onnx-ir 0.0.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of onnx-ir might be problematic. Click here for more details.
- onnx_ir/__init__.py +154 -0
- onnx_ir/_convenience.py +439 -0
- onnx_ir/_core.py +2875 -0
- onnx_ir/_display.py +49 -0
- onnx_ir/_enums.py +154 -0
- onnx_ir/_external_data.py +323 -0
- onnx_ir/_graph_comparison.py +23 -0
- onnx_ir/_internal/version_utils.py +118 -0
- onnx_ir/_io.py +50 -0
- onnx_ir/_linked_list.py +276 -0
- onnx_ir/_metadata.py +44 -0
- onnx_ir/_name_authority.py +72 -0
- onnx_ir/_protocols.py +598 -0
- onnx_ir/_tape.py +104 -0
- onnx_ir/_thirdparty/asciichartpy.py +313 -0
- onnx_ir/_type_casting.py +91 -0
- onnx_ir/convenience.py +32 -0
- onnx_ir/passes/__init__.py +33 -0
- onnx_ir/passes/_pass_infra.py +172 -0
- onnx_ir/serde.py +1551 -0
- onnx_ir/traversal.py +82 -0
- onnx_ir-0.0.1.dist-info/LICENSE +22 -0
- onnx_ir-0.0.1.dist-info/METADATA +73 -0
- onnx_ir-0.0.1.dist-info/RECORD +26 -0
- onnx_ir-0.0.1.dist-info/WHEEL +5 -0
- onnx_ir-0.0.1.dist-info/top_level.txt +1 -0
|
@@ -0,0 +1,313 @@
|
|
|
1
|
+
# Copyright (c) Microsoft Corporation.
|
|
2
|
+
# Licensed under the MIT License.
|
|
3
|
+
#
|
|
4
|
+
# Copyright © 2016 Igor Kroitor
|
|
5
|
+
#
|
|
6
|
+
# MIT License
|
|
7
|
+
#
|
|
8
|
+
# Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
9
|
+
# of this software and associated documentation files (the "Software"), to deal
|
|
10
|
+
# in the Software without restriction, including without limitation the rights
|
|
11
|
+
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
12
|
+
# copies of the Software, and to permit persons to whom the Software is
|
|
13
|
+
# furnished to do so, subject to the following conditions:
|
|
14
|
+
#
|
|
15
|
+
# The above copyright notice and this permission notice shall be included in all
|
|
16
|
+
# copies or substantial portions of the Software.
|
|
17
|
+
#
|
|
18
|
+
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
19
|
+
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
20
|
+
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
21
|
+
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
22
|
+
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
23
|
+
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
24
|
+
# SOFTWARE.
|
|
25
|
+
|
|
26
|
+
"""Module to generate ascii charts.
|
|
27
|
+
|
|
28
|
+
This module provides a single function `plot` that can be used to generate an
|
|
29
|
+
ascii chart from a series of numbers. The chart can be configured via several
|
|
30
|
+
options to tune the output.
|
|
31
|
+
"""
|
|
32
|
+
|
|
33
|
+
from __future__ import annotations
|
|
34
|
+
|
|
35
|
+
from math import ceil, floor, isnan
|
|
36
|
+
from typing import Mapping
|
|
37
|
+
|
|
38
|
+
black = "\033[30m"
|
|
39
|
+
red = "\033[31m"
|
|
40
|
+
green = "\033[32m"
|
|
41
|
+
yellow = "\033[33m"
|
|
42
|
+
blue = "\033[34m"
|
|
43
|
+
magenta = "\033[35m"
|
|
44
|
+
cyan = "\033[36m"
|
|
45
|
+
lightgray = "\033[37m"
|
|
46
|
+
default = "\033[39m"
|
|
47
|
+
darkgray = "\033[90m"
|
|
48
|
+
lightred = "\033[91m"
|
|
49
|
+
lightgreen = "\033[92m"
|
|
50
|
+
lightyellow = "\033[93m"
|
|
51
|
+
lightblue = "\033[94m"
|
|
52
|
+
lightmagenta = "\033[95m"
|
|
53
|
+
lightcyan = "\033[96m"
|
|
54
|
+
white = "\033[97m"
|
|
55
|
+
reset = "\033[0m"
|
|
56
|
+
|
|
57
|
+
|
|
58
|
+
__all__ = [
|
|
59
|
+
"plot",
|
|
60
|
+
"black",
|
|
61
|
+
"red",
|
|
62
|
+
"green",
|
|
63
|
+
"yellow",
|
|
64
|
+
"blue",
|
|
65
|
+
"magenta",
|
|
66
|
+
"cyan",
|
|
67
|
+
"lightgray",
|
|
68
|
+
"default",
|
|
69
|
+
"darkgray",
|
|
70
|
+
"lightred",
|
|
71
|
+
"lightgreen",
|
|
72
|
+
"lightyellow",
|
|
73
|
+
"lightblue",
|
|
74
|
+
"lightmagenta",
|
|
75
|
+
"lightcyan",
|
|
76
|
+
"white",
|
|
77
|
+
"reset",
|
|
78
|
+
]
