onnx-ir 0.1.5__py3-none-any.whl → 0.1.6__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of onnx-ir might be problematic. Click here for more details.

onnx_ir/__init__.py CHANGED
@@ -167,4 +167,4 @@ def __set_module() -> None:
167
167
 
168
168
 
169
169
  __set_module()
170
- __version__ = "0.1.5"
170
+ __version__ = "0.1.6"
@@ -11,6 +11,7 @@ __all__ = [
11
11
  "InlinePass",
12
12
  "LiftConstantsToInitializersPass",
13
13
  "LiftSubgraphInitializersToMainGraphPass",
14
+ "NameFixPass",
14
15
  "RemoveInitializersFromInputsPass",
15
16
  "RemoveUnusedFunctionsPass",
16
17
  "RemoveUnusedNodesPass",
@@ -38,6 +39,7 @@ from onnx_ir.passes.common.initializer_deduplication import (
38
39
  DeduplicateInitializersPass,
39
40
  )
40
41
  from onnx_ir.passes.common.inliner import InlinePass
42
+ from onnx_ir.passes.common.naming import NameFixPass
41
43
  from onnx_ir.passes.common.onnx_checker import CheckerPass
42
44
  from onnx_ir.passes.common.shape_inference import ShapeInferencePass
43
45
  from onnx_ir.passes.common.topological_sort import TopologicalSortPass
@@ -0,0 +1,286 @@
1
+ # Copyright (c) ONNX Project Contributors
2
+ # SPDX-License-Identifier: Apache-2.0
3
+ """Name fix pass for ensuring unique names for all values and nodes."""
4
+
5
+ from __future__ import annotations
6
+
7
+ __all__ = [
8
+ "NameFixPass",
9
+ "NameGenerator",
10
+ "SimpleNameGenerator",
11
+ ]
12
+
13
+ import collections
14
+ import logging
15
+ from typing import Protocol
16
+
17
+ import onnx_ir as ir
18
+
19
+ logger = logging.getLogger(__name__)
20
+
21
+
22
+ class NameGenerator(Protocol):
23
+ def generate_node_name(self, node: ir.Node) -> str:
24
+ """Generate a preferred name for a node."""
25
+ ...
26
+
27
+ def generate_value_name(self, value: ir.Value) -> str:
28
+ """Generate a preferred name for a value."""
29
+ ...
30
+
31
+
32
+ class SimpleNameGenerator(NameGenerator):
33
+ """Base class for name generation functions."""
34
+
35
+ def generate_node_name(self, node: ir.Node) -> str:
36
+ """Generate a preferred name for a node."""
37
+ return node.name or "node"
38
+
39
+ def generate_value_name(self, value: ir.Value) -> str:
40
+ """Generate a preferred name for a value."""
41
+ return value.name or "v"
42
+
43
+
44
+ class NameFixPass(ir.passes.InPlacePass):
45
+ """Pass for fixing names to ensure all values and nodes have unique names.
46
+
47
+ This pass ensures that:
48
+ 1. Graph inputs and outputs have unique names (take precedence)
49
+ 2. All intermediate values have unique names (assign names to unnamed values)
50
+ 3. All values in subgraphs have unique names within their graph and parent graphs
51
+ 4. All nodes have unique names within their graph
52
+
53
+ The pass maintains global uniqueness across the entire model.
54
+
55
+ You can customize the name generation functions for nodes and values by passing
56
+ a subclass of :class:`NameGenerator`.
57
+
58
+ For example, you can use a custom naming scheme like this::
59
+
60
+ class CustomNameGenerator:
61
+ def custom_node_name(node: ir.Node) -> str:
62
+ return f"custom_node_{node.op_type}"
63
+
64
+ def custom_value_name(value: ir.Value) -> str:
65
+ return f"custom_value_{value.type}"
66
+
67
+ name_fix_pass = NameFixPass(nameGenerator=CustomNameGenerator())
68
+
69
+ .. versionadded:: 0.1.6
70
+ """
71
+
72
+ def __init__(
73
+ self,
74
+ name_generator: NameGenerator | None = None,
75
+ ) -> None:
76
+ """Initialize the NameFixPass with custom name generation functions.
