onnx 1.13.0__cp310-cp310-win_amd64.whl → 1.14.0__cp310-cp310-win_amd64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of onnx might be problematic. Click here for more details.
- onnx/__init__.py +116 -70
- onnx/backend/__init__.py +2 -0
- onnx/backend/base.py +3 -0
- onnx/backend/sample/__init__.py +2 -0
- onnx/backend/sample/ops/__init__.py +8 -6
- onnx/backend/sample/ops/abs.py +1 -1
- onnx/backend/test/__init__.py +4 -1
- onnx/backend/test/case/__init__.py +4 -2
- onnx/backend/test/case/base.py +2 -0
- onnx/backend/test/case/model/__init__.py +8 -9
- onnx/backend/test/case/model/expand.py +4 -3
- onnx/backend/test/case/model/gradient.py +4 -3
- onnx/backend/test/case/model/sequence.py +4 -3
- onnx/backend/test/case/model/shrink.py +4 -4
- onnx/backend/test/case/model/sign.py +4 -3
- onnx/backend/test/case/model/single-relu.py +4 -4
- onnx/backend/test/case/model/stringnormalizer.py +4 -3
- onnx/backend/test/case/node/__init__.py +18 -12
- onnx/backend/test/case/node/abs.py +4 -3
- onnx/backend/test/case/node/acos.py +4 -3
- onnx/backend/test/case/node/acosh.py +4 -3
- onnx/backend/test/case/node/adagrad.py +4 -3
- onnx/backend/test/case/node/adam.py +4 -3
- onnx/backend/test/case/node/add.py +4 -3
- onnx/backend/test/case/node/ai_onnx_ml/__init__.py +0 -0
- onnx/backend/test/case/node/ai_onnx_ml/array_feature_extractor.py +30 -0
- onnx/backend/test/case/node/ai_onnx_ml/binarizer.py +27 -0
- onnx/backend/test/case/node/and.py +4 -3
- onnx/backend/test/case/node/argmax.py +6 -7
- onnx/backend/test/case/node/argmin.py +6 -7
- onnx/backend/test/case/node/asin.py +4 -3
- onnx/backend/test/case/node/asinh.py +4 -3
- onnx/backend/test/case/node/atan.py +4 -3
- onnx/backend/test/case/node/atanh.py +4 -3
- onnx/backend/test/case/node/averagepool.py +43 -4
- onnx/backend/test/case/node/batchnorm.py +4 -3
- onnx/backend/test/case/node/bernoulli.py +8 -7
- onnx/backend/test/case/node/bitshift.py +4 -3
- onnx/backend/test/case/node/bitwiseand.py +13 -11
- onnx/backend/test/case/node/bitwisenot.py +8 -6
- onnx/backend/test/case/node/bitwiseor.py +13 -11
- onnx/backend/test/case/node/bitwisexor.py +13 -11
- onnx/backend/test/case/node/blackmanwindow.py +4 -4
- onnx/backend/test/case/node/cast.py +218 -8
- onnx/backend/test/case/node/castlike.py +106 -12
- onnx/backend/test/case/node/ceil.py +4 -3
- onnx/backend/test/case/node/celu.py +4 -3
- onnx/backend/test/case/node/center_crop_pad.py +26 -3
- onnx/backend/test/case/node/clip.py +4 -3
- onnx/backend/test/case/node/col2im.py +5 -4
- onnx/backend/test/case/node/compress.py +4 -3
- onnx/backend/test/case/node/concat.py +4 -3
- onnx/backend/test/case/node/constant.py +4 -3
- onnx/backend/test/case/node/constantofshape.py +4 -3
- onnx/backend/test/case/node/conv.py +4 -6
- onnx/backend/test/case/node/convinteger.py +4 -5
- onnx/backend/test/case/node/convtranspose.py +4 -3
- onnx/backend/test/case/node/cos.py +4 -3
- onnx/backend/test/case/node/cosh.py +4 -3
- onnx/backend/test/case/node/cumsum.py +4 -3
- onnx/backend/test/case/node/deformconv.py +170 -0
- onnx/backend/test/case/node/depthtospace.py +4 -3
- onnx/backend/test/case/node/dequantizelinear.py +46 -3
- onnx/backend/test/case/node/det.py +4 -3
- onnx/backend/test/case/node/dft.py +4 -4
- onnx/backend/test/case/node/div.py +4 -3
- onnx/backend/test/case/node/dropout.py +4 -4
- onnx/backend/test/case/node/dynamicquantizelinear.py +4 -3
- onnx/backend/test/case/node/einsum.py +4 -4
- onnx/backend/test/case/node/elu.py +4 -3
- onnx/backend/test/case/node/equal.py +28 -3
- onnx/backend/test/case/node/erf.py +4 -3
- onnx/backend/test/case/node/exp.py +4 -3
- onnx/backend/test/case/node/expand.py +4 -3
- onnx/backend/test/case/node/eyelike.py +4 -3
- onnx/backend/test/case/node/flatten.py +4 -3
- onnx/backend/test/case/node/floor.py +4 -3
- onnx/backend/test/case/node/gather.py +4 -3
- onnx/backend/test/case/node/gatherelements.py +4 -3
- onnx/backend/test/case/node/gathernd.py +5 -4
- onnx/backend/test/case/node/gemm.py +4 -3
- onnx/backend/test/case/node/globalaveragepool.py +4 -4
- onnx/backend/test/case/node/globalmaxpool.py +4 -5
- onnx/backend/test/case/node/greater.py +4 -3
- onnx/backend/test/case/node/greater_equal.py +4 -3
- onnx/backend/test/case/node/gridsample.py +4 -3
- onnx/backend/test/case/node/groupnormalization.py +5 -4
- onnx/backend/test/case/node/gru.py +10 -9
- onnx/backend/test/case/node/hammingwindow.py +4 -4
- onnx/backend/test/case/node/hannwindow.py +4 -4
- onnx/backend/test/case/node/hardmax.py +4 -3
- onnx/backend/test/case/node/hardsigmoid.py +4 -3
- onnx/backend/test/case/node/hardswish.py +4 -3
- onnx/backend/test/case/node/identity.py +4 -3
- onnx/backend/test/case/node/if.py +4 -3
- onnx/backend/test/case/node/instancenorm.py +4 -3
- onnx/backend/test/case/node/isinf.py +4 -3
- onnx/backend/test/case/node/isnan.py +4 -3
- onnx/backend/test/case/node/layernormalization.py +4 -3
- onnx/backend/test/case/node/leakyrelu.py +4 -3
- onnx/backend/test/case/node/less.py +4 -3
- onnx/backend/test/case/node/less_equal.py +4 -3
- onnx/backend/test/case/node/log.py +4 -3
- onnx/backend/test/case/node/logsoftmax.py +4 -3
- onnx/backend/test/case/node/loop.py +4 -3
- onnx/backend/test/case/node/lppool.py +279 -0
- onnx/backend/test/case/node/lrn.py +4 -3
- onnx/backend/test/case/node/lstm.py +10 -9
- onnx/backend/test/case/node/matmul.py +4 -3
- onnx/backend/test/case/node/matmulinteger.py +4 -3
- onnx/backend/test/case/node/max.py +5 -4
- onnx/backend/test/case/node/maxpool.py +9 -4
- onnx/backend/test/case/node/maxunpool.py +4 -3
- onnx/backend/test/case/node/mean.py +4 -3
- onnx/backend/test/case/node/meanvariancenormalization.py +4 -3
- onnx/backend/test/case/node/melweightmatrix.py +4 -4
- onnx/backend/test/case/node/min.py +5 -4
- onnx/backend/test/case/node/mish.py +4 -3
- onnx/backend/test/case/node/mod.py +4 -3
- onnx/backend/test/case/node/momentum.py +4 -3
- onnx/backend/test/case/node/mul.py +4 -3
- onnx/backend/test/case/node/neg.py +4 -3
- onnx/backend/test/case/node/negativeloglikelihoodloss.py +4 -3
- onnx/backend/test/case/node/nonmaxsuppression.py +4 -3
- onnx/backend/test/case/node/nonzero.py +4 -3
- onnx/backend/test/case/node/not.py +4 -3
- onnx/backend/test/case/node/onehot.py +5 -4
- onnx/backend/test/case/node/optionalgetelement.py +4 -3
- onnx/backend/test/case/node/optionalhaselement.py +4 -3
- onnx/backend/test/case/node/or.py +4 -3
- onnx/backend/test/case/node/pad.py +36 -5
- onnx/backend/test/case/node/pool_op_common.py +20 -2
- onnx/backend/test/case/node/pow.py +4 -3
- onnx/backend/test/case/node/prelu.py +4 -3
- onnx/backend/test/case/node/qlinearconv.py +4 -3
- onnx/backend/test/case/node/qlinearmatmul.py +4 -3
- onnx/backend/test/case/node/quantizelinear.py +50 -3
- onnx/backend/test/case/node/rangeop.py +4 -3
- onnx/backend/test/case/node/reciprocal.py +4 -3
- onnx/backend/test/case/node/reduce_log_sum.py +4 -3
- onnx/backend/test/case/node/reduce_log_sum_exp.py +4 -3
- onnx/backend/test/case/node/reducel1.py +4 -3
- onnx/backend/test/case/node/reducel2.py +4 -3
- onnx/backend/test/case/node/reducemax.py +4 -3
- onnx/backend/test/case/node/reducemean.py +4 -3
- onnx/backend/test/case/node/reducemin.py +4 -3
- onnx/backend/test/case/node/reduceprod.py +4 -3
- onnx/backend/test/case/node/reducesum.py +4 -3
- onnx/backend/test/case/node/reducesumsquare.py +4 -3
- onnx/backend/test/case/node/relu.py +4 -3
- onnx/backend/test/case/node/reshape.py +4 -3
- onnx/backend/test/case/node/resize.py +73 -321
- onnx/backend/test/case/node/reversesequence.py +4 -3
- onnx/backend/test/case/node/rnn.py +10 -9
- onnx/backend/test/case/node/roialign.py +193 -3
- onnx/backend/test/case/node/round.py +4 -3
- onnx/backend/test/case/node/scan.py +4 -3
- onnx/backend/test/case/node/scatter.py +4 -3
- onnx/backend/test/case/node/scatterelements.py +4 -3
- onnx/backend/test/case/node/scatternd.py +4 -4
- onnx/backend/test/case/node/selu.py +4 -3
- onnx/backend/test/case/node/sequence_map.py +4 -4
- onnx/backend/test/case/node/sequenceinsert.py +4 -3
- onnx/backend/test/case/node/shape.py +4 -3
- onnx/backend/test/case/node/shrink.py +4 -3
- onnx/backend/test/case/node/sigmoid.py +4 -3
- onnx/backend/test/case/node/sign.py +4 -3
- onnx/backend/test/case/node/sin.py +4 -3
- onnx/backend/test/case/node/sinh.py +4 -3
- onnx/backend/test/case/node/size.py +4 -3
- onnx/backend/test/case/node/slice.py +4 -3
- onnx/backend/test/case/node/softmax.py +4 -3
- onnx/backend/test/case/node/softmaxcrossentropy.py +4 -3
- onnx/backend/test/case/node/softplus.py +4 -3
- onnx/backend/test/case/node/softsign.py +4 -3
- onnx/backend/test/case/node/spacetodepth.py +6 -3
- onnx/backend/test/case/node/split.py +4 -3
- onnx/backend/test/case/node/splittosequence.py +79 -0
- onnx/backend/test/case/node/sqrt.py +4 -3
- onnx/backend/test/case/node/squeeze.py +2 -0
- onnx/backend/test/case/node/stft.py +4 -4
- onnx/backend/test/case/node/stringnormalizer.py +4 -4
- onnx/backend/test/case/node/sub.py +4 -3
- onnx/backend/test/case/node/sum.py +4 -3
- onnx/backend/test/case/node/tan.py +4 -3
- onnx/backend/test/case/node/tanh.py +4 -3
- onnx/backend/test/case/node/tfidfvectorizer.py +4 -3
- onnx/backend/test/case/node/thresholdedrelu.py +4 -3
- onnx/backend/test/case/node/tile.py +4 -3
- onnx/backend/test/case/node/topk.py +4 -3
- onnx/backend/test/case/node/transpose.py +8 -7
- onnx/backend/test/case/node/trilu.py +4 -3
- onnx/backend/test/case/node/unique.py +4 -3
- onnx/backend/test/case/node/unsqueeze.py +4 -3
- onnx/backend/test/case/node/upsample.py +4 -3
- onnx/backend/test/case/node/where.py +4 -3
- onnx/backend/test/case/node/xor.py +4 -3
- onnx/backend/test/case/test_case.py +2 -0
- onnx/backend/test/case/utils.py +10 -1
- onnx/backend/test/cmd_tools.py +22 -13
- onnx/backend/test/data/light/README.md +16 -0
- onnx/backend/test/data/light/light_bvlc_alexnet.onnx +0 -0
- onnx/backend/test/data/light/light_bvlc_alexnet_output_0.pb +1 -0
- onnx/backend/test/data/light/light_densenet121.onnx +0 -0
- onnx/backend/test/data/light/light_densenet121_output_0.pb +1 -0
- onnx/backend/test/data/light/light_inception_v1.onnx +0 -0
- onnx/backend/test/data/light/light_inception_v1_output_0.pb +1 -0
- onnx/backend/test/data/light/light_inception_v2.onnx +0 -0
- onnx/backend/test/data/light/light_inception_v2_output_0.pb +1 -0
- onnx/backend/test/data/light/light_resnet50.onnx +0 -0
- onnx/backend/test/data/light/light_resnet50_output_0.pb +1 -0
- onnx/backend/test/data/light/light_shufflenet.onnx +0 -0
- onnx/backend/test/data/light/light_shufflenet_output_0.pb +1 -0
- onnx/backend/test/data/light/light_squeezenet.onnx +0 -0
- onnx/backend/test/data/light/light_squeezenet_output_0.pb +1 -0
- onnx/backend/test/data/light/light_vgg19.onnx +0 -0
- onnx/backend/test/data/light/light_vgg19_output_0.pb +1 -0
- onnx/backend/test/data/light/light_zfnet512.onnx +0 -0
- onnx/backend/test/data/light/light_zfnet512_output_0.pb +1 -0
- onnx/backend/test/data/node/test_acos/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_acosh/test_data_set_0/output_0.pb +1 -1
- onnx/backend/test/data/node/test_ai_onnx_ml_array_feature_extractor/model.onnx +19 -0
- onnx/backend/test/data/node/test_ai_onnx_ml_array_feature_extractor/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_ai_onnx_ml_array_feature_extractor/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_ai_onnx_ml_array_feature_extractor/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_ai_onnx_ml_binarizer/model.onnx +0 -0
- onnx/backend/test/data/node/test_ai_onnx_ml_binarizer/test_data_set_0/input_0.pb +1 -0