|
|
79
|
+
|
|
80
|
+
|
|
81
|
+
# Python 3.2 has math.isfinite, which could have been used, but to support older
|
|
82
|
+
# versions, this little helper is shorter than having to keep doing not isnan(),
|
|
83
|
+
# plus the double-negative of "not is not a number" is confusing, so this should
|
|
84
|
+
# help with readability.
|
|
85
|
+
def _isnum(n):
|
|
86
|
+
return not isnan(n)
|
|
87
|
+
|
|
88
|
+
|
|
89
|
+
def colored(char, color):
|
|
90
|
+
if not color:
|
|
91
|
+
return char
|
|
92
|
+
else:
|
|
93
|
+
return color + char + reset
|
|
94
|
+
|
|
95
|
+
|
|
96
|
+
_DEFAULT_SYMBOLS = ("┼", "┤", "╶", "╴", "─", "╰", "╭", "╮", "╯", "│")
|
|
97
|
+
|
|
98
|
+
|
|
99
|
+
def plot(series, *, bin_edges=None, cfg=None):
|
|
100
|
+
"""Generate an ascii chart for a series of numbers.
|
|
101
|
+
|
|
102
|
+
`series` should be a list of ints or floats. Missing data values in the
|
|
103
|
+
series can be specified as a NaN. In Python versions less than 3.5, use
|
|
104
|
+
float("nan") to specify an NaN. With 3.5 onwards, use math.nan to specify a
|
|
105
|
+
NaN.
|
|
106
|
+
|
|
107
|
+
>>> series = [1,2,3,4,float("nan"),4,3,2,1]
|
|
108
|
+
>>> print(plot(series))
|
|
109
|
+
4.00 ┤ ╭╴╶╮
|
|
110
|
+
3.00 ┤ ╭╯ ╰╮
|
|
111
|
+
2.00 ┤╭╯ ╰╮
|
|
112
|
+
1.00 ┼╯ ╰
|
|
113
|
+
|
|
114
|
+
`series` can also be a list of lists to support multiple data series.
|
|
115
|
+
|
|
116
|
+
>>> series = [[10,20,30,40,30,20,10], [40,30,20,10,20,30,40]]
|
|
117
|
+
>>> print(plot(series, cfg={'height': 3}))
|
|
118
|
+
40.00 ┤╮ ╭╮ ╭
|
|
119
|
+
30.00 ┤╰╮╯╰╭╯
|
|
120
|
+
20.00 ┤╭╰╮╭╯╮
|
|
121
|
+
10.00 ┼╯ ╰╯ ╰
|
|
122
|
+
|
|
123
|
+
`bin_edges` is an optional list of bin edges to display on the x-axis. If
|
|
124
|
+
provided, the x-axis will be labeled with the bin edges. If there are too
|
|
125
|
+
many bin edges to fit on the x-axis, some labels will be dropped and they
|
|
126
|
+
will be spaced out evenly to fit the width of the chart.
|
|
127
|
+
The labels will be formatted using the `x_format` option in `cfg`.