77
+
78
+ Args:
79
+ name_generator (NameGenerator, optional): An instance of a subclass of
80
+ :class:`NameGenerator` to customize name generation for nodes and values.
81
+ If not provided, defaults to a basic implementation that uses
82
+ the node's or value's existing name or a generic name like "node" or "v".
83
+ """
84
+ super().__init__()
85
+ self._name_generator = name_generator or SimpleNameGenerator()
86
+
87
+ def call(self, model: ir.Model) -> ir.passes.PassResult:
88
+ # Process the main graph
89
+ modified = self._fix_graph_names(model.graph)
90
+
91
+ # Process functions
92
+ for function in model.functions.values():
93
+ modified = self._fix_graph_names(function) or modified
94
+
95
+ return ir.passes.PassResult(model, modified=modified)
96
+
97
+ def _fix_graph_names(self, graph_like: ir.Graph | ir.Function) -> bool:
98
+ """Fix names in a graph and return whether modifications were made."""
99
+ modified = False
100
+
101
+ # Set to track which values have been assigned names
102
+ seen_values: set[ir.Value] = set()
103
+
104
+ # The first set is a dummy placeholder so that there is always a [-1] scope for access
105
+ # (even though we don't write to it)
106
+ scoped_used_value_names: list[set[str]] = [set()]
107
+ scoped_used_node_names: list[set[str]] = [set()]
108
+
109
+ # Counters for generating unique names (using list to pass by reference)
110
+ value_counter = collections.Counter()
111
+ node_counter = collections.Counter()
112
+
113
+ def enter_graph(graph_like) -> None:
114
+ """Callback for entering a subgraph."""
115
+ # Initialize new scopes with all names from the parent scope
116
+ scoped_used_value_names.append(set(scoped_used_value_names[-1]))
117
+ scoped_used_node_names.append(set())
118
+
119
+ nonlocal modified
120
+
121
+ # Step 1: Fix graph input names first (they have precedence)
122
+ for input_value in graph_like.inputs:
123
+ if self._process_value(
124
+ input_value, scoped_used_value_names[-1], seen_values, value_counter
125
+ ):
126
+ modified = True
127
+
128
+ # Step 2: Fix graph output names (they have precedence)
129
+ for output_value in graph_like.outputs:
130
+ if self._process_value(
131
+ output_value, scoped_used_value_names[-1], seen_values, value_counter
132
+ ):
133
+ modified = True
134
+
135
+ if isinstance(graph_like, ir.Graph):
136
+ # For graphs, also fix initializers
137
+ for initializer in graph_like.initializers.values():
138
+ if self._process_value(
139
+ initializer, scoped_used_value_names[-1], seen_values, value_counter
140
+ ):
141
+ modified = True
142
+
143
+ def exit_graph(_) -> None:
144
+ """Callback for exiting a subgraph."""
145
+ # Pop the current scope
146
+ scoped_used_value_names.pop()
147
+ scoped_used_node_names.pop()
148
+
149
+ # Step 3: Process all nodes and their values
150
+ for node in ir.traversal.RecursiveGraphIterator(
151
+ graph_like, enter_graph=enter_graph, exit_graph=exit_graph
152
+ ):
153
+ # Fix node name
154
+ if not node.name:
155
+ if self._assign_node_name(node, scoped_used_node_names[-1], node_counter):
156
+ modified = True
157
+ else:
158
+ if self._fix_duplicate_node_name(
159
+ node, scoped_used_node_names[-1], node_counter
160
+ ):
161
+ modified = True
162
+
163
+ # Fix input value names (only if not already processed)
164
+ for input_value in node.inputs:
165
+ if input_value is not None:
166
+ if self._process_value(
167
+ input_value, scoped_used_value_names[-1], seen_values, value_counter
168
+ ):
169
+ modified = True
170
+
171
+ # Fix output value names (only if not already processed)
172
+ for output_value in node.outputs:
173
+ if self._process_value(
174
+ output_value, scoped_used_value_names[-1], seen_values, value_counter
175
+ ):
176
+ modified = True
177
+
178
+ return modified
179
+
180
+ def _process_value(
181
+ self,
182
+ value: ir.Value,
183
+ used_value_names: set[str],
184
+ seen_values: set[ir.Value],
185
+ value_counter: collections.Counter,
186
+ ) -> bool:
187
+ """Process a value only if it hasn't been processed before."""