- onnx/backend/test/data/node/test_ai_onnx_ml_binarizer/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_asin/test_data_set_0/output_0.pb +1 -1
- onnx/backend/test/data/node/test_asinh/test_data_set_0/output_0.pb +1 -1
- onnx/backend/test/data/node/test_atan/test_data_set_0/output_0.pb +1 -1
- onnx/backend/test/data/node/test_atanh/test_data_set_0/output_0.pb +2 -2
- onnx/backend/test/data/node/test_averagepool_1d_default/model.onnx +0 -0
- onnx/backend/test/data/node/test_averagepool_2d_ceil/model.onnx +0 -0
- onnx/backend/test/data/node/test_averagepool_2d_default/model.onnx +0 -0
- onnx/backend/test/data/node/test_averagepool_2d_dilations/model.onnx +0 -0
- onnx/backend/test/data/node/test_averagepool_2d_dilations/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_averagepool_2d_dilations/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_averagepool_2d_pads/model.onnx +0 -0
- onnx/backend/test/data/node/test_averagepool_2d_pads_count_include_pad/model.onnx +0 -0
- onnx/backend/test/data/node/test_averagepool_2d_precomputed_pads/model.onnx +0 -0
- onnx/backend/test/data/node/test_averagepool_2d_precomputed_pads_count_include_pad/model.onnx +0 -0
- onnx/backend/test/data/node/test_averagepool_2d_precomputed_same_upper/model.onnx +0 -0
- onnx/backend/test/data/node/test_averagepool_2d_precomputed_strides/model.onnx +0 -0
- onnx/backend/test/data/node/test_averagepool_2d_same_lower/model.onnx +0 -0
- onnx/backend/test/data/node/test_averagepool_2d_same_upper/model.onnx +0 -0
- onnx/backend/test/data/node/test_averagepool_2d_strides/model.onnx +0 -0
- onnx/backend/test/data/node/test_averagepool_3d_default/model.onnx +0 -0
- onnx/backend/test/data/node/test_basic_deform_conv_with_padding/model.onnx +0 -0
- onnx/backend/test/data/node/test_basic_deform_conv_with_padding/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_basic_deform_conv_with_padding/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_basic_deform_conv_with_padding/test_data_set_0/input_2.pb +0 -0
- onnx/backend/test/data/node/test_basic_deform_conv_with_padding/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_basic_deform_conv_without_padding/model.onnx +0 -0
- onnx/backend/test/data/node/test_basic_deform_conv_without_padding/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_basic_deform_conv_without_padding/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_basic_deform_conv_without_padding/test_data_set_0/input_2.pb +0 -0
- onnx/backend/test/data/node/test_basic_deform_conv_without_padding/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_bitwise_and_i16_3d/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_bitwise_and_i16_3d/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_bitwise_and_i16_3d/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_bitwise_and_i32_2d/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_bitwise_and_i32_2d/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_bitwise_and_i32_2d/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_bitwise_and_ui64_bcast_3v1d/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_bitwise_and_ui64_bcast_3v1d/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_bitwise_and_ui64_bcast_3v1d/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_bitwise_and_ui8_bcast_4v3d/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_bitwise_and_ui8_bcast_4v3d/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_bitwise_and_ui8_bcast_4v3d/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_bitwise_not_2d/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_bitwise_not_2d/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_bitwise_not_3d/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_bitwise_not_3d/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_bitwise_not_4d/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_bitwise_not_4d/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_bitwise_or_i16_4d/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_bitwise_or_i16_4d/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_bitwise_or_i16_4d/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_bitwise_or_i32_2d/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_bitwise_or_i32_2d/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_bitwise_or_i32_2d/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_bitwise_or_ui64_bcast_3v1d/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_bitwise_or_ui64_bcast_3v1d/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_bitwise_or_ui64_bcast_3v1d/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_bitwise_or_ui8_bcast_4v3d/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_bitwise_or_ui8_bcast_4v3d/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_bitwise_or_ui8_bcast_4v3d/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_bitwise_xor_i16_3d/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_bitwise_xor_i16_3d/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_bitwise_xor_i16_3d/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_bitwise_xor_i32_2d/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_bitwise_xor_i32_2d/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_bitwise_xor_i32_2d/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_bitwise_xor_ui64_bcast_3v1d/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_bitwise_xor_ui64_bcast_3v1d/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_bitwise_xor_ui64_bcast_3v1d/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_bitwise_xor_ui8_bcast_4v3d/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_bitwise_xor_ui8_bcast_4v3d/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_bitwise_xor_ui8_bcast_4v3d/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_BFLOAT16_to_FLOAT/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_DOUBLE_to_FLOAT/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_DOUBLE_to_FLOAT16/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT16_to_DOUBLE/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT16_to_FLOAT/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT16_to_FLOAT8E4M3FN/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT16_to_FLOAT8E4M3FN/test_data_set_0/input_0.pb +2 -0
- onnx/backend/test/data/node/test_cast_FLOAT16_to_FLOAT8E4M3FN/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT16_to_FLOAT8E4M3FNUZ/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT16_to_FLOAT8E4M3FNUZ/test_data_set_0/input_0.pb +2 -0
- onnx/backend/test/data/node/test_cast_FLOAT16_to_FLOAT8E4M3FNUZ/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT16_to_FLOAT8E5M2/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT16_to_FLOAT8E5M2/test_data_set_0/input_0.pb +2 -0
- onnx/backend/test/data/node/test_cast_FLOAT16_to_FLOAT8E5M2/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT16_to_FLOAT8E5M2FNUZ/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT16_to_FLOAT8E5M2FNUZ/test_data_set_0/input_0.pb +2 -0
- onnx/backend/test/data/node/test_cast_FLOAT16_to_FLOAT8E5M2FNUZ/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT8E4M3FNUZ_to_FLOAT/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT8E4M3FNUZ_to_FLOAT/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT8E4M3FNUZ_to_FLOAT/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT8E4M3FNUZ_to_FLOAT16/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT8E4M3FNUZ_to_FLOAT16/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT8E4M3FNUZ_to_FLOAT16/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT8E4M3FN_to_FLOAT/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT8E4M3FN_to_FLOAT/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT8E4M3FN_to_FLOAT/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT8E4M3FN_to_FLOAT16/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT8E4M3FN_to_FLOAT16/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT8E4M3FN_to_FLOAT16/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT8E5M2FNUZ_to_FLOAT/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT8E5M2FNUZ_to_FLOAT/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT8E5M2FNUZ_to_FLOAT/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT8E5M2FNUZ_to_FLOAT16/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT8E5M2FNUZ_to_FLOAT16/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT8E5M2FNUZ_to_FLOAT16/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT8E5M2_to_FLOAT/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT8E5M2_to_FLOAT/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT8E5M2_to_FLOAT/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT8E5M2_to_FLOAT16/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT8E5M2_to_FLOAT16/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT8E5M2_to_FLOAT16/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT_to_BFLOAT16/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT_to_DOUBLE/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT_to_FLOAT16/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT_to_FLOAT8E4M3FN/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT_to_FLOAT8E4M3FN/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT_to_FLOAT8E4M3FN/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT_to_FLOAT8E4M3FNUZ/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT_to_FLOAT8E4M3FNUZ/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT_to_FLOAT8E4M3FNUZ/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT_to_FLOAT8E5M2/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT_to_FLOAT8E5M2/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT_to_FLOAT8E5M2/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT_to_FLOAT8E5M2FNUZ/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT_to_FLOAT8E5M2FNUZ/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT_to_FLOAT8E5M2FNUZ/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT_to_STRING/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_STRING_to_FLOAT/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_no_saturate_FLOAT16_to_FLOAT8E4M3FN/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_no_saturate_FLOAT16_to_FLOAT8E4M3FN/test_data_set_0/input_0.pb +2 -0
- onnx/backend/test/data/node/test_cast_no_saturate_FLOAT16_to_FLOAT8E4M3FN/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_no_saturate_FLOAT16_to_FLOAT8E4M3FNUZ/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_no_saturate_FLOAT16_to_FLOAT8E4M3FNUZ/test_data_set_0/input_0.pb +2 -0
- onnx/backend/test/data/node/test_cast_no_saturate_FLOAT16_to_FLOAT8E4M3FNUZ/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_no_saturate_FLOAT16_to_FLOAT8E5M2/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_no_saturate_FLOAT16_to_FLOAT8E5M2/test_data_set_0/input_0.pb +2 -0
- onnx/backend/test/data/node/test_cast_no_saturate_FLOAT16_to_FLOAT8E5M2/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_no_saturate_FLOAT16_to_FLOAT8E5M2FNUZ/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_no_saturate_FLOAT16_to_FLOAT8E5M2FNUZ/test_data_set_0/input_0.pb +2 -0
