula remains the same for consistency and 'x_scale' still determines the output type.
68
90
  )DOC";
69
91
 
70
92
  ONNX_OPERATOR_SET_SCHEMA(
71
93
  DequantizeLinear,
72
- 13,
94
+ 19,
73
95
  OpSchema()
74
- .Input(0, "x", "N-D quantized input tensor to be de-quantized.", "T")
96
+ .Input(0, "x", "N-D quantized input tensor to be de-quantized.", "T1")
75
97
  .Input(
76
98
  1,
77
99
  "x_scale",
78
100
  "Scale for input 'x'. It can be a scalar, which means a per-tensor/layer dequantization, "
79
101
  "or a 1-D tensor for per-axis dequantization.",
80
- "tensor(float)")
102
+ "T2")
81
103
  .Input(
82
104
  2,
83
105
  "x_zero_point",
84
106
  "Zero point for input 'x'. Shape must match x_scale. "
85
107
  "It's optional. Zero point is 0 when it's not specified.",
86
- "T",
108
+ "T1",
87
109
  OpSchema::Optional)
88
- .Output(0, "y", "N-D full precision output tensor. It has same shape as input 'x'.", "tensor(float)")
110
+ .Output(0, "y", "N-D full precision output tensor. It has same shape as input 'x'.", "T2")
89
111
  .Attr(
90
112
  "axis",
91
113
  "(Optional) The axis of the dequantizing dimension of the input tensor. Ignored for per-tensor quantization. Negative value means counting dimensions from the back. Accepted range is [-r, r-1] where r = rank(input).",
92
114
  AttributeProto::INT,
93
115
  static_cast<int64_t>(1))
94
116
  .TypeConstraint(
95
- "T",
96
- {"tensor(int8)", "tensor(uint8)", "tensor(int32)"},
97
- "Constrain 'x_zero_point' and 'x' to 8-bit/32-bit integer tensor.")
98
- .SetDoc(DequantizeLinear_ver13_doc)
117
+ "T1",
118
+ {"tensor(int8)",
119
+ "tensor(uint8)",
120
+ "tensor(int32)",
121
+ "tensor(float8e4m3fn)",
122
+ "tensor(float8e4m3fnuz)",
123
+ "tensor(float8e5m2)",
124
+ "tensor(float8e5m2fnuz)"},
125
+ "Constrain 'x_zero_point' and 'x' to 8-bit integer or float, or /32-bit integer tensor.")
126
+ .TypeConstraint(
127
+ "T2",
128
+ {"tensor(float)", "tensor(float16)", "tensor(bfloat16)"},
129
+ "'y_scale' determines the output type.")
130
+ .SetDoc(DequantizeLinear_ver19_doc)
99
131
  .TypeAndShapeInferenceFunction([](ONNX_NAMESPACE::InferenceContext& ctx) {
100
132
  auto y_type = ctx.getOutputType(0);
101
133
  // only float is supported
@@ -113,24 +145,29 @@ A Function to fuse calculation for Scale, Zero Point and FP32->8Bit convertion o
113
145
  Outputs Scale, ZeroPoint and Quantized Input for a given FP32 Input.
114
146
  Scale is calculated as:
115
147
  ```
116
- y_scale = (max(x) - min(x))/(qmax - qmin)
117
- * where qmax and qmin are max and min values for quantization range .i.e [0, 255] in case of uint8
118
- * data range is adjusted to include 0.
148
+ y_scale = (max(x) - min(x))/(qmax - qmin)
119
149
  ```
150
+
151
+ * where qmax and qmin are max and min values for quantization range .i.e [0, 255] in case of uint8
152
+ * data range is adjusted to include 0.
153
+
120
154
  Zero point is calculated as:
121
155
  ```
122
156
  intermediate_zero_point = qmin - min(x)/y_scale
123
157
  y_zero_point = cast(round(saturate(itermediate_zero_point)))
158
+ ```
159
+
124
160
  * where qmax and qmin are max and min values for quantization range .i.e [0, 255] in case of uint8
125
161
  * for saturation, it saturates to [0, 255] if it's uint8, or [-127, 127] if it's int8. Right now only uint8 is supported.
126
162
  * rounding to nearest ties to even.
127
- ```
163
+
128
164
  Data quantization formula is:
129
165
  ```
130
166
  y = saturate (round (x / y_scale) + y_zero_point)
167
+ ```
168
+
131
169
  * for saturation, it saturates to [0, 255] if it's uint8, or [-127, 127] if it's int8. Right now only uint8 is supported.
132
170
  * rounding to nearest ties to even.
133
- ```
134
171
  )DOC";
135
172
 