188
+ if value in seen_values:
189
+ return False
190
+
191
+ modified = False
192
+
193
+ if not value.name:
194
+ modified = self._assign_value_name(value, used_value_names, value_counter)
195
+ else:
196
+ old_name = value.name
197
+ modified = self._fix_duplicate_value_name(value, used_value_names, value_counter)
198
+ if modified:
199
+ assert value.graph is not None
200
+ if value.is_initializer():
201
+ value.graph.initializers.pop(old_name)
202
+ # Add the initializer back with the new name
203
+ value.graph.initializers.add(value)
204
+
205
+ # Record the final name for this value
206
+ assert value.name is not None
207
+ seen_values.add(value)
208
+ return modified
209
+
210
+ def _assign_value_name(
211
+ self, value: ir.Value, used_names: set[str], counter: collections.Counter
212
+ ) -> bool:
213
+ """Assign a name to an unnamed value. Returns True if modified."""
214
+ assert not value.name, (
215
+ "value should not have a name already if function is called correctly"
216
+ )
217
+
218
+ preferred_name = self._name_generator.generate_value_name(value)
219
+ value.name = _find_and_record_next_unique_name(preferred_name, used_names, counter)
220
+ logger.debug("Assigned name %s to unnamed value", value.name)
221
+ return True
222
+
223
+ def _assign_node_name(
224
+ self, node: ir.Node, used_names: set[str], counter: collections.Counter
225
+ ) -> bool:
226
+ """Assign a name to an unnamed node. Returns True if modified."""
227
+ assert not node.name, (
228
+ "node should not have a name already if function is called correctly"
229
+ )
230
+
231
+ preferred_name = self._name_generator.generate_node_name(node)
232
+ node.name = _find_and_record_next_unique_name(preferred_name, used_names, counter)
233
+ logger.debug("Assigned name %s to unnamed node", node.name)
234
+ return True
235
+
236
+ def _fix_duplicate_value_name(
237
+ self, value: ir.Value, used_names: set[str], counter: collections.Counter
238
+ ) -> bool:
239
+ """Fix a value's name if it conflicts with existing names. Returns True if modified."""
240
+ original_name = value.name
241
+
242
+ assert original_name, (
243
+ "value should have a name already if function is called correctly"
244
+ )
245
+
246
+ if original_name not in used_names:
247
+ # Name is unique, just record it
248
+ used_names.add(original_name)
249
+ return False
250
+
251
+ # If name is already used, make it unique
252
+ base_name = self._name_generator.generate_value_name(value)
253
+ value.name = _find_and_record_next_unique_name(base_name, used_names, counter)
254
+ logger.debug("Renamed value from %s to %s for uniqueness", original_name, value.name)
255
+ return True
256
+
257
+ def _fix_duplicate_node_name(
258
+ self, node: ir.Node, used_names: set[str], counter: collections.Counter
259
+ ) -> bool:
260
+ """Fix a node's name if it conflicts with existing names. Returns True if modified."""
261
+ original_name = node.name
262
+
263
+ assert original_name, "node should have a name already if function is called correctly"
264
+
265
+ if original_name not in used_names:
266
+ # Name is unique, just record it
267
+ used_names.add(original_name)
268
+ return False
269
+
270
+ # If name is already used, make it unique
271
+ base_name = self._name_generator.generate_node_name(node)
272
+ node.name = _find_and_record_next_unique_name(base_name, used_names, counter)
273
+ logger.debug("Renamed node from %s to %s for uniqueness", original_name, node.name)
274
+ return True
275
+
276
+
277
+ def _find_and_record_next_unique_name(
278
+ preferred_name: str, used_names: set[str], counter: collections.Counter
279
+ ) -> str:
280
+ """Generate a unique name based on the preferred name and current counter."""