- onnx/backend/test/data/node/test_cast_no_saturate_FLOAT16_to_FLOAT8E5M2FNUZ/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_no_saturate_FLOAT_to_FLOAT8E4M3FN/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_no_saturate_FLOAT_to_FLOAT8E4M3FN/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_no_saturate_FLOAT_to_FLOAT8E4M3FN/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_no_saturate_FLOAT_to_FLOAT8E4M3FNUZ/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_no_saturate_FLOAT_to_FLOAT8E4M3FNUZ/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_no_saturate_FLOAT_to_FLOAT8E4M3FNUZ/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_no_saturate_FLOAT_to_FLOAT8E5M2/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_no_saturate_FLOAT_to_FLOAT8E5M2/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_no_saturate_FLOAT_to_FLOAT8E5M2/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_no_saturate_FLOAT_to_FLOAT8E5M2FNUZ/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_no_saturate_FLOAT_to_FLOAT8E5M2FNUZ/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_no_saturate_FLOAT_to_FLOAT8E5M2FNUZ/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_castlike_BFLOAT16_to_FLOAT/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_BFLOAT16_to_FLOAT_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_DOUBLE_to_FLOAT/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_DOUBLE_to_FLOAT16/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_DOUBLE_to_FLOAT16_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_DOUBLE_to_FLOAT_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT16_to_DOUBLE/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT16_to_DOUBLE_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT16_to_FLOAT/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT16_to_FLOAT_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT8E4M3FNUZ_to_FLOAT/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT8E4M3FNUZ_to_FLOAT/test_data_set_0/input_0.pb +1 -0
- onnx/backend/test/data/node/test_castlike_FLOAT8E4M3FNUZ_to_FLOAT/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT8E4M3FNUZ_to_FLOAT/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT8E4M3FNUZ_to_FLOAT_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT8E4M3FNUZ_to_FLOAT_expanded/test_data_set_0/input_0.pb +1 -0
- onnx/backend/test/data/node/test_castlike_FLOAT8E4M3FNUZ_to_FLOAT_expanded/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT8E4M3FNUZ_to_FLOAT_expanded/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT8E4M3FN_to_FLOAT/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT8E4M3FN_to_FLOAT/test_data_set_0/input_0.pb +1 -0
- onnx/backend/test/data/node/test_castlike_FLOAT8E4M3FN_to_FLOAT/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT8E4M3FN_to_FLOAT/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT8E4M3FN_to_FLOAT_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT8E4M3FN_to_FLOAT_expanded/test_data_set_0/input_0.pb +1 -0
- onnx/backend/test/data/node/test_castlike_FLOAT8E4M3FN_to_FLOAT_expanded/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT8E4M3FN_to_FLOAT_expanded/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT8E5M2FNUZ_to_FLOAT/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT8E5M2FNUZ_to_FLOAT/test_data_set_0/input_0.pb +1 -0
- onnx/backend/test/data/node/test_castlike_FLOAT8E5M2FNUZ_to_FLOAT/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT8E5M2FNUZ_to_FLOAT/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT8E5M2FNUZ_to_FLOAT_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT8E5M2FNUZ_to_FLOAT_expanded/test_data_set_0/input_0.pb +1 -0
- onnx/backend/test/data/node/test_castlike_FLOAT8E5M2FNUZ_to_FLOAT_expanded/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT8E5M2FNUZ_to_FLOAT_expanded/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT8E5M2_to_FLOAT/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT8E5M2_to_FLOAT/test_data_set_0/input_0.pb +1 -0
- onnx/backend/test/data/node/test_castlike_FLOAT8E5M2_to_FLOAT/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT8E5M2_to_FLOAT/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT8E5M2_to_FLOAT_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT8E5M2_to_FLOAT_expanded/test_data_set_0/input_0.pb +1 -0
- onnx/backend/test/data/node/test_castlike_FLOAT8E5M2_to_FLOAT_expanded/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT8E5M2_to_FLOAT_expanded/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT_to_BFLOAT16/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT_to_BFLOAT16_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT_to_DOUBLE/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT_to_DOUBLE_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT16/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT16_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT8E4M3FN/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT8E4M3FN/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT8E4M3FN/test_data_set_0/input_1.pb +1 -0
- onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT8E4M3FN/test_data_set_0/output_0.pb +1 -0
- onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT8E4M3FNUZ/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT8E4M3FNUZ/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT8E4M3FNUZ/test_data_set_0/input_1.pb +1 -0
- onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT8E4M3FNUZ/test_data_set_0/output_0.pb +1 -0
- onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT8E4M3FNUZ_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT8E4M3FNUZ_expanded/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT8E4M3FNUZ_expanded/test_data_set_0/input_1.pb +1 -0
- onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT8E4M3FNUZ_expanded/test_data_set_0/output_0.pb +1 -0
- onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT8E4M3FN_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT8E4M3FN_expanded/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT8E4M3FN_expanded/test_data_set_0/input_1.pb +1 -0
- onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT8E4M3FN_expanded/test_data_set_0/output_0.pb +1 -0
- onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT8E5M2/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT8E5M2/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT8E5M2/test_data_set_0/input_1.pb +1 -0
- onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT8E5M2/test_data_set_0/output_0.pb +1 -0
- onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT8E5M2FNUZ/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT8E5M2FNUZ/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT8E5M2FNUZ/test_data_set_0/input_1.pb +1 -0
- onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT8E5M2FNUZ/test_data_set_0/output_0.pb +1 -0
- onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT8E5M2FNUZ_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT8E5M2FNUZ_expanded/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT8E5M2FNUZ_expanded/test_data_set_0/input_1.pb +1 -0
- onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT8E5M2FNUZ_expanded/test_data_set_0/output_0.pb +1 -0
- onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT8E5M2_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT8E5M2_expanded/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT8E5M2_expanded/test_data_set_0/input_1.pb +1 -0
- onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT8E5M2_expanded/test_data_set_0/output_0.pb +1 -0
- onnx/backend/test/data/node/test_castlike_FLOAT_to_STRING/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT_to_STRING_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_STRING_to_FLOAT/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_STRING_to_FLOAT_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_center_crop_pad_crop_negative_axes_hwc/model.onnx +0 -0
- onnx/backend/test/data/node/test_center_crop_pad_crop_negative_axes_hwc/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_center_crop_pad_crop_negative_axes_hwc/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_center_crop_pad_crop_negative_axes_hwc/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_center_crop_pad_crop_negative_axes_hwc_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_center_crop_pad_crop_negative_axes_hwc_expanded/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_center_crop_pad_crop_negative_axes_hwc_expanded/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_center_crop_pad_crop_negative_axes_hwc_expanded/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_col2im_pads/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_constant/model.onnx +0 -0
- onnx/backend/test/data/node/test_constant_pad/model.onnx +0 -0
- onnx/backend/test/data/node/test_constant_pad_axes/model.onnx +0 -0
- onnx/backend/test/data/node/test_constant_pad_negative_axes/model.onnx +0 -0
- onnx/backend/test/data/node/test_constant_pad_negative_axes/test_data_set_0/input_0.pb +1 -0
- onnx/backend/test/data/node/test_constant_pad_negative_axes/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_constant_pad_negative_axes/test_data_set_0/input_2.pb +1 -0
- onnx/backend/test/data/node/test_constant_pad_negative_axes/test_data_set_0/input_3.pb +1 -0
- onnx/backend/test/data/node/test_constant_pad_negative_axes/test_data_set_0/output_0.pb +1 -0
- onnx/backend/test/data/node/test_cosh/test_data_set_0/output_0.pb +1 -1
- onnx/backend/test/data/node/test_cosh_example/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_deform_conv_with_mask_bias/model.onnx +0 -0
- onnx/backend/test/data/node/test_deform_conv_with_mask_bias/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_deform_conv_with_mask_bias/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_deform_conv_with_mask_bias/test_data_set_0/input_2.pb +0 -0
- onnx/backend/test/data/node/test_deform_conv_with_mask_bias/test_data_set_0/input_3.pb +0 -0
- onnx/backend/test/data/node/test_deform_conv_with_mask_bias/test_data_set_0/input_4.pb +0 -0
- onnx/backend/test/data/node/test_deform_conv_with_mask_bias/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_deform_conv_with_multiple_offset_groups/model.onnx +0 -0
- onnx/backend/test/data/node/test_deform_conv_with_multiple_offset_groups/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_deform_conv_with_multiple_offset_groups/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_deform_conv_with_multiple_offset_groups/test_data_set_0/input_2.pb +0 -0
- onnx/backend/test/data/node/test_deform_conv_with_multiple_offset_groups/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_dequantizelinear/model.onnx +0 -0
- onnx/backend/test/data/node/test_dequantizelinear_axis/model.onnx +0 -0
- onnx/backend/test/data/node/test_dequantizelinear_e4m3fn/model.onnx +0 -0
- onnx/backend/test/data/node/test_dequantizelinear_e4m3fn/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_dequantizelinear_e4m3fn/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_dequantizelinear_e4m3fn/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_dequantizelinear_e5m2/model.onnx +0 -0
- onnx/backend/test/data/node/test_dequantizelinear_e5m2/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_dequantizelinear_e5m2/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_dequantizelinear_e5m2/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_edge_pad/model.onnx +0 -0
- onnx/backend/test/data/node/test_equal/model.onnx +0 -0
- onnx/backend/test/data/node/test_equal_bcast/model.onnx +0 -0
- onnx/backend/test/data/node/test_equal_string/model.onnx +0 -0
- onnx/backend/test/data/node/test_equal_string/test_data_set_0/input_0.pb +1 -0
- onnx/backend/test/data/node/test_equal_string/test_data_set_0/input_1.pb +1 -0
- onnx/backend/test/data/node/test_equal_string/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_equal_string_broadcast/model.onnx +0 -0
- onnx/backend/test/data/node/test_equal_string_broadcast/test_data_set_0/input_0.pb +1 -0
- onnx/backend/test/data/node/test_equal_string_broadcast/test_data_set_0/input_1.pb +1 -0