136
173
  ONNX_OPERATOR_SET_SCHEMA(
@@ -7,10 +7,111 @@
7
7
 
8
8
  namespace ONNX_NAMESPACE {
9
9
 
10
+ static const char* QuantizeLinear_ver13_doc = R"DOC(
11
+ The linear quantization operator. It consumes a high precision tensor, a scale, and a zero point to compute the low precision / quantized tensor.
12
+ The scale factor and zero point must have same shape, and can be either a scalar for per-tensor / per layer quantization, or a 1-D tensor for per-axis quantization.
13
+ The quantization formula is y = saturate ((x / y_scale) + y_zero_point).
14
+ For saturation, it saturates to [0, 255] if it's uint8, or [-128, 127] if it's int8.
15
+ For (x / y_scale), it's rounding to the nearest even. Refer to https://en.wikipedia.org/wiki/Rounding for details. 'y_zero_point' and 'y' must have same type.
16
+ )DOC";
17
+
18
+ ONNX_OPERATOR_SET_SCHEMA(
19
+ QuantizeLinear,
20
+ 13,
21
+ OpSchema()
22
+ .Input(0, "x", "N-D full precision Input tensor to be quantized.", "T1")
23
+ .Input(
24
+ 1,
25
+ "y_scale",
26
+ "Scale for doing quantization to get 'y'. It can be a scalar, which means per-tensor/layer quantization, "
27
+ "or a 1-D Tensor for per-axis quantization.",
28
+ "tensor(float)")
29
+ .Input(
30
+ 2,
31
+ "y_zero_point",
32
+ "Zero point for doing quantization to get 'y'. Shape must match y_scale. "
33
+ "Default is uint8 with zero point of 0 if it's not specified.",
34
+ "T2",
35
+ OpSchema::Optional)
36
+ .Output(0, "y", "N-D quantized output tensor. It has same shape as input 'x'.", "T2")
37
+ .Attr(
38
+ "axis",
39
+ "(Optional) The axis of the quantization dimension of the input tensor. Ignored for per-tensor quantization. Negative value means counting dimensions from the back. Accepted range is [-r, r-1] where r = rank(input).",
40
+ AttributeProto::INT,
41
+ static_cast<int64_t>(1))
42
+ .TypeConstraint("T1", {"tensor(float)", "tensor(int32)"}, "Constrain 'x' to float or int32 tensor.")
43
+ .TypeConstraint(
44
+ "T2",
45
+ {"tensor(int8)", "tensor(uint8)"},
46
+ "Constrain 'y_zero_point' and 'y' to 8-bit integer tensor.")
47
+ .SetDoc(QuantizeLinear_ver13_doc)
48
+ .TypeAndShapeInferenceFunction([](ONNX_NAMESPACE::InferenceContext& ctx) {
49
+ if (ctx.hasInput(2)) {
50
+ propagateElemTypeFromInputToOutput(ctx, 2, 0);
51
+ } else {
52
+ updateOutputElemType(ctx, 0, TensorProto::UINT8);
53
+ }
54
+ if (!hasInputShape(ctx, 0)) {
55
+ return;
56
+ }
57
+
58
+ auto& input_shape = getInputShape(ctx, 0);
59
+ updateOutputShape(ctx, 0, input_shape);
60
+ }));
61
+
62
+ static const char* DequantizeLinear_ver13_doc = R"DOC(
63
+ The linear dequantization operator. It consumes a quantized tensor, a scale, and a zero point to compute the full precision tensor.
64
+ The dequantization formula is `y = (x - x_zero_point) * x_scale`. `x_scale` and `x_zero_point` must have same shape, and can be either a scalar
65
+ for per-tensor / per layer quantization, or a 1-D tensor for per-axis quantization.
66
+ `x_zero_point` and `x` must have same type. `x` and `y` must have same shape. In the case of dequantizing int32,
67
+ there's no zero point (zero point is supposed to be 0).
68
+ )DOC";
69
+
70
+ ONNX_OPERATOR_SET_SCHEMA(
71
+ DequantizeLinear,
72
+ 13,
73
+ OpSchema()
74
+ .Input(0, "x", "N-D quantized input tensor to be de-quantized.", "T")
75
+ .Input(
76
+ 1,
77
+ "x_scale",
78
+ "Scale for input 'x'. It can be a scalar, which means a per-tensor/layer dequantization, "
79
+ "or a 1-D tensor for per-axis dequantization.",
80
+ "tensor(float)")
81
+ .Input(
82
+ 2,
83
+ "x_zero_point",
84
+ "Zero point for input 'x'. Shape must match x_scale. "
85
+ "It's optional. Zero point is 0 when it's not specified.",
86
+ "T",
87
+ OpSchema::Optional)
88
+ .Output(0, "y", "N-D full precision output tensor. It has same shape as input 'x'.", "tensor(float)")
89
+ .Attr(
90
+ "axis",
91
+ "(Optional) The axis of the dequantizing dimension of the input tensor. Ignored for per-tensor quantization. Negative value means counting dimensions from the back. Accepted range is [-r, r-1] where r = rank(input).",
92
+ AttributeProto::INT,
93
+ static_cast<int64_t>(1))
94
+ .TypeConstraint(
95
+ "T",
96
+ {"tensor(int8)", "tensor(uint8)", "tensor(int32)"},
97
+ "Constrain 'x_zero_point' and 'x' to 8-bit/32-bit integer tensor.")
98
+ .SetDoc(DequantizeLinear_ver13_doc)
99
+ .TypeAndShapeInferenceFunction([](ONNX_NAMESPACE::InferenceContext& ctx) {
100
+ auto y_type = ctx.getOutputType(0);
101
+ // only float is supported
102
+ y_type->mutable_tensor_type()->set_elem_type(ONNX_NAMESPACE::TensorProto::FLOAT);
103
+
104
+ if (!hasInputShape(ctx, 0))
105
+ return;
106
+
107
+ auto& input_shape = getInputShape(ctx, 0);
108
+ updateOutputShape(ctx, 0, input_shape);
109
+ }));
110
+
10
111
  static const char* QuantizeLinear_ver10_doc = R"DOC(
11
112
  The linear per-tensor/layer quantization operator. It consumes a high precision tensor, a scale, a zero point to compute the low precision / quantized tensor.
12
113
  The quantization formula is y = saturate ((x / y_scale) + y_zero_point). For saturation, it saturates to [0, 255] if it's uint8, or [-128, 127] if it's int8.
13
- For (x / y_scale), it's rounding to nearest ties to even. Refer to https://en.wikipedia.org/wiki/Rounding for details. 'y_zero_point' and 'y' must have same type.
114
+ For (x / y_scale), it's rounding to the nearest even. Refer to https://en.wikipedia.org/wiki/Rounding for details. 'y_zero_point' and 'y' must have same type.
14
115
  )DOC";
15
116
 