281
+ new_name = preferred_name
282
+ while new_name in used_names:
283
+ counter[preferred_name] += 1
284
+ new_name = f"{preferred_name}_{counter[preferred_name]}"
285
+ used_names.add(new_name)
286
+ return new_name
@@ -68,7 +68,6 @@ def from_torch_dtype(dtype: torch.dtype) -> ir.DataType:
68
68
  torch.float8_e4m3fnuz: ir.DataType.FLOAT8E4M3FNUZ,
69
69
  torch.float8_e5m2: ir.DataType.FLOAT8E5M2,
70
70
  torch.float8_e5m2fnuz: ir.DataType.FLOAT8E5M2FNUZ,
71
- torch.float8_e8m0fnu: ir.DataType.FLOAT8E8M0,
72
71
  torch.int16: ir.DataType.INT16,
73
72
  torch.int32: ir.DataType.INT32,
74
73
  torch.int64: ir.DataType.INT64,
@@ -78,6 +77,10 @@ def from_torch_dtype(dtype: torch.dtype) -> ir.DataType:
78
77
  torch.uint32: ir.DataType.UINT32,
79
78
  torch.uint64: ir.DataType.UINT64,
80
79
  }
80
+ if hasattr(torch, "float8_e8m0fnu"):
81
+ # torch.float8_e8m0fnu is available in PyTorch 2.7+
82
+ _TORCH_DTYPE_TO_ONNX[torch.float8_e8m0fnu] = ir.DataType.FLOAT8E8M0
83
+
81
84
  if dtype not in _TORCH_DTYPE_TO_ONNX:
82
85
  raise TypeError(
83
86
  f"Unsupported PyTorch dtype '{dtype}'. "
@@ -105,7 +108,6 @@ def to_torch_dtype(dtype: ir.DataType) -> torch.dtype:
105
108
  ir.DataType.FLOAT8E4M3FNUZ: torch.float8_e4m3fnuz,
106
109
  ir.DataType.FLOAT8E5M2: torch.float8_e5m2,
107
110
  ir.DataType.FLOAT8E5M2FNUZ: torch.float8_e5m2fnuz,
108
- ir.DataType.FLOAT8E8M0: torch.float8_e8m0fnu,
109
111
  ir.DataType.INT16: torch.int16,
110
112
  ir.DataType.INT32: torch.int32,
111
113
  ir.DataType.INT64: torch.int64,
@@ -115,7 +117,17 @@ def to_torch_dtype(dtype: ir.DataType) -> torch.dtype:
115
117
  ir.DataType.UINT32: torch.uint32,
116
118
  ir.DataType.UINT64: torch.uint64,
117
119
  }
120
+
121
+ if hasattr(torch, "float8_e8m0fnu"):
122
+ # torch.float8_e8m0fnu is available in PyTorch 2.7+
123
+ _ONNX_DTYPE_TO_TORCH[ir.DataType.FLOAT8E8M0] = torch.float8_e8m0fnu
124
+
118
125
  if dtype not in _ONNX_DTYPE_TO_TORCH:
126
+ if dtype == ir.DataType.FLOAT8E8M0:
127
+ raise ValueError(
128
+ "The requested DataType 'FLOAT8E8M0' is only supported in PyTorch 2.7+. "
129
+ "Please upgrade your PyTorch version to use this dtype."
130
+ )
119
131
  raise TypeError(
120
132
  f"Unsupported conversion from ONNX dtype '{dtype}' to torch. "
121
133
  "Please use a supported dtype from the list: "
onnx_ir/traversal.py CHANGED
@@ -25,19 +25,33 @@ class RecursiveGraphIterator(Iterator[_core.Node], Reversible[_core.Node]):
25
25
  *,
26
26
  recursive: Callable[[_core.Node], bool] | None = None,
27
27
  reverse: bool = False,
28
+ enter_graph: Callable[[GraphLike], None] | None = None,
29
+ exit_graph: Callable[[GraphLike], None] | None = None,
28
30
  ):
29
31
  """Iterate over the nodes in the graph, recursively visiting subgraphs.