- onnx/backend/test/data/node/test_equal_string_broadcast/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_identity/model.onnx +0 -0
- onnx/backend/test/data/node/test_identity_sequence/model.onnx +0 -0
- onnx/backend/test/data/node/test_lppool_1d_default/model.onnx +0 -0
- onnx/backend/test/data/node/test_lppool_1d_default/test_data_set_0/input_0.pb +1 -0
- onnx/backend/test/data/node/test_lppool_1d_default/test_data_set_0/output_0.pb +2 -0
- onnx/backend/test/data/node/test_lppool_2d_default/model.onnx +0 -0
- onnx/backend/test/data/node/test_lppool_2d_default/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_lppool_2d_default/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_lppool_2d_dilations/model.onnx +0 -0
- onnx/backend/test/data/node/test_lppool_2d_dilations/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_lppool_2d_dilations/test_data_set_0/output_0.pb +1 -0
- onnx/backend/test/data/node/test_lppool_2d_pads/model.onnx +0 -0
- onnx/backend/test/data/node/test_lppool_2d_pads/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_lppool_2d_pads/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_lppool_2d_same_lower/model.onnx +0 -0
- onnx/backend/test/data/node/test_lppool_2d_same_lower/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_lppool_2d_same_lower/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_lppool_2d_same_upper/model.onnx +0 -0
- onnx/backend/test/data/node/test_lppool_2d_same_upper/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_lppool_2d_same_upper/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_lppool_2d_strides/model.onnx +0 -0
- onnx/backend/test/data/node/test_lppool_2d_strides/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_lppool_2d_strides/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_lppool_3d_default/model.onnx +0 -0
- onnx/backend/test/data/node/test_lppool_3d_default/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_lppool_3d_default/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_mish/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_mish_expanded/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_quantizelinear/model.onnx +0 -0
- onnx/backend/test/data/node/test_quantizelinear_axis/model.onnx +0 -0
- onnx/backend/test/data/node/test_quantizelinear_e4m3fn/model.onnx +0 -0
- onnx/backend/test/data/node/test_quantizelinear_e4m3fn/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_quantizelinear_e4m3fn/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_quantizelinear_e4m3fn/test_data_set_0/input_2.pb +0 -0
- onnx/backend/test/data/node/test_quantizelinear_e4m3fn/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_quantizelinear_e5m2/model.onnx +0 -0
- onnx/backend/test/data/node/test_quantizelinear_e5m2/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_quantizelinear_e5m2/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_quantizelinear_e5m2/test_data_set_0/input_2.pb +0 -0
- onnx/backend/test/data/node/test_quantizelinear_e5m2/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_reflect_pad/model.onnx +0 -0
- onnx/backend/test/data/node/test_reshape_allowzero_reordered/model.onnx +0 -0
- onnx/backend/test/data/node/test_reshape_extended_dims/model.onnx +0 -0
- onnx/backend/test/data/node/test_reshape_negative_dim/model.onnx +0 -0
- onnx/backend/test/data/node/test_reshape_negative_extended_dims/model.onnx +0 -0
- onnx/backend/test/data/node/test_reshape_one_dim/model.onnx +0 -0
- onnx/backend/test/data/node/test_reshape_reduced_dims/model.onnx +0 -0
- onnx/backend/test/data/node/test_reshape_reordered_all_dims/model.onnx +0 -0
- onnx/backend/test/data/node/test_reshape_reordered_last_dims/model.onnx +0 -0
- onnx/backend/test/data/node/test_reshape_zero_and_negative_dim/model.onnx +0 -0
- onnx/backend/test/data/node/test_reshape_zero_dim/model.onnx +0 -0
- onnx/backend/test/data/node/test_resize_downsample_scales_cubic/model.onnx +0 -0
- onnx/backend/test/data/node/test_resize_downsample_scales_cubic_A_n0p5_exclude_outside/model.onnx +0 -0
- onnx/backend/test/data/node/test_resize_downsample_scales_cubic_align_corners/model.onnx +0 -0
- onnx/backend/test/data/node/test_resize_downsample_scales_cubic_antialias/model.onnx +0 -0
- onnx/backend/test/data/node/test_resize_downsample_scales_linear/model.onnx +0 -0
- onnx/backend/test/data/node/test_resize_downsample_scales_linear_align_corners/model.onnx +0 -0
- onnx/backend/test/data/node/test_resize_downsample_scales_linear_antialias/model.onnx +0 -0
- onnx/backend/test/data/node/test_resize_downsample_scales_linear_half_pixel_symmetric/model.onnx +0 -0
- onnx/backend/test/data/node/test_resize_downsample_scales_linear_half_pixel_symmetric/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_resize_downsample_scales_linear_half_pixel_symmetric/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_resize_downsample_scales_linear_half_pixel_symmetric/test_data_set_0/output_0.pb +1 -0
- onnx/backend/test/data/node/test_resize_downsample_scales_nearest/model.onnx +0 -0
- onnx/backend/test/data/node/test_resize_downsample_sizes_cubic/model.onnx +0 -0
- onnx/backend/test/data/node/test_resize_downsample_sizes_cubic_antialias/model.onnx +0 -0
- onnx/backend/test/data/node/test_resize_downsample_sizes_linear_antialias/model.onnx +0 -0
- onnx/backend/test/data/node/test_resize_downsample_sizes_linear_pytorch_half_pixel/model.onnx +0 -0
- onnx/backend/test/data/node/test_resize_downsample_sizes_nearest/model.onnx +0 -0
- onnx/backend/test/data/node/test_resize_downsample_sizes_nearest_not_larger/model.onnx +0 -0
- onnx/backend/test/data/node/test_resize_downsample_sizes_nearest_not_smaller/model.onnx +0 -0
- onnx/backend/test/data/node/test_resize_tf_crop_and_resize/model.onnx +0 -0
- onnx/backend/test/data/node/test_resize_tf_crop_and_resize_axes_2_3/model.onnx +0 -0
- onnx/backend/test/data/node/test_resize_tf_crop_and_resize_axes_3_2/model.onnx +0 -0
- onnx/backend/test/data/node/test_resize_upsample_scales_cubic/model.onnx +0 -0
- onnx/backend/test/data/node/test_resize_upsample_scales_cubic_A_n0p5_exclude_outside/model.onnx +0 -0
- onnx/backend/test/data/node/test_resize_upsample_scales_cubic_align_corners/model.onnx +0 -0
- onnx/backend/test/data/node/test_resize_upsample_scales_cubic_asymmetric/model.onnx +0 -0
- onnx/backend/test/data/node/test_resize_upsample_scales_linear/model.onnx +0 -0
- onnx/backend/test/data/node/test_resize_upsample_scales_linear_align_corners/model.onnx +0 -0
- onnx/backend/test/data/node/test_resize_upsample_scales_linear_half_pixel_symmetric/model.onnx +0 -0
- onnx/backend/test/data/node/test_resize_upsample_scales_linear_half_pixel_symmetric/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_resize_upsample_scales_linear_half_pixel_symmetric/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_resize_upsample_scales_linear_half_pixel_symmetric/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_resize_upsample_scales_nearest/model.onnx +0 -0
- onnx/backend/test/data/node/test_resize_upsample_scales_nearest_axes_2_3/model.onnx +0 -0
- onnx/backend/test/data/node/test_resize_upsample_scales_nearest_axes_3_2/model.onnx +0 -0
- onnx/backend/test/data/node/test_resize_upsample_sizes_cubic/model.onnx +0 -0
- onnx/backend/test/data/node/test_resize_upsample_sizes_nearest/model.onnx +0 -0
- onnx/backend/test/data/node/test_resize_upsample_sizes_nearest_axes_2_3/model.onnx +0 -0
- onnx/backend/test/data/node/test_resize_upsample_sizes_nearest_axes_3_2/model.onnx +0 -0
- onnx/backend/test/data/node/test_resize_upsample_sizes_nearest_ceil_half_pixel/model.onnx +0 -0
- onnx/backend/test/data/node/test_resize_upsample_sizes_nearest_floor_align_corners/model.onnx +0 -0
- onnx/backend/test/data/node/test_resize_upsample_sizes_nearest_not_larger/model.onnx +0 -0
- onnx/backend/test/data/node/test_resize_upsample_sizes_nearest_round_prefer_ceil_asymmetric/model.onnx +0 -0
- onnx/backend/test/data/node/test_roialign_mode_max/model.onnx +0 -0
- onnx/backend/test/data/node/test_roialign_mode_max/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_roialign_mode_max/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_roialign_mode_max/test_data_set_0/input_2.pb +0 -0
- onnx/backend/test/data/node/test_roialign_mode_max/test_data_set_0/output_0.pb +2 -0
- onnx/backend/test/data/node/test_shape/model.onnx +0 -0
- onnx/backend/test/data/node/test_shape_clip_end/model.onnx +0 -0
- onnx/backend/test/data/node/test_shape_clip_start/model.onnx +0 -0
- onnx/backend/test/data/node/test_shape_end_1/model.onnx +0 -0
- onnx/backend/test/data/node/test_shape_end_negative_1/model.onnx +0 -0
- onnx/backend/test/data/node/test_shape_example/model.onnx +0 -0
- onnx/backend/test/data/node/test_shape_start_1/model.onnx +0 -0
- onnx/backend/test/data/node/test_shape_start_1_end_2/model.onnx +0 -0
- onnx/backend/test/data/node/test_shape_start_1_end_negative_1/model.onnx +0 -0
- onnx/backend/test/data/node/test_shape_start_negative_1/model.onnx +0 -0
- onnx/backend/test/data/node/test_sinh/test_data_set_0/output_0.pb +1 -1
- onnx/backend/test/data/node/test_size/model.onnx +0 -0
- onnx/backend/test/data/node/test_size_example/model.onnx +0 -0
- onnx/backend/test/data/node/test_softplus_example_expanded_ver18/model.onnx +0 -0
- onnx/backend/test/data/node/{test_softplus_expanded → test_softplus_expanded_ver18}/model.onnx +0 -0
- onnx/backend/test/data/node/test_split_to_sequence_1/model.onnx +0 -0
- onnx/backend/test/data/node/test_split_to_sequence_1/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_split_to_sequence_1/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_split_to_sequence_1/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_split_to_sequence_2/model.onnx +0 -0
- onnx/backend/test/data/node/test_split_to_sequence_2/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_split_to_sequence_2/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_split_to_sequence_2/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_split_to_sequence_nokeepdims/model.onnx +0 -0
- onnx/backend/test/data/node/test_split_to_sequence_nokeepdims/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_split_to_sequence_nokeepdims/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_tan/test_data_set_0/output_0.pb +1 -1
- onnx/backend/test/data/node/test_wrap_pad/model.onnx +0 -0
- onnx/backend/test/data/node/test_wrap_pad/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_wrap_pad/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_wrap_pad/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/real/test_bvlc_alexnet/data.json +1 -1
- onnx/backend/test/data/real/test_densenet121/data.json +1 -1
- onnx/backend/test/data/real/test_inception_v1/data.json +1 -1
- onnx/backend/test/data/real/test_inception_v2/data.json +1 -1
- onnx/backend/test/data/real/test_resnet50/data.json +1 -1
- onnx/backend/test/data/real/test_shufflenet/data.json +1 -1
- onnx/backend/test/data/real/test_squeezenet/data.json +1 -1
- onnx/backend/test/data/real/test_vgg19/data.json +1 -1
- onnx/backend/test/data/real/test_zfnet512/data.json +1 -1
- onnx/backend/test/loader/__init__.py +3 -1
- onnx/backend/test/report/__init__.py +3 -1
- onnx/backend/test/report/base.py +2 -0
- onnx/backend/test/report/coverage.py +8 -14
- onnx/backend/test/runner/__init__.py +145 -38
- onnx/backend/test/runner/item.py +2 -0
- onnx/backend/test/stat_coverage.py +23 -26
- onnx/bin/__init__.py +2 -0
- onnx/bin/checker.py +2 -0
- onnx/checker.cc +17 -5
- onnx/checker.h +3 -3
- onnx/checker.py +22 -5
- onnx/common/array_ref.h +2 -0
- onnx/common/assertions.cc +2 -0