|
|
128
|
+
|
|
129
|
+
`cfg` is an optional dictionary of various parameters to tune the appearance
|
|
130
|
+
of the chart. `min` and `max` will clamp the y-axis and all values:
|
|
131
|
+
|
|
132
|
+
>>> series = [1,2,3,4,float("nan"),4,3,2,1]
|
|
133
|
+
>>> print(plot(series, cfg={'min': 0}))
|
|
134
|
+
4.00 ┼ ╭╴╶╮
|
|
135
|
+
3.00 ┤ ╭╯ ╰╮
|
|
136
|
+
2.00 ┤╭╯ ╰╮
|
|
137
|
+
1.00 ┼╯ ╰
|
|
138
|
+
0.00 ┤
|
|
139
|
+
|
|
140
|
+
>>> print(plot(series, cfg={'min': 2}))
|
|
141
|
+
4.00 ┤ ╭╴╶╮
|
|
142
|
+
3.00 ┤ ╭╯ ╰╮
|
|
143
|
+
2.00 ┼─╯ ╰─
|
|
144
|
+
|
|
145
|
+
>>> print(plot(series, cfg={'min': 2, 'max': 3}))
|
|
146
|
+
3.00 ┤ ╭─╴╶─╮
|
|
147
|
+
2.00 ┼─╯ ╰─
|
|
148
|
+
|
|
149
|
+
`height` specifies the number of rows the graph should occupy. It can be
|
|
150
|
+
used to scale down a graph with large data values:
|
|
151
|
+
|
|
152
|
+
>>> series = [10,20,30,40,50,40,30,20,10]
|
|
153
|
+
>>> print(plot(series, cfg={'height': 4}))
|
|
154
|
+
50.00 ┤ ╭╮
|
|
155
|
+
40.00 ┤ ╭╯╰╮
|
|
156
|
+
30.00 ┤ ╭╯ ╰╮
|
|
157
|
+
20.00 ┤╭╯ ╰╮
|
|
158
|
+
10.00 ┼╯ ╰
|
|
159
|
+
|
|
160
|
+
`format` specifies a Python format string used to format the labels on the
|
|
161
|
+
y-axis. The default value is "{:8.2f} ". This can be used to remove the
|
|
162
|
+
decimal point:
|
|
163
|
+
|
|
164
|
+
>>> series = [10,20,30,40,50,40,30,20,10]
|
|
165
|
+
>>> print(plot(series, cfg={'height': 4, 'format':'{:8.0f}'}))
|
|
166
|
+
50 ┤ ╭╮
|
|
167
|
+
40 ┤ ╭╯╰╮
|
|
168
|
+
30 ┤ ╭╯ ╰╮
|
|
169
|
+
20 ┤╭╯ ╰╮
|
|
170
|
+
10 ┼╯ ╰
|
|
171
|
+
"""
|
|
172
|
+
if len(series) == 0:
|
|
173
|
+
return ""
|
|
174
|
+
|
|
175
|
+
if not isinstance(series[0], list):
|
|
176
|
+
if all(isnan(n) for n in series):
|
|
177
|
+
return ""
|
|
178
|
+
else:
|
|
179
|
+
series = [series]
|
|
180
|
+
|
|
181
|
+
if cfg is not None and not isinstance(cfg, Mapping):
|
|
182
|
+
raise TypeError("cfg must be a dictionary or None")
|
|
183
|
+
|
|
184
|
+
cfg = cfg or {}
|
|
185
|
+
|
|
186
|
+
colors = cfg.get("colors", [None])
|
|
187
|
+
|
|
188
|
+
minimum = cfg.get("min", min(filter(_isnum, [j for i in series for j in i])))
|
|
189
|
+
maximum = cfg.get("max", max(filter(_isnum, [j for i in series for j in i])))
|
|
190
|
+
|
|
191
|
+
symbols = cfg.get("symbols", _DEFAULT_SYMBOLS)
|
|
192
|
+
|
|
193
|
+
if minimum > maximum:
|
|
194
|
+
raise ValueError("The min value cannot exceed the max value.")
|
|
195
|
+
|
|
196
|
+
interval = maximum - minimum
|
|
197
|
+
offset = cfg.get("offset", 3)
|
|
198
|
+
height = cfg.get("height", interval)
|
|
199
|
+
ratio = height / interval if interval > 0 else 1
|
|
200
|
+
|
|
201
|
+
min2 = floor(minimum * ratio)
|
|
202
|
+
max2 = ceil(maximum * ratio)
|
|
203
|
+
|
|
204
|
+
def clamp(n):
|
|
205
|
+
return min(max(n, minimum), maximum)
|
|
206
|
+
|
|
207
|
+
def scaled(y):
|
|
208
|
+
return int(round(clamp(y) * ratio) - min2)
|
|
209
|
+
|
|
210
|
+
rows = max2 - min2
|
|
211
|
+
|
|
212
|
+
width = 0
|
|
213
|
+
for series_i in series:
|
|
214
|
+
width = max(width, len(series_i))
|
|
215
|
+
width += offset
|
|
216
|
+
|
|
217
|
+
placeholder = cfg.get("format", "{:8.2f} ")
|
|
218
|
+
x_placeholder = cfg.get("x_format", "{:4.4f}")
|
|
219
|
+
|
|
220
|
+
result = [[" "] * width for i in range(rows + 1)]
|
|
221
|
+
|
|
222
|
+
# axis and labels
|
|
223
|
+
for y in range(min2, max2 + 1):
|
|
224
|
+
label = placeholder.format(maximum - ((y - min2) * interval / (rows if rows else 1)))
|
|
225
|
+
result[y - min2][max(offset - len(label), 0)] = label
|
|
226
|
+
result[y - min2][offset - 1] = symbols[0] if y == 0 else symbols[1] # zero tick mark
|
|
227
|