30
32
 
33
+ This iterator allows for traversing the nodes of a graph and its subgraphs
34
+ in a depth-first manner. It supports optional callbacks for entering and exiting
35
+ subgraphs, as well as a callback `recursive` to determine whether to visit subgraphs
36
+ contained within nodes.
37
+
38
+ .. versionadded:: 0.1.6
39
+ Added the `enter_graph` and `exit_graph` callbacks.
40
+
31
41
  Args:
32
42
  graph_like: The graph to traverse.
33
43
  recursive: A callback that determines whether to recursively visit the subgraphs
34
44
  contained in a node. If not provided, all nodes in subgraphs are visited.
35
45
  reverse: Whether to iterate in reverse order.
46
+ enter_graph: An optional callback that is called when entering a subgraph.
47
+ exit_graph: An optional callback that is called when exiting a subgraph.
36
48
  """
37
49
  self._graph = graph_like
38
50
  self._recursive = recursive
39
51
  self._reverse = reverse
40
52
  self._iterator = self._recursive_node_iter(graph_like)
53
+ self._enter_graph = enter_graph
54
+ self._exit_graph = exit_graph
41
55
 
42
56
  def __iter__(self) -> Self:
43
57
  self._iterator = self._recursive_node_iter(self._graph)
@@ -50,34 +64,55 @@ class RecursiveGraphIterator(Iterator[_core.Node], Reversible[_core.Node]):
50
64
  self, graph: _core.Graph | _core.Function | _core.GraphView
51
65
  ) -> Iterator[_core.Node]:
52
66
  iterable = reversed(graph) if self._reverse else graph
67
+
68
+ if self._enter_graph is not None:
69
+ self._enter_graph(graph)
70
+
53
71
  for node in iterable: # type: ignore[union-attr]
54
72
  yield node
55
73
  if self._recursive is not None and not self._recursive(node):
56
74
  continue
57
75
  yield from self._iterate_subgraphs(node)
58
76
 
77
+ if self._exit_graph is not None:
78
+ self._exit_graph(graph)
79
+
59
80
  def _iterate_subgraphs(self, node: _core.Node):
60
81
  for attr in node.attributes.values():
61
82
  if not isinstance(attr, _core.Attr):
62
83
  continue
63
84
  if attr.type == _enums.AttributeType.GRAPH:
85
+ if self._enter_graph is not None:
86
+ self._enter_graph(attr.value)
64
87
  yield from RecursiveGraphIterator(
65
88
  attr.value,
66
89
  recursive=self._recursive,
67
90
  reverse=self._reverse,
91
+ enter_graph=self._enter_graph,
92
+ exit_graph=self._exit_graph,
68
93
  )
94
+ if self._exit_graph is not None:
95
+ self._exit_graph(attr.value)
69
96
  elif attr.type == _enums.AttributeType.GRAPHS:
70
97
  graphs = reversed(attr.value) if self._reverse else attr.value
71
98
  for graph in graphs:
99
+ if self._enter_graph is not None:
100
+ self._enter_graph(graph)
72
101
  yield from RecursiveGraphIterator(
73
102
  graph,
74
103
  recursive=self._recursive,
75
104
  reverse=self._reverse,
105
+ enter_graph=self._enter_graph,
106
+ exit_graph=self._exit_graph,
76
107
  )
108
+ if self._exit_graph is not None:
109
+ self._exit_graph(graph)
77
110
 
78
111
  def __reversed__(self) -> Iterator[_core.Node]:
79
112
  return RecursiveGraphIterator(
80
113
  self._graph,
81
114
  recursive=self._recursive,
82
115
  reverse=not self._reverse,
116
+ enter_graph=self._enter_graph,
117
+ exit_graph=self._exit_graph,
83
118
  )
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: onnx-ir
3
- Version: 0.1.5
3
+ Version: 0.1.6
4
4
  Summary: Efficient in-memory representation for ONNX
5
5
  Author-email: ONNX Contributors <onnx-technical-discuss@lists.lfaidata.foundation>
6
6
  License: Apache License v2.0
@@ -29,7 +29,6 @@ Dynamic: license-file
29
29
  [![PyPI - Python Version](https://img.shields.io/pypi/pyversions/onnx-ir.svg)](https://pypi.org/project/onnx-ir)
30
30
  [![Ruff](https://img.shields.io/endpoint?url=https://raw.githubusercontent.com/astral-sh/ruff/main/assets/badge/v2.json)](https://github.com/astral-sh/ruff)
31
31
  [![codecov](https://codecov.io/gh/onnx/ir-py/graph/badge.svg?token=SPQ3G9T78Z)](https://codecov.io/gh/onnx/ir-py)
32
- [![DeepWiki](https://img.shields.io/badge/DeepWiki-onnx%2Fir--py-blue.svg?logo=)](https://deepwiki.com/onnx/ir-py)
33
32
  [![PyPI Downloads](https://static.pepy.tech/badge/onnx-ir/month)](https://pepy.tech/projects/onnx-ir)
34
33
 
35
34
  An in-memory IR that supports the full ONNX spec, designed for graph construction, analysis and transformation.