- onnx/common/assertions.h +2 -0
- onnx/common/common.h +2 -0
- onnx/common/constants.h +3 -3
- onnx/common/file_utils.h +3 -1
- onnx/common/graph_node_list.h +2 -0
- onnx/common/interned_strings.cc +2 -0
- onnx/common/interned_strings.h +2 -0
- onnx/common/ir.h +2 -0
- onnx/common/ir_pb_converter.cc +7 -1
- onnx/common/ir_pb_converter.h +2 -0
- onnx/common/model_helpers.cc +3 -3
- onnx/common/model_helpers.h +3 -3
- onnx/common/path.cc +0 -1
- onnx/common/path.h +0 -1
- onnx/common/platform_helpers.h +2 -0
- onnx/common/status.cc +2 -0
- onnx/common/status.h +2 -0
- onnx/common/stl_backports.h +3 -3
- onnx/common/tensor.h +24 -171
- onnx/common/version.h +3 -1
- onnx/compose.py +40 -32
- onnx/cpp2py_export.cc +268 -89
- onnx/defs/__init__.py +9 -7
- onnx/defs/attr_proto_util.cc +2 -0
- onnx/defs/attr_proto_util.h +2 -0
- onnx/defs/controlflow/defs.cc +25 -369
- onnx/defs/controlflow/old.cc +444 -0
- onnx/defs/controlflow/utils.cc +357 -0
- onnx/defs/controlflow/utils.h +21 -0
- onnx/defs/data_propagators.h +2 -0
- onnx/defs/data_type_utils.cc +6 -2
- onnx/defs/gen_doc.py +31 -45
- onnx/defs/gen_shape_inference_information.py +2 -0
- onnx/defs/generator/defs.cc +21 -19
- onnx/defs/generator/old.cc +157 -0
- onnx/defs/logical/defs.cc +17 -16
- onnx/defs/logical/old.cc +23 -0
- onnx/defs/math/defs.cc +155 -131
- onnx/defs/math/old.cc +1 -1
- onnx/defs/nn/defs.cc +135 -45
- onnx/defs/nn/old.cc +142 -9
- onnx/defs/operator_sets.h +45 -0
- onnx/defs/optional/defs.cc +8 -4
- onnx/defs/parser.cc +61 -4
- onnx/defs/parser.h +43 -31
- onnx/defs/printer.cc +7 -1
- onnx/defs/printer.h +1 -1
- onnx/defs/quantization/defs.cc +63 -26
- onnx/defs/quantization/old.cc +102 -1
- onnx/defs/reduction/defs.cc +1 -1
- onnx/defs/reduction/utils.cc +5 -4
- onnx/defs/rnn/defs.cc +95 -173
- onnx/defs/schema.cc +45 -29
- onnx/defs/schema.h +125 -15
- onnx/defs/sequence/defs.cc +11 -8
- onnx/defs/shape_inference.cc +25 -4
- onnx/defs/shape_inference.h +29 -1
- onnx/defs/tensor/defs.cc +499 -565
- onnx/defs/tensor/old.cc +777 -47
- onnx/defs/tensor/utils.cc +130 -8
- onnx/defs/tensor/utils.h +2 -0
- onnx/defs/tensor_proto_util.cc +3 -0
- onnx/defs/traditionalml/defs.cc +19 -2
- onnx/examples/Protobufs.ipynb +129 -31
- onnx/examples/check_model.ipynb +29 -21
- onnx/examples/load_model.ipynb +25 -3
- onnx/examples/make_model.ipynb +32 -23
- onnx/external_data_helper.py +8 -9
- onnx/frontend/__init__.py +2 -0
- onnx/gen_proto.py +18 -24
- onnx/helper.py +394 -107
- onnx/hub.py +189 -20
- onnx/mapping.py +33 -7
- onnx/numpy_helper.py +263 -52
- onnx/onnx-ml.proto +28 -6
- onnx/onnx-operators-ml.proto +1 -1
- onnx/onnx-operators.in.proto +1 -1
- onnx/onnx-operators.proto +1 -1
- onnx/onnx.in.proto +28 -6
- onnx/onnx.proto +28 -6
- onnx/onnx_cpp2py_export.cp310-win_amd64.pyd +0 -0
- onnx/onnx_data_pb2.pyi +2 -1
- onnx/onnx_ml_pb2.py +33 -33
- onnx/onnx_ml_pb2.pyi +12 -2
- onnx/onnx_operators_ml_pb2.pyi +2 -1
- onnx/parser.py +29 -13
- onnx/printer.py +6 -4
- onnx/proto_utils.h +3 -3
- onnx/py_utils.h +3 -3
- onnx/reference/__init__.py +2 -0
- onnx/reference/custom_element_types.py +11 -0
- onnx/reference/op_run.py +84 -8
- onnx/reference/ops/__init__.py +5 -1
- onnx/reference/ops/_helpers.py +55 -0
- onnx/reference/ops/_op.py +18 -11
- onnx/reference/ops/_op_common_indices.py +2 -0
- onnx/reference/ops/_op_common_pool.py +4 -10
- onnx/reference/ops/_op_common_random.py +2 -0
- onnx/reference/ops/_op_common_window.py +2 -0
- onnx/reference/ops/_op_list.py +208 -214
- onnx/reference/ops/aionnx_preview_training/__init__.py +4 -2
- onnx/reference/ops/aionnx_preview_training/_op_list.py +15 -38
- onnx/reference/ops/aionnx_preview_training/_op_run_training.py +2 -0
- onnx/reference/ops/aionnx_preview_training/op_adagrad.py +3 -1
- onnx/reference/ops/aionnx_preview_training/op_adam.py +3 -1
- onnx/reference/ops/aionnx_preview_training/op_momentum.py +3 -1
- onnx/reference/ops/aionnxml/__init__.py +3 -0
- onnx/reference/ops/aionnxml/_common_classifier.py +81 -0
- onnx/reference/ops/aionnxml/_op_list.py +97 -0
- onnx/reference/ops/aionnxml/_op_run_aionnxml.py +8 -0
- onnx/reference/ops/aionnxml/op_array_feature_extractor.py +50 -0
- onnx/reference/ops/aionnxml/op_binarizer.py +15 -0
- onnx/reference/ops/aionnxml/op_dict_vectorizer.py +56 -0
- onnx/reference/ops/aionnxml/op_feature_vectorizer.py +30 -0
- onnx/reference/ops/aionnxml/op_imputer.py +47 -0
- onnx/reference/ops/aionnxml/op_label_encoder.py +52 -0
- onnx/reference/ops/aionnxml/op_linear_classifier.py +99 -0
- onnx/reference/ops/aionnxml/op_linear_regressor.py +26 -0
- onnx/reference/ops/aionnxml/op_normalizer.py +41 -0
- onnx/reference/ops/aionnxml/op_one_hot_encoder.py +55 -0
- onnx/reference/ops/aionnxml/op_scaler.py +12 -0
- onnx/reference/ops/aionnxml/op_svm_classifier.py +334 -0
- onnx/reference/ops/aionnxml/op_svm_helper.py +99 -0
- onnx/reference/ops/aionnxml/op_svm_regressor.py +45 -0
- onnx/reference/ops/aionnxml/op_tree_ensemble_classifier.py +132 -0
- onnx/reference/ops/aionnxml/op_tree_ensemble_helper.py +109 -0
- onnx/reference/ops/aionnxml/op_tree_ensemble_regressor.py +105 -0
- onnx/reference/ops/experimental/__init__.py +3 -1
- onnx/reference/ops/experimental/_op_list.py +15 -36
- onnx/reference/ops/experimental/_op_run_experimental.py +2 -0
- onnx/reference/ops/experimental/op_im2col.py +3 -2
- onnx/reference/ops/op_abs.py +3 -1
- onnx/reference/ops/op_acos.py +3 -1
- onnx/reference/ops/op_acosh.py +3 -1
- onnx/reference/ops/op_add.py +3 -1
- onnx/reference/ops/op_and.py +3 -1
- onnx/reference/ops/op_argmax.py +4 -9
- onnx/reference/ops/op_argmin.py +4 -9
- onnx/reference/ops/op_asin.py +3 -1
- onnx/reference/ops/op_asinh.py +3 -1
- onnx/reference/ops/op_atan.py +3 -1
- onnx/reference/ops/op_atanh.py +3 -1
- onnx/reference/ops/op_attribute_has_value.py +2 -0
- onnx/reference/ops/op_average_pool.py +80 -2
- onnx/reference/ops/op_batch_normalization.py +14 -11
- onnx/reference/ops/op_bernoulli.py +3 -2
- onnx/reference/ops/op_bitshift.py +3 -1
- onnx/reference/ops/op_bitwise_and.py +3 -1
- onnx/reference/ops/op_bitwise_not.py +3 -1
- onnx/reference/ops/op_bitwise_or.py +3 -1
- onnx/reference/ops/op_bitwise_xor.py +3 -1
- onnx/reference/ops/op_blackman_window.py +3 -1
- onnx/reference/ops/op_cast.py +91 -10
- onnx/reference/ops/op_cast_like.py +32 -7
- onnx/reference/ops/op_ceil.py +3 -1
- onnx/reference/ops/op_celu.py +3 -1
- onnx/reference/ops/op_center_crop_pad.py +7 -3
- onnx/reference/ops/op_clip.py +2 -7
- onnx/reference/ops/op_col2im.py +3 -4
- onnx/reference/ops/op_compress.py +2 -0
- onnx/reference/ops/op_concat.py +6 -5
- onnx/reference/ops/op_concat_from_sequence.py +2 -0
- onnx/reference/ops/op_constant.py +46 -35
- onnx/reference/ops/op_constant_of_shape.py +4 -0
- onnx/reference/ops/op_conv.py +62 -39
- onnx/reference/ops/op_conv_integer.py +3 -2
- onnx/reference/ops/op_conv_transpose.py +4 -4
- onnx/reference/ops/op_cos.py +3 -1
- onnx/reference/ops/op_cosh.py +3 -1
- onnx/reference/ops/op_cum_sum.py +2 -0
- onnx/reference/ops/op_deform_conv.py +178 -0
- onnx/reference/ops/op_depth_to_space.py +2 -0
- onnx/reference/ops/op_dequantize_linear.py +72 -21
- onnx/reference/ops/op_det.py +3 -4
- onnx/reference/ops/op_dft.py +2 -0
- onnx/reference/ops/op_div.py +3 -1
- onnx/reference/ops/op_dropout.py +2 -7
- onnx/reference/ops/op_dynamic_quantize_linear.py +2 -0
- onnx/reference/ops/op_einsum.py +2 -0
- onnx/reference/ops/op_elu.py +4 -2
- onnx/reference/ops/op_equal.py +3 -1
- onnx/reference/ops/op_erf.py +3 -1
- onnx/reference/ops/op_exp.py +4 -2
- onnx/reference/ops/op_expand.py +2 -0
- onnx/reference/ops/op_eyelike.py +9 -4
- onnx/reference/ops/op_flatten.py +3 -1
- onnx/reference/ops/op_floor.py +3 -1
- onnx/reference/ops/op_gather.py +2 -0
- onnx/reference/ops/op_gather_elements.py +2 -0
- onnx/reference/ops/op_gathernd.py +3 -1
- onnx/reference/ops/op_gemm.py +5 -10
- onnx/reference/ops/op_global_average_pool.py +6 -5
- onnx/reference/ops/op_global_max_pool.py +2 -0
- onnx/reference/ops/op_greater.py +3 -1
- onnx/reference/ops/op_greater_or_equal.py +3 -1
- onnx/reference/ops/op_grid_sample.py +3 -1
- onnx/reference/ops/op_gru.py +4 -1
- onnx/reference/ops/op_hamming_window.py +3 -1
- onnx/reference/ops/op_hann_window.py +3 -1
- onnx/reference/ops/op_hard_sigmoid.py +3 -1
- onnx/reference/ops/op_hardmax.py +3 -1
- onnx/reference/ops/op_identity.py +3 -1
- onnx/reference/ops/op_if.py +16 -8
- onnx/reference/ops/op_instance_normalization.py +2 -0
- onnx/reference/ops/op_isinf.py +2 -0
- onnx/reference/ops/op_isnan.py +3 -1
- onnx/reference/ops/op_layer_normalization.py +2 -0
- onnx/reference/ops/op_leaky_relu.py +4 -2
- onnx/reference/ops/op_less.py +3 -1
- onnx/reference/ops/op_less_or_equal.py +3 -1
- onnx/reference/ops/op_log.py +4 -2
- onnx/reference/ops/op_log_softmax.py +3 -1
- onnx/reference/ops/op_loop.py +4 -2
- onnx/reference/ops/op_lp_normalization.py +4 -2
- onnx/reference/ops/op_lp_pool.py +41 -0
- onnx/reference/ops/op_lrn.py +9 -5
- onnx/reference/ops/op_lstm.py +4 -2
- onnx/reference/ops/op_matmul.py +3 -1
- onnx/reference/ops/op_matmul_integer.py +2 -0
- onnx/reference/ops/op_max.py +3 -1
- onnx/reference/ops/op_max_pool.py +3 -4
- onnx/reference/ops/op_max_unpool.py +2 -1
- onnx/reference/ops/op_mean.py +3 -1
- onnx/reference/ops/op_mel_weight_matrix.py +2 -0
- onnx/reference/ops/op_min.py +3 -1
- onnx/reference/ops/op_mod.py +2 -0
- onnx/reference/ops/op_mul.py +3 -1
- onnx/reference/ops/op_neg.py +3 -1
- onnx/reference/ops/op_negative_log_likelihood_loss.py +3 -1
- onnx/reference/ops/op_non_max_suppression.py +22 -20
- onnx/reference/ops/op_non_zero.py +4 -1
- onnx/reference/ops/op_not.py +3 -1
- onnx/reference/ops/op_one_hot.py +3 -1
- onnx/reference/ops/op_optional.py +2 -0
- onnx/reference/ops/op_optional_get_element.py +4 -8
- onnx/reference/ops/op_optional_has_element.py +3 -9
- onnx/reference/ops/op_or.py +3 -1
- onnx/reference/ops/op_pad.py +18 -29
- onnx/reference/ops/op_pow.py +2 -0
- onnx/reference/ops/op_prelu.py +4 -2
- onnx/reference/ops/op_qlinear_conv.py +3 -2
- onnx/reference/ops/op_qlinear_matmul.py +2 -0
- onnx/reference/ops/op_quantize_linear.py +100 -15
- onnx/reference/ops/op_random_normal.py +3 -1
- onnx/reference/ops/op_random_normal_like.py +3 -2
- onnx/reference/ops/op_random_uniform.py +3 -1
- onnx/reference/ops/op_random_uniform_like.py +3 -2
- onnx/reference/ops/op_range.py +2 -0
- onnx/reference/ops/op_reciprocal.py +4 -2
- onnx/reference/ops/op_reduce_l1.py +17 -31
- onnx/reference/ops/op_reduce_l2.py +17 -35
- onnx/reference/ops/op_reduce_log_sum.py +6 -29
- onnx/reference/ops/op_reduce_log_sum_exp.py +6 -29
- onnx/reference/ops/op_reduce_max.py +15 -36
- onnx/reference/ops/op_reduce_mean.py +15 -33
- onnx/reference/ops/op_reduce_min.py +15 -32
- onnx/reference/ops/op_reduce_prod.py +15 -29
- onnx/reference/ops/op_reduce_sum.py +17 -45
- onnx/reference/ops/op_reduce_sum_square.py +15 -29
- onnx/reference/ops/op_relu.py +3 -1
- onnx/reference/ops/op_reshape.py +2 -8
- onnx/reference/ops/op_resize.py +59 -28
- onnx/reference/ops/op_reverse_sequence.py +2 -0
- onnx/reference/ops/op_rnn.py +3 -9
- onnx/reference/ops/op_roi_align.py +7 -5
- onnx/reference/ops/op_round.py +4 -2
- onnx/reference/ops/op_scan.py +4 -1
- onnx/reference/ops/op_scatter_elements.py +17 -4
- onnx/reference/ops/op_scatternd.py +2 -0
- onnx/reference/ops/op_selu.py +5 -1
- onnx/reference/ops/op_sequence_at.py +2 -0
- onnx/reference/ops/op_sequence_construct.py +2 -0
- onnx/reference/ops/op_sequence_empty.py +2 -0
- onnx/reference/ops/op_sequence_erase.py +2 -0