+
|
|
228
|
+
# first value is a tick mark across the y-axis
|
|
229
|
+
d0 = series[0][0]
|
|
230
|
+
if _isnum(d0):
|
|
231
|
+
result[rows - scaled(d0)][offset - 1] = symbols[0]
|
|
232
|
+
|
|
233
|
+
for i, series_i in enumerate(series):
|
|
234
|
+
color = colors[i % len(colors)]
|
|
235
|
+
|
|
236
|
+
# plot the line
|
|
237
|
+
for x in range(len(series_i) - 1):
|
|
238
|
+
d0 = series_i[x + 0]
|
|
239
|
+
d1 = series_i[x + 1]
|
|
240
|
+
|
|
241
|
+
if isnan(d0) and isnan(d1):
|
|
242
|
+
continue
|
|
243
|
+
|
|
244
|
+
if isnan(d0) and _isnum(d1):
|
|
245
|
+
result[rows - scaled(d1)][x + offset] = colored(symbols[2], color)
|
|
246
|
+
continue
|
|
247
|
+
|
|
248
|
+
if _isnum(d0) and isnan(d1):
|
|
249
|
+
result[rows - scaled(d0)][x + offset] = colored(symbols[3], color)
|
|
250
|
+
continue
|
|
251
|
+
|
|
252
|
+
y0 = scaled(d0)
|
|
253
|
+
y1 = scaled(d1)
|
|
254
|
+
if y0 == y1:
|
|
255
|
+
result[rows - y0][x + offset] = colored(symbols[4], color)
|
|
256
|
+
continue
|
|
257
|
+
|
|
258
|
+
result[rows - y1][x + offset] = (
|
|
259
|
+
colored(symbols[5], color) if y0 > y1 else colored(symbols[6], color)
|
|
260
|
+
)
|
|
261
|
+
result[rows - y0][x + offset] = (
|
|
262
|
+
colored(symbols[7], color) if y0 > y1 else colored(symbols[8], color)
|
|
263
|
+
)
|
|
264
|
+
|
|
265
|
+
start = min(y0, y1) + 1
|
|
266
|
+
end = max(y0, y1)
|
|
267
|
+
for y in range(start, end):
|
|
268
|
+
result[rows - y][x + offset] = colored(symbols[9], color)
|
|
269
|
+
|
|
270
|
+
the_plot = "\n".join(["".join(row).rstrip() for row in result])
|
|
271
|
+
|
|
272
|
+
if bin_edges is None or len(bin_edges) == 0:
|
|
273
|
+
return the_plot
|
|
274
|
+
|
|
275
|
+
# Plot x axis labels
|
|
276
|
+
current_location = 0
|
|
277
|
+
# Compute the amount of leading space for the first x-label using the old label size
|
|
278
|
+
leading_space = offset + len(label)
|
|
279
|
+
# Obtain the first x-label to compute its size
|
|
280
|
+
x_label = x_placeholder.format(bin_edges[0])
|
|
281
|
+
# Initialize the x-label text with the leading space. We allow the first label to
|
|
282
|
+
# recess so that the center of it is aligned with the first tick mark.
|
|
283
|
+
x_label_size = len(x_label)
|
|
284
|
+
x_leading_space = max(0, leading_space - x_label_size)
|
|
285
|
+
|
|
286
|
+
x_labels = []
|
|
287
|
+
# This is the amount of space we have to fit the x-labels. It can overflow the width
|
|
288
|
+
# by half of the x-label size
|
|
289
|
+
workable_width = width + x_label_size // 2
|
|
290
|
+
# Compute the spacing between x-labels
|
|
291
|
+
# If we fit labels and space them by 2 characters, we can fit this many labels:
|
|
292
|
+
min_spacing = 2
|
|
293
|
+
num_labels_can_fit = width // (x_label_size + min_spacing)
|
|
294
|
+
labels_count = len(bin_edges)
|
|
295
|
+
# Find out the actual number of labels we need to display
|
|
296
|
+
num_labels_to_display = min(labels_count, num_labels_can_fit)
|
|
297
|
+
num_spaces = num_labels_to_display - 1
|
|
298
|
+
spacing = max(
|
|
299
|
+
min_spacing,
|
|
300
|
+
(workable_width - num_labels_to_display * x_label_size) // num_spaces,
|
|
301
|
+
)
|
|
302
|
+
# Now start placing labels
|
|
303
|
+
while current_location < workable_width:
|
|
304
|
+
# Find the current label that would be suitable for the current location
|
|
305
|
+
bin_index = int((current_location / workable_width) * labels_count)
|
|
306
|
+
x_label = x_placeholder.format(bin_edges[bin_index])
|
|
307
|
+
x_labels.append(x_label)
|
|
308
|
+
# Move to the next location
|
|
309
|
+
current_location += len(x_label) + spacing
|
|
310
|
+
# Create the x