@@ -1,4 +1,4 @@
1
- onnx_ir/__init__.py,sha256=_995K-JXuL0upLulUJxCXziF1gMcehH3gzea2eukCyM,3424
1
+ onnx_ir/__init__.py,sha256=rsm-93uR-9LRHYGjVec4xA1qqUwzrvArfL7SYVdax9E,3424
2
2
  onnx_ir/_core.py,sha256=CtRwtDb__hK0MJLWsrNNu5n_xz6TlbJctDLw8UDQAZQ,137454
3
3
  onnx_ir/_display.py,sha256=230bMN_hVy47Ug3HkA4o5Tf5Hr21AnBEoq5w0fxjyTs,1300
4
4
  onnx_ir/_enums.py,sha256=SxC-GGgPrmdz6UsMhx7xT9-6VmkZ6j1oVzDqNUHr3Rc,9659
@@ -18,15 +18,15 @@ onnx_ir/external_data.py,sha256=rXHtRU-9tjAt10Iervhr5lsI6Dtv-EhR7J4brxppImA,1807
18
18
  onnx_ir/py.typed,sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZOCcBY74-YBdrKVGs,1
19
19
  onnx_ir/serde.py,sha256=bFQg5XYlDTvZsT_gDO_mPYedkMj_HcUbBvQuxLlRKvc,75980
20
20
  onnx_ir/tape.py,sha256=4FyfAHmVhQoMsfHMYnBwP2azi6UF6b6pj--ercObqZs,350
21
- onnx_ir/tensor_adapters.py,sha256=Pl2eLXa1VQh0nZy6NFMBr_9BRY_OPoKQX1oa4K7ecUo,6717
21
+ onnx_ir/tensor_adapters.py,sha256=YffUeZDZi8thxm-4nF2cL6cNSJSVmLm4A3IbEzwY8QQ,7233
22
22
  onnx_ir/testing.py,sha256=WTrjf2joWizDWaYMJlV1KjZMQw7YmZ8NvuBTVn1uY6s,8803
23
- onnx_ir/traversal.py,sha256=Z69wzYBNljn1S7PhVTYgwMftrfsdEBLoa0JYteOhLL0,2863
23
+ onnx_ir/traversal.py,sha256=Wy4XphwuapAvm94-5iaz6G8LjIoMFpY7qfPfXzYViEE,4488
24
24
  onnx_ir/_convenience/__init__.py,sha256=DQ-Bz1wTiZJEARCFxDqZvYexWviGmwvDzE_1hR-vp0Q,19182
25
25
  onnx_ir/_convenience/_constructors.py,sha256=5GhlYy_xCE2ng7l_4cNx06WQsNDyvS-0U1HgOpPKJEk,8347
26
26
  onnx_ir/_thirdparty/asciichartpy.py,sha256=afQ0fsqko2uYRPAR4TZBrQxvCb4eN8lxZ2yDFbVQq_s,10533
27
27
  onnx_ir/passes/__init__.py,sha256=M_Tcl_-qGSNPluFIvOoeDyh0qAwNayaYyXDS5UJUJPQ,764
28
28
  onnx_ir/passes/_pass_infra.py,sha256=xIOw_zZIuOqD4Z_wZ4OvsqXfh2IZMoMlDp1xQ_MPQlc,9567
29
- onnx_ir/passes/common/__init__.py,sha256=LWkH39XATj1lQz82cVrxtle6YiZZ8RkT1fVZNthiTLI,1586
29
+ onnx_ir/passes/common/__init__.py,sha256=vYRzXo4a_c_1Ad7UNCTHsghKIJJngOQNUWlwCaMrXcE,1658
30
30
  onnx_ir/passes/common/_c_api_utils.py,sha256=g6riA6xNGVWaO5YjVHZ0krrfslWHmRlryRkwB8X56cg,2907