16
117
  ONNX_OPERATOR_SET_SCHEMA(
@@ -126,7 +126,7 @@ The type of the output tensor is integer.)DOC";
126
126
  1,
127
127
  OpSchema::NonDifferentiable);
128
128
  schema.TypeConstraint(
129
- "T", OpSchema::all_numeric_types_with_bfloat(), "Constrain input and output types to all numeric tensors.");
129
+ "T", OpSchema::all_numeric_types_ir4(), "Constrain input and output types to all numeric tensors.");
130
130
  schema.TypeAndShapeInferenceFunction([](InferenceContext& ctx) {
131
131
  // set output element type to int64
132
132
  updateOutputElemType(ctx, 0, TensorProto_DataType_INT64);
@@ -8,14 +8,14 @@
8
8
  namespace ONNX_NAMESPACE {
9
9
  std::vector<std::string> GetSupportedDataTypesForReductionOps(bool supports8bit) {
10
10
  if (supports8bit) {
11
- auto data_types = OpSchema::numeric_types_for_math_reduction_with_bfloat();
11
+ auto data_types = OpSchema::numeric_types_for_math_reduction_ir4();
12
12
  data_types.push_back("tensor(uint8)");
13
13
  data_types.push_back("tensor(int8)");
14
14
 
15
15
  return data_types;
16
16
  }
17
17
 
18
- return OpSchema::numeric_types_for_math_reduction_with_bfloat();
18
+ return OpSchema::numeric_types_for_math_reduction_ir4();
19
19
  }
20
20
 
21
21
  std::function<void(OpSchema&)> ReduceDocGenerator_opset13_18(
@@ -27,9 +27,10 @@ std::function<void(OpSchema&)> ReduceDocGenerator_opset13_18(
27
27
  return [=](OpSchema& schema) {
28
28
  std::string doc;
29
29
  POPULATE_OP_DOC_STR(doc = R"DOC(
30
- Computes the {name} of the input tensor's element along the provided axes. The resulting
30
+ Computes the {name} of the input tensor's elements along the provided axes. The resulting
31
31
  tensor has the same rank as the input if keepdims equals 1. If keepdims equals 0, then
32
- the resulting tensor has the reduced dimension pruned.
32
+ the resulting tensor has the reduced dimension pruned. Input tensors of rank zero are
33
+ valid.
33
34
 
34
35
  The above behavior is similar to numpy, with the exception that numpy defaults keepdims to
35
36
  False instead of True.)DOC";