- onnx/reference/ops/op_sequence_insert.py +4 -2
- onnx/reference/ops/op_sequence_length.py +7 -1
- onnx/reference/ops/op_sequence_map.py +4 -2
- onnx/reference/ops/op_shape.py +2 -7
- onnx/reference/ops/op_shrink.py +3 -1
- onnx/reference/ops/op_sigmoid.py +7 -1
- onnx/reference/ops/op_sign.py +3 -1
- onnx/reference/ops/op_sin.py +3 -1
- onnx/reference/ops/op_sinh.py +3 -1
- onnx/reference/ops/op_size.py +2 -0
- onnx/reference/ops/op_slice.py +3 -9
- onnx/reference/ops/op_softmax.py +4 -2
- onnx/reference/ops/op_softmax_cross_entropy_loss.py +4 -1
- onnx/reference/ops/op_softplus.py +4 -2
- onnx/reference/ops/op_softsign.py +3 -1
- onnx/reference/ops/op_space_to_depth.py +3 -1
- onnx/reference/ops/op_split.py +7 -9
- onnx/reference/ops/op_split_to_sequence.py +41 -10
- onnx/reference/ops/op_sqrt.py +4 -2
- onnx/reference/ops/op_squeeze.py +3 -12
- onnx/reference/ops/op_stft.py +8 -7
- onnx/reference/ops/op_string_normalizer.py +3 -1
- onnx/reference/ops/op_sub.py +3 -1
- onnx/reference/ops/op_sum.py +3 -1
- onnx/reference/ops/op_tan.py +3 -1
- onnx/reference/ops/op_tanh.py +3 -1
- onnx/reference/ops/op_tfidf_vectorizer.py +15 -15
- onnx/reference/ops/op_thresholded_relu.py +4 -2
- onnx/reference/ops/op_tile.py +2 -0
- onnx/reference/ops/op_topk.py +12 -19
- onnx/reference/ops/op_transpose.py +2 -0
- onnx/reference/ops/op_trilu.py +3 -1
- onnx/reference/ops/op_unique.py +2 -0
- onnx/reference/ops/op_unsqueeze.py +2 -9
- onnx/reference/ops/op_upsample.py +9 -8
- onnx/reference/ops/op_where.py +7 -1
- onnx/reference/ops/op_xor.py +3 -1
- onnx/reference/reference_evaluator.py +64 -20
- onnx/shape_inference/implementation.cc +207 -30
- onnx/shape_inference/implementation.h +15 -4
- onnx/shape_inference.py +37 -12
- onnx/string_utils.h +3 -3
- onnx/test/cpp/common_path_test.cc +2 -0
- onnx/test/cpp/data_propagation_test.cc +2 -0
- onnx/test/cpp/function_context_test.cc +2 -0
- onnx/test/cpp/function_get_test.cc +2 -0
- onnx/test/cpp/function_verify_test.cc +176 -0
- onnx/test/cpp/op_reg_test.cc +2 -0
- onnx/test/cpp/parser_test.cc +65 -1
- onnx/test/cpp/schema_registration_test.cc +2 -0
- onnx/test/cpp/shape_inference_test.cc +2 -0
- onnx/test/cpp/test_main.cc +2 -0
- onnx/tools/__init__.py +2 -0
- onnx/tools/net_drawer.py +13 -9
- onnx/tools/replace_constants.py +429 -0
- onnx/tools/update_model_dims.py +7 -9
- onnx/utils.py +16 -6
- onnx/version.py +2 -2
- onnx/version_converter/BaseConverter.h +2 -0
- onnx/version_converter/adapters/adapter.h +2 -0
- onnx/version_converter/adapters/axes_attribute_to_input.h +2 -0
- onnx/version_converter/adapters/axes_input_to_attribute.h +2 -0
- onnx/version_converter/adapters/batch_normalization_13_14.h +2 -0
- onnx/version_converter/adapters/broadcast_backward_compatibility.h +2 -0
- onnx/version_converter/adapters/broadcast_forward_compatibility.h +2 -0
- onnx/version_converter/adapters/cast_9_8.h +2 -0
- onnx/version_converter/adapters/clip_10_11.h +2 -0
- onnx/version_converter/adapters/compatible.h +2 -0
- onnx/version_converter/adapters/dropout_11_12.h +2 -0
- onnx/version_converter/adapters/extend_supported_types.h +2 -0
- onnx/version_converter/adapters/gemm_6_7.h +2 -0
- onnx/version_converter/adapters/gemm_7_6.h +2 -0
- onnx/version_converter/adapters/maxpool_8_7.h +2 -0
- onnx/version_converter/adapters/no_previous_version.h +2 -0
- onnx/version_converter/adapters/pad_10_11.h +4 -0
- onnx/version_converter/adapters/remove_consumed_inputs.h +2 -0
- onnx/version_converter/adapters/reshape_4_5.h +2 -0
- onnx/version_converter/adapters/reshape_5_4.h +2 -0
- onnx/version_converter/adapters/resize_10_11.h +2 -0
- onnx/version_converter/adapters/scan_8_9.h +2 -0
- onnx/version_converter/adapters/scan_9_8.h +2 -0
- onnx/version_converter/adapters/scatter_10_11.h +2 -0
- onnx/version_converter/adapters/slice_9_10.h +2 -0
- onnx/version_converter/adapters/softmax_12_13.h +20 -28
- onnx/version_converter/adapters/split_12_13.h +2 -0
- onnx/version_converter/adapters/split_13_12.h +2 -0
- onnx/version_converter/adapters/split_17_18.h +2 -0
- onnx/version_converter/adapters/sum_8_7.h +2 -0
- onnx/version_converter/adapters/topk_9_10.h +2 -0
- onnx/version_converter/adapters/transformers.h +3 -1
- onnx/version_converter/adapters/type_restriction.h +2 -0
- onnx/version_converter/adapters/upsample_6_7.h +2 -0
- onnx/version_converter/adapters/upsample_8_9.h +2 -0
- onnx/version_converter/adapters/upsample_9_10.h +2 -0
- onnx/version_converter/adapters/upsample_9_8.h +2 -0
- onnx/version_converter/convert.cc +14 -7
- onnx/version_converter/convert.h +20 -0
- onnx/version_converter/helper.cc +3 -3
- onnx/version_converter/helper.h +3 -3
- onnx/version_converter.py +6 -3
- {onnx-1.13.0.dist-info → onnx-1.14.0.dist-info}/METADATA +95 -51
- {onnx-1.13.0.dist-info → onnx-1.14.0.dist-info}/RECORD +1056 -743
- {onnx-1.13.0.dist-info → onnx-1.14.0.dist-info}/WHEEL +1 -1
- onnx/backend/test/data/node/test_softplus_example_expanded/model.onnx +0 -0
- /onnx/backend/test/data/node/{test_softplus_example_expanded → test_softplus_example_expanded_ver18}/test_data_set_0/input_0.pb +0 -0
- /onnx/backend/test/data/node/{test_softplus_example_expanded → test_softplus_example_expanded_ver18}/test_data_set_0/output_0.pb +0 -0
- /onnx/backend/test/data/node/{test_softplus_expanded → test_softplus_expanded_ver18}/test_data_set_0/input_0.pb +0 -0
- /onnx/backend/test/data/node/{test_softplus_expanded → test_softplus_expanded_ver18}/test_data_set_0/output_0.pb +0 -0
- {onnx-1.13.0.dist-info → onnx-1.14.0.dist-info}/LICENSE +0 -0
- {onnx-1.13.0.dist-info → onnx-1.14.0.dist-info}/entry_points.txt +0 -0
- {onnx-1.13.0.dist-info → onnx-1.14.0.dist-info}/top_level.txt +0 -0
onnx/defs/parser.h
CHANGED
|
@@ -72,22 +72,26 @@ class StringIntMap {
|
|
|
72
72
|
class PrimitiveTypeNameMap : public StringIntMap<PrimitiveTypeNameMap> {
|
|
73
73
|
public:
|
|
74
74
|
PrimitiveTypeNameMap() : StringIntMap() {
|
|
75
|
-
map_["float"] =
|
|
76
|
-
map_["uint8"] =
|
|
77
|
-
map_["int8"] =
|
|
78
|
-
map_["uint16"] =
|
|
79
|
-
map_["int16"] =
|
|
80
|
-
map_["int32"] =
|
|
81
|
-
map_["int64"] =
|
|
82
|
-
map_["string"] =
|
|
83
|
-
map_["bool"] =
|
|
84
|
-
map_["float16"] =
|
|
85
|
-
map_["double"] =
|
|
86
|
-
map_["uint32"] =
|
|
87
|
-
map_["uint64"] =
|
|
88
|
-
map_["complex64"] =
|
|
89
|
-
map_["complex128"] =
|
|
90
|
-
map_["bfloat16"] =
|
|
75
|
+
map_["float"] = TensorProto_DataType_FLOAT;
|
|
76
|
+
map_["uint8"] = TensorProto_DataType_UINT8;
|
|
77
|
+
map_["int8"] = TensorProto_DataType_INT8;
|
|
78
|
+
map_["uint16"] = TensorProto_DataType_UINT16;
|
|
79
|
+
map_["int16"] = TensorProto_DataType_INT16;
|
|
80
|
+
map_["int32"] = TensorProto_DataType_INT32;
|
|
81
|
+
map_["int64"] = TensorProto_DataType_INT64;
|
|
82
|
+
map_["string"] = TensorProto_DataType_STRING;
|
|
83
|
+
map_["bool"] = TensorProto_DataType_BOOL;
|
|
84
|
+
map_["float16"] = TensorProto_DataType_FLOAT16;
|
|
85
|
+
map_["double"] = TensorProto_DataType_DOUBLE;
|
|
86
|
+
map_["uint32"] = TensorProto_DataType_UINT32;
|
|
87
|
+
map_["uint64"] = TensorProto_DataType_UINT64;
|
|
88
|
+
map_["complex64"] = TensorProto_DataType_COMPLEX64;
|
|
89
|
+
map_["complex128"] = TensorProto_DataType_COMPLEX128;
|
|
90
|
+
map_["bfloat16"] = TensorProto_DataType_BFLOAT16;
|
|
91
|
+
map_["float8e4m3fn"] = TensorProto_DataType_FLOAT8E4M3FN;
|
|
92
|
+
map_["float8e4m3fnuz"] = TensorProto_DataType_FLOAT8E4M3FNUZ;
|
|
93
|
+
map_["float8e5m2"] = TensorProto_DataType_FLOAT8E5M2;
|
|
94
|
+
map_["float8e5m2fnuz"] = TensorProto_DataType_FLOAT8E5M2FNUZ;
|
|
91
95
|
}
|
|
92
96
|
|
|
93
97
|
static bool IsTypeName(const std::string& dtype) {
|
|
@@ -98,20 +102,20 @@ class PrimitiveTypeNameMap : public StringIntMap<PrimitiveTypeNameMap> {
|
|
|
98
102
|
class AttributeTypeNameMap : public StringIntMap<AttributeTypeNameMap> {
|
|
99
103
|
public:
|
|
100
104
|
AttributeTypeNameMap() : StringIntMap() {
|
|
101
|
-
map_["float"] =
|
|
102
|
-
map_["int"] =
|
|
103
|
-
map_["string"] =
|
|
104
|
-
map_["tensor"] =
|
|
105
|
-
map_["graph"] =
|
|
106
|
-
map_["sparse_tensor"] =
|
|
107
|
-
map_["type_proto"] =
|
|
108
|
-
map_["floats"] =
|
|
109
|
-
map_["ints"] =
|
|
110
|
-
map_["strings"] =
|
|
111
|
-
map_["tensors"] =
|
|
112
|
-
map_["graphs"] =
|
|
113
|
-
map_["sparse_tensors"] =
|
|
114
|
-
map_["type_protos"] =
|
|
105
|
+
map_["float"] = AttributeProto_AttributeType_FLOAT;
|
|
106
|
+
map_["int"] = AttributeProto_AttributeType_INT;
|
|
107
|
+
map_["string"] = AttributeProto_AttributeType_STRING;
|
|
108
|
+
map_["tensor"] = AttributeProto_AttributeType_TENSOR;
|
|
109
|
+
map_["graph"] = AttributeProto_AttributeType_GRAPH;
|
|
110
|
+
map_["sparse_tensor"] = AttributeProto_AttributeType_SPARSE_TENSOR;
|
|
111
|
+
map_["type_proto"] = AttributeProto_AttributeType_TYPE_PROTO;
|
|
112
|
+
map_["floats"] = AttributeProto_AttributeType_FLOATS;
|
|
113
|
+
map_["ints"] = AttributeProto_AttributeType_INTS;
|
|
114
|
+
map_["strings"] = AttributeProto_AttributeType_STRINGS;
|
|
115
|
+
map_["tensors"] = AttributeProto_AttributeType_TENSORS;
|
|
116
|
+
map_["graphs"] = AttributeProto_AttributeType_GRAPHS;
|
|
117
|
+
map_["sparse_tensors"] = AttributeProto_AttributeType_SPARSE_TENSORS;
|
|
118
|
+
map_["type_protos"] = AttributeProto_AttributeType_TYPE_PROTOS;
|
|
115
119
|
}
|
|
116
120
|
};
|
|
117
121
|
|
|
@@ -386,6 +390,8 @@ class OnnxParser : public ParserBase {
|
|
|
386
390
|
|
|
387
391
|
Status Parse(AttributeProto& attr);
|
|
388
392
|
|
|
393
|
+
Status Parse(AttributeProto& attr, std::string& name);
|
|
394
|
+
|
|
389
395
|
Status Parse(AttrList& attrlist);
|
|
390
396
|
|
|
391
397
|
Status Parse(NodeProto& node);
|
|
@@ -411,6 +417,10 @@ class OnnxParser : public ParserBase {
|
|
|
411
417
|
|
|
412
418
|
Status Parse(char open, IdList& idlist, char close);
|
|
413
419
|
|
|
420
|
+
Status Parse(IdList& idlist, AttrList& attrlist);
|
|
421
|
+
|
|
422
|
+
Status Parse(char open, IdList& idlist, AttrList& attrlist, char close);
|
|
423
|
+
|
|
414
424
|
Status ParseSingleAttributeValue(AttributeProto& attr);
|
|
415
425
|
|
|
416
426
|
Status Parse(ValueInfoProto& valueinfo);
|
|
@@ -426,6 +436,8 @@ class OnnxParser : public ParserBase {
|
|
|
426
436
|
Status Parse(OpsetIdList& opsets);
|
|
427
437
|
|
|
428
438
|
bool NextIsType();
|
|
439
|
+
|
|
440
|
+
bool NextIsIdentifier();
|
|
429
441
|
};
|
|
430
442
|
|
|
431
|
-
} // namespace ONNX_NAMESPACE
|
|
443
|
+
} // namespace ONNX_NAMESPACE
|
onnx/defs/printer.cc
CHANGED
|
@@ -307,6 +307,12 @@ void ProtoPrinter::print(const AttributeProto& attr) {
|
|
|
307
307
|
case AttributeProto_AttributeType_TENSORS:
|
|
308
308
|
printSet("[", ", ", "]", attr.tensors());
|
|
309
309
|
break;
|
|
310
|
+
case AttributeProto_AttributeType_TYPE_PROTO:
|
|
311
|
+
print(attr.tp());
|
|
312
|
+
break;
|
|
313
|
+
case AttributeProto_AttributeType_TYPE_PROTOS:
|
|
314
|
+
printSet("[", ", ", "]", attr.type_protos());
|
|
315
|
+
break;
|
|
310
316
|
default:
|
|
311
317
|
break;
|
|
312
318
|
}
|
|
@@ -436,4 +442,4 @@ DEF_OP(FunctionProto)
|
|
|
436
442
|
|
|
437
443
|
DEF_OP(ModelProto)
|
|
438
444
|
|
|
439
|
-
} // namespace ONNX_NAMESPACE
|
|
445
|
+
} // namespace ONNX_NAMESPACE
|
onnx/defs/printer.h
CHANGED
onnx/defs/quantization/defs.cc
CHANGED
|
@@ -7,17 +7,21 @@
|
|
|
7
7
|
|
|
8
8
|
namespace ONNX_NAMESPACE {
|
|
9
9
|
|
|
10
|
-
static const char*
|
|
10
|
+
static const char* QuantizeLinear_ver19_doc = R"DOC(
|
|
11
11
|
The linear quantization operator. It consumes a high precision tensor, a scale, and a zero point to compute the low precision / quantized tensor.