31
31
  onnx_ir/passes/common/clear_metadata_and_docstring.py,sha256=YwouLfsNFSaTuGd7uMOGjdvVwG9yHQTkSphUgDlM0ME,2365
32
32
  onnx_ir/passes/common/common_subexpression_elimination.py,sha256=wZ1zEPdCshYB_ifP9fCAVfzQkesE6uhCfzCuL2qO5fA,7948
@@ -34,12 +34,13 @@ onnx_ir/passes/common/constant_manipulation.py,sha256=_fGDwn0Axl2Q8APfc2m_mLMH28
34
34
  onnx_ir/passes/common/identity_elimination.py,sha256=FyqnJxFUq9Ga9XyUJ3myjzr36InYSW-oJgDTrUrBORY,3663
35
35
  onnx_ir/passes/common/initializer_deduplication.py,sha256=4CIVFYfdXUlmF2sAx560c_pTwYVXtX5hcSwWzUKm5uc,2061
36
36
  onnx_ir/passes/common/inliner.py,sha256=wBoO6yXt6F1AObQjYZHMQ0wn3YH681N4HQQVyaMAYd4,13702
37
+ onnx_ir/passes/common/naming.py,sha256=kEqIYBVweFvZSJcG8wi8o9_Dmk-NswCp_niuzrq-ubk,10926
37
38
  onnx_ir/passes/common/onnx_checker.py,sha256=_sPmJ2ff9pDB1g9q7082BL6fyubomRaj6svE0cCyDew,1691
38
39
  onnx_ir/passes/common/shape_inference.py,sha256=LVdvxjeKtcIEbPcb6mKisxoPJOOawzsm3tzk5j9xqeM,3992
39
40
  onnx_ir/passes/common/topological_sort.py,sha256=Vcu1YhBdfRX4LROr0NScjB1Pwz2DjBFD0Z_GxqaxPF8,999
40
41
  onnx_ir/passes/common/unused_removal.py,sha256=cBNqaqGnUVyCWxsD7hBzYk4qSglVPo3SmHAvkUo5-Oc,7613
41
- onnx_ir-0.1.5.dist-info/licenses/LICENSE,sha256=z8d0m5b2O9McPEK1xHG_dWgUBT6EfBDz6wA0F7xSPTA,11358
42
- onnx_ir-0.1.5.dist-info/METADATA,sha256=SHH7BxuFCKIsWyRKQyOKbXRtZX8n0ryietlWDPPLBvA,4884
43
- onnx_ir-0.1.5.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
44
- onnx_ir-0.1.5.dist-info/top_level.txt,sha256=W5tROO93YjO0XRxIdjMy4wocp-5st5GiI2ukvW7UhDo,8
45
- onnx_ir-0.1.5.dist-info/RECORD,,
42
+ onnx_ir-0.1.6.dist-info/licenses/LICENSE,sha256=z8d0m5b2O9McPEK1xHG_dWgUBT6EfBDz6wA0F7xSPTA,11358
43
+ onnx_ir-0.1.6.dist-info/METADATA,sha256=egWNVHaVs8LxpXuBvap5GgGpGGJ9v0Do9ZasSw_x2MM,3523
44
+ onnx_ir-0.1.6.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
45
+ onnx_ir-0.1.6.dist-info/top_level.txt,sha256=W5tROO93YjO0XRxIdjMy4wocp-5st5GiI2ukvW7UhDo,8
46
+ onnx_ir-0.1.6.dist-info/RECORD,,