|
|
12
12
|
The scale factor and zero point must have same shape, and can be either a scalar for per-tensor / per layer quantization, or a 1-D tensor for per-axis quantization.
|
|
13
|
-
The quantization formula is y = saturate ((x / y_scale) + y_zero_point)
|
|
13
|
+
The quantization formula is `y = saturate ((x / y_scale) + y_zero_point)`.
|
|
14
14
|
For saturation, it saturates to [0, 255] if it's uint8, or [-128, 127] if it's int8.
|
|
15
|
-
For (x / y_scale), it's rounding to nearest
|
|
15
|
+
For (x / y_scale), it's rounding to the nearest even. Refer to https://en.wikipedia.org/wiki/Rounding for details.
|
|
16
|
+
'y_zero_point' and 'y' must have same type.
|
|
17
|
+
'y_zero_point' is usually not used for quantization to float8e4m3fn, float8e4m3fnuz, float8e5m2, float8e5m2fnuz,
|
|
18
|
+
but the quantization formula remains the same for consistency and
|
|
19
|
+
the type of the attribute 'y_zero_point' still determines the quantization type.
|
|
16
20
|
)DOC";
|
|
17
21
|
|
|
18
22
|
ONNX_OPERATOR_SET_SCHEMA(
|
|
19
23
|
QuantizeLinear,
|
|
20
|
-
|
|
24
|
+
19,
|
|
21
25
|
OpSchema()
|
|
22
26
|
.Input(0, "x", "N-D full precision Input tensor to be quantized.", "T1")
|
|
23
27
|
.Input(
|
|
@@ -25,7 +29,7 @@ ONNX_OPERATOR_SET_SCHEMA(
|
|
|
25
29
|
"y_scale",
|
|
26
30
|
"Scale for doing quantization to get 'y'. It can be a scalar, which means per-tensor/layer quantization, "
|
|
27
31
|
"or a 1-D Tensor for per-axis quantization.",
|
|
28
|
-
"
|
|
32
|
+
"T1")
|
|
29
33
|
.Input(
|
|
30
34
|
2,
|
|
31
35
|
"y_zero_point",
|
|
@@ -39,12 +43,28 @@ ONNX_OPERATOR_SET_SCHEMA(
|
|
|
39
43
|
"(Optional) The axis of the quantization dimension of the input tensor. Ignored for per-tensor quantization. Negative value means counting dimensions from the back. Accepted range is [-r, r-1] where r = rank(input).",
|
|
40
44
|
AttributeProto::INT,
|
|
41
45
|
static_cast<int64_t>(1))
|
|
42
|
-
.
|
|
46
|
+
.Attr(
|
|
47
|
+
"saturate",
|
|
48
|
+
"The parameter defines how the conversion behaves if an input value is out of "
|
|
49
|
+
"range of the destination type. It only applies for float 8 quantization "
|
|
50
|
+
"(float8e4m3fn, float8e4m3fnuz, float8e5m2, float8e5m2fnuz). It is true by default. "
|
|
51
|
+
"All cases are fully described in two tables inserted in the operator description.",
|
|
52
|
+
AttributeProto::INT,
|
|
53
|
+
static_cast<int64_t>(1))
|
|
54
|
+
.TypeConstraint(
|
|
55
|
+
"T1",
|
|
56
|
+
{"tensor(float)", "tensor(float16)", "tensor(bfloat16)", "tensor(int32)"},
|
|
57
|
+
"Constrain 'x' to float, float16, bfloat16 or int32 tensor.")
|
|
43
58
|
.TypeConstraint(
|
|
44
59
|
"T2",
|
|
45
|
-
{"tensor(int8)",
|
|
46
|
-
|
|
47
|
-
|
|
60
|
+
{"tensor(int8)",
|
|
61
|
+
"tensor(uint8)",
|
|
62
|
+
"tensor(float8e4m3fn)",
|
|
63
|
+
"tensor(float8e4m3fnuz)",
|
|
64
|
+
"tensor(float8e5m2)",
|
|
65
|
+
"tensor(float8e5m2fnuz)"},
|
|
66
|
+
"Constrain 'y_zero_point' and 'y' to 8-bit integer/float tensor.")
|
|
67
|
+
.SetDoc(QuantizeLinear_ver19_doc)
|
|
48
68
|
.TypeAndShapeInferenceFunction([](ONNX_NAMESPACE::InferenceContext& ctx) {
|
|
49
69
|
if (ctx.hasInput(2)) {
|
|
50
70
|
propagateElemTypeFromInputToOutput(ctx, 2, 0);
|
|
@@ -59,43 +79,55 @@ ONNX_OPERATOR_SET_SCHEMA(
|
|
|
59
79
|
updateOutputShape(ctx, 0, input_shape);
|
|
60
80
|
}));
|
|
61
81
|
|
|
62
|
-
static const char*
|
|
82
|
+
static const char* DequantizeLinear_ver19_doc = R"DOC(
|
|
63
83
|
The linear dequantization operator. It consumes a quantized tensor, a scale, and a zero point to compute the full precision tensor.
|
|
64
|
-
The dequantization formula is y = (x - x_zero_point) * x_scale
|
|
84
|
+
The dequantization formula is `y = (x - x_zero_point) * x_scale`. `x_scale` and `x_zero_point` must have same shape, and can be either a scalar
|
|
65
85
|
for per-tensor / per layer quantization, or a 1-D tensor for per-axis quantization.
|
|
66
|
-
|
|
86
|
+
`x_zero_point` and `x` must have same type. `x` and `y` must have same shape. In the case of dequantizing int32,
|
|
67
87
|
there's no zero point (zero point is supposed to be 0).
|
|
88
|
+
`zero-point` is usually not used in the case of float8e4m3fn, float8e4m3fnuz, float8e5m2, float8e5m2fnuz quantization,
|
|
89
|
+
but the dequantization formula remains the same for consistency and 'x_scale' still determines the output type.
|
|
68
90
|
)DOC";
|
|
69
91
|
|
|
70
92
|
ONNX_OPERATOR_SET_SCHEMA(
|
|
71
93
|
DequantizeLinear,
|
|
72
|
-
|
|
94
|
+
19,
|
|
73
95
|
OpSchema()
|
|
74
|
-
.Input(0, "x", "N-D quantized input tensor to be de-quantized.", "
|
|
96
|
+
.Input(0, "x", "N-D quantized input tensor to be de-quantized.", "T1")
|
|
75
97
|
.Input(
|
|
76
98
|
1,
|
|
77
99
|
"x_scale",
|
|
78
100
|
"Scale for input 'x'. It can be a scalar, which means a per-tensor/layer dequantization, "
|
|
79
101
|
"or a 1-D tensor for per-axis dequantization.",
|
|
80
|
-
"
|
|
102
|
+
"T2")
|
|
81
103
|
.Input(
|
|
82
104
|
2,
|
|
83
105
|
"x_zero_point",
|
|
84
106
|
"Zero point for input 'x'. Shape must match x_scale. "
|
|
85
107
|
"It's optional. Zero point is 0 when it's not specified.",
|
|
86
|
-
"
|
|
108
|
+
"T1",
|
|
87
109
|
OpSchema::Optional)
|
|
88
|
-
.Output(0, "y", "N-D full precision output tensor. It has same shape as input 'x'.", "
|
|
110
|
+
.Output(0, "y", "N-D full precision output tensor. It has same shape as input 'x'.", "T2")
|
|
89
111
|
.Attr(
|
|
90
112
|
"axis",
|
|
91
113
|
"(Optional) The axis of the dequantizing dimension of the input tensor. Ignored for per-tensor quantization. Negative value means counting dimensions from the back. Accepted range is [-r, r-1] where r = rank(input).",
|
|
92
114
|
AttributeProto::INT,
|
|
93
115
|
static_cast<int64_t>(1))
|
|
94
116
|
.TypeConstraint(
|
|
95
|
-
"
|
|
96
|
-
{"tensor(int8)",
|
|
97
|
-
|
|
98
|
-
|
|
117
|
+
"T1",
|
|
118
|
+
{"tensor(int8)",
|
|
119
|
+
"tensor(uint8)",
|
|
120
|
+
"tensor(int32)",
|
|
121
|
+
"tensor(float8e4m3fn)",
|
|
122
|
+
"tensor(float8e4m3fnuz)",
|
|
123
|
+
"tensor(float8e5m2)",
|
|
124
|
+
"tensor(float8e5m2fnuz)"},
|
|
125
|
+
"Constrain 'x_zero_point' and 'x' to 8-bit integer or float, or /32-bit integer tensor.")
|
|
126
|
+
.TypeConstraint(
|
|
127
|
+
"T2",
|
|
128
|
+
{"tensor(float)", "tensor(float16)", "tensor(bfloat16)"},
|
|
129
|
+
"'y_scale' determines the output type.")
|
|
130
|
+
.SetDoc(DequantizeLinear_ver19_doc)
|
|
99
131
|
.TypeAndShapeInferenceFunction([](ONNX_NAMESPACE::InferenceContext& ctx) {
|
|
100
132
|
auto y_type = ctx.getOutputType(0);
|
|
101
133
|
// only float is supported
|
|
@@ -113,24 +145,29 @@ A Function to fuse calculation for Scale, Zero Point and FP32->8Bit convertion o
|
|
|
113
145
|
Outputs Scale, ZeroPoint and Quantized Input for a given FP32 Input.
|
|
114
146
|
Scale is calculated as:
|
|
115
147
|
```
|
|
116
|
-
|
|
117
|
-
* where qmax and qmin are max and min values for quantization range .i.e [0, 255] in case of uint8
|
|
118
|
-
* data range is adjusted to include 0.
|
|
148
|
+
y_scale = (max(x) - min(x))/(qmax - qmin)
|
|
119
149
|
```
|
|
150
|
+
|
|
151
|
+
* where qmax and qmin are max and min values for quantization range .i.e [0, 255] in case of uint8
|
|
152
|
+
* data range is adjusted to include 0.
|
|
153
|
+
|
|
120
154
|
Zero point is calculated as:
|
|
121
155
|
```
|
|
122
156
|
intermediate_zero_point = qmin - min(x)/y_scale
|
|
123
157
|
y_zero_point = cast(round(saturate(itermediate_zero_point)))
|
|
158
|
+
```
|
|
159
|
+
|
|
124
160
|
* where qmax and qmin are max and min values for quantization range .i.e [0, 255] in case of uint8
|
|
125
161
|
* for saturation, it saturates to [0, 255] if it's uint8, or [-127, 127] if it's int8. Right now only uint8 is supported.
|
|
126
162
|
* rounding to nearest ties to even.
|
|
127
|
-
|
|
163
|
+
|
|
128
164
|
Data quantization formula is:
|
|
129
165
|
```
|
|
130
166
|
y = saturate (round (x / y_scale) + y_zero_point)
|
|
167
|
+
```
|
|
168
|
+
|
|
131
169
|
* for saturation, it saturates to [0, 255] if it's uint8, or [-127, 127] if it's int8. Right now only uint8 is supported.
|
|
132
170
|
* rounding to nearest ties to even.
|
|
133
|
-
```
|
|
134
171
|
)DOC";
|
|
135
172
|
|
|
136
173
|
ONNX_OPERATOR_SET_SCHEMA(
|
onnx/defs/quantization/old.cc
CHANGED
|
@@ -7,10 +7,111 @@
|
|
|
7
7
|
|
|
8
8
|
namespace ONNX_NAMESPACE {
|
|
9
9
|
|
|
10
|
+
static const char* QuantizeLinear_ver13_doc = R"DOC(
|
|
11
|
+
The linear quantization operator. It consumes a high precision tensor, a scale, and a zero point to compute the low precision / quantized tensor.
|
|
12
|
+
The scale factor and zero point must have same shape, and can be either a scalar for per-tensor / per layer quantization, or a 1-D tensor for per-axis quantization.
|
|
13
|
+
The quantization formula is y = saturate ((x / y_scale) + y_zero_point).
|
|
14
|
+
For saturation, it saturates to [0, 255] if it's uint8, or [-128, 127] if it's int8.
|
|
15
|
+
For (x / y_scale), it's rounding to the nearest even. Refer to https://en.wikipedia.org/wiki/Rounding for details. 'y_zero_point' and 'y' must have same type.
|
|
16
|
+
)DOC";
|
|
17
|
+
|
|
18
|
+
ONNX_OPERATOR_SET_SCHEMA(
|
|
19
|
+
QuantizeLinear,
|
|
20
|
+
13,
|
|
21
|
+
OpSchema()
|
|
22
|
+
.Input(0, "x", "N-D full precision Input tensor to be quantized.", "T1")
|
|
23
|
+
.Input(
|
|
24
|
+
1,
|
|
25
|
+
"y_scale",
|
|
26
|
+
"Scale for doing quantization to get 'y'. It can be a scalar, which means per-tensor/layer quantization, "
|
|
27
|
+
"or a 1-D Tensor for per-axis quantization.",
|
|
28
|
+
"tensor(float)")
|
|
29
|
+
.Input(
|
|
30
|
+
2,
|
|
31
|
+
"y_zero_point",
|
|
32
|
+
"Zero point for doing quantization to get 'y'. Shape must match y_scale. "
|
|
33
|
+
"Default is uint8 with zero point of 0 if it's not specified.",
|
|
34
|
+
"T2",
|
|
35
|
+
OpSchema::Optional)
|
|
36
|
+
.Output(0, "y", "N-D quantized output tensor. It has same shape as input 'x'.", "T2")
|
|
37
|
+
.Attr(
|
|
38
|
+
"axis",
|
|
39
|
+
"(Optional) The axis of the quantization dimension of the input tensor. Ignored for per-tensor quantization. Negative value means counting dimensions from the back. Accepted range is [-r, r-1] where r = rank(input).",
|
|
40
|
+
AttributeProto::INT,
|
|
41
|
+
static_cast<int64_t>(1))
|
|
42
|
+
.TypeConstraint("T1", {"tensor(float)", "tensor(int32)"}, "Constrain 'x' to float or int32 tensor.")
|
|
43
|
+
.TypeConstraint(
|
|
44
|
+
"T2",
|
|
45
|
+
{"tensor(int8)", "tensor(uint8)"},
|
|
46
|
+
"Constrain 'y_zero_point' and 'y' to 8-bit integer tensor.")
|
|
47
|
+
.SetDoc(QuantizeLinear_ver13_doc)
|
|
48
|
+
.TypeAndShapeInferenceFunction([](ONNX_NAMESPACE::InferenceContext& ctx) {
|
|
49
|
+
if (ctx.hasInput(2)) {
|
|
50
|
+
propagateElemTypeFromInputToOutput(ctx, 2, 0);
|
|
51
|
+
} else {
|
|
52
|
+
updateOutputElemType(ctx, 0, TensorProto::UINT8);
|
|
53
|
+
}
|
|
54
|
+
if (!hasInputShape(ctx, 0)) {
|
|
55
|
+
return;
|
|
56
|
+
}
|
|
57
|
+
|
|
58
|
+
auto& input_shape = getInputShape(ctx, 0);
|
|
59
|
+
updateOutputShape(ctx, 0, input_shape);
|
|
60
|
+
}));
|
|
61
|
+
|
|
62
|
+
static const char* DequantizeLinear_ver13_doc = R"DOC(
|
|
63
|
+
The linear dequantization operator. It consumes a quantized tensor, a scale, and a zero point to compute the full precision tensor.
|
|
64
|
+
The dequantization formula is `y = (x - x_zero_point) * x_scale`. `x_scale` and `x_zero_point` must have same shape, and can be either a scalar
|
|
65
|
+
for per-tensor / per layer quantization, or a 1-D tensor for per-axis quantization.
|
|
66
|
+
`x_zero_point` and `x` must have same type. `x` and `y` must have same shape. In the case of dequantizing int32,
|
|
67
|
+
there's no zero point (zero point is supposed to be 0).
|
|
68
|
+
)DOC";
|
|
69
|
+
|
|
70
|
+
ONNX_OPERATOR_SET_SCHEMA(
|
|
71
|
+
DequantizeLinear,
|
|
72
|
+
13,
|
|
73
|
+
OpSchema()
|
|
74
|
+
.Input(0, "x", "N-D quantized input tensor to be de-quantized.", "T")
|
|
75
|
+
.Input(
|
|
76
|
+
1,
|
|
77
|
+
"x_scale",
|
|
78
|
+
"Scale for input 'x'. It can be a scalar, which means a per-tensor/layer dequantization, "
|
|
79
|
+
"or a 1-D tensor for per-axis dequantization.",
|
|
80
|
+
"tensor(float)")
|
|
81
|
+
.Input(
|
|
82
|
+
2,
|
|
83
|
+
"x_zero_point",
|
|
84
|
+
"Zero point for input 'x'. Shape must match x_scale. "
|
|
85
|
+
"It's optional. Zero point is 0 when it's not specified.",
|
|
86
|
+
"T",
|
|
87
|
+
OpSchema::Optional)
|
|
88
|
+
.Output(0, "y", "N-D full precision output tensor. It has same shape as input 'x'.", "tensor(float)")
|
|
89
|
+
.Attr(
|
|
90
|
+
"axis",
|
|
91
|
+
"(Optional) The axis of the dequantizing dimension of the input tensor. Ignored for per-tensor quantization. Negative value means counting dimensions from the back. Accepted range is [-r, r-1] where r = rank(input).",
|
|
92
|
+
AttributeProto::INT,
|
|
93
|
+
static_cast<int64_t>(1))
|
|
94
|
+
.TypeConstraint(
|
|
95
|
+
"T",
|
|
96
|
+
{"tensor(int8)", "tensor(uint8)", "tensor(int32)"},
|
|
97
|
+
"Constrain 'x_zero_point' and 'x' to 8-bit/32-bit integer tensor.")
|
|
98
|
+
.SetDoc(DequantizeLinear_ver13_doc)
|
|
99
|
+
.TypeAndShapeInferenceFunction([](ONNX_NAMESPACE::InferenceContext& ctx) {
|
|
100
|
+
auto y_type = ctx.getOutputType(0);
|
|
101
|
+
// only float is supported
|
|
102
|
+
y_type->mutable_tensor_type()->set_elem_type(ONNX_NAMESPACE::TensorProto::FLOAT);
|
|
103
|
+
|
|
104
|
+
if (!hasInputShape(ctx, 0))
|
|
105
|
+
return;
|
|
106
|
+
|
|
107
|
+
auto& input_shape = getInputShape(ctx, 0);
|
|
108
|
+
updateOutputShape(ctx, 0, input_shape);
|
|
109
|
+
}));
|
|
110
|
+
|
|
10
111
|
static const char* QuantizeLinear_ver10_doc = R"DOC(
|
|
11
112
|
The linear per-tensor/layer quantization operator. It consumes a high precision tensor, a scale, a zero point to compute the low precision / quantized tensor.
|
|
12
113
|
The quantization formula is y = saturate ((x / y_scale) + y_zero_point). For saturation, it saturates to [0, 255] if it's uint8, or [-128, 127] if it's int8.
|
|
13
|
-
For (x / y_scale), it's rounding to nearest
|
|
114
|
+
For (x / y_scale), it's rounding to the nearest even. Refer to https://en.wikipedia.org/wiki/Rounding for details. 'y_zero_point' and 'y' must have same type.
|
|
14
115
|
)DOC";
|
|
15
116
|
|
|
16
117
|
ONNX_OPERATOR_SET_SCHEMA(
|
onnx/defs/reduction/defs.cc
CHANGED
|
@@ -126,7 +126,7 @@ The type of the output tensor is integer.)DOC";
|
|
|
126
126
|
1,
|
|
127
127
|
OpSchema::NonDifferentiable);
|
|
128
128
|
schema.TypeConstraint(
|
|
129
|
-
"T", OpSchema::
|
|
129
|
+
"T", OpSchema::all_numeric_types_ir4(), "Constrain input and output types to all numeric tensors.");
|
|
130
130
|
schema.TypeAndShapeInferenceFunction([](InferenceContext& ctx) {
|
|
131
131
|
// set output element type to int64
|
|
132
132
|
updateOutputElemType(ctx, 0, TensorProto_DataType_INT64);
|
onnx/defs/reduction/utils.cc
CHANGED
|
@@ -8,14 +8,14 @@
|
|
|
8
8
|
namespace ONNX_NAMESPACE {
|
|
9
9
|
std::vector<std::string> GetSupportedDataTypesForReductionOps(bool supports8bit) {
|
|
10
10
|
if (supports8bit) {
|
|
11
|
-
auto data_types = OpSchema::
|
|
11
|
+
auto data_types = OpSchema::numeric_types_for_math_reduction_ir4();
|
|
12
12
|
data_types.push_back("tensor(uint8)");
|
|
13
13
|
data_types.push_back("tensor(int8)");
|
|
14
14
|
|
|
15
15
|
return data_types;
|
|
16
16
|
}
|
|
17
17
|
|
|
18
|
-
return OpSchema::
|
|
18
|
+
return OpSchema::numeric_types_for_math_reduction_ir4();
|
|
19
19
|
}
|
|
20
20
|
|
|
21
21
|
std::function<void(OpSchema&)> ReduceDocGenerator_opset13_18(
|
|
@@ -27,9 +27,10 @@ std::function<void(OpSchema&)> ReduceDocGenerator_opset13_18(
|
|
|
27
27
|
return [=](OpSchema& schema) {
|
|
28
28
|
std::string doc;
|
|
29
29
|
POPULATE_OP_DOC_STR(doc = R"DOC(
|
|
30
|
-
Computes the {name} of the input tensor's
|
|
30
|
+
Computes the {name} of the input tensor's elements along the provided axes. The resulting
|
|
31
31
|
tensor has the same rank as the input if keepdims equals 1. If keepdims equals 0, then
|
|
32
|
-
the resulting tensor has the reduced dimension pruned.
|
|
32
|
+
the resulting tensor has the reduced dimension pruned. Input tensors of rank zero are
|
|
33
|
+
valid.
|
|
33
34
|
|
|
34
35
|
The above behavior is similar to numpy, with the exception that numpy defaults keepdims to
|
|
35
36
|
False instead of True.)DOC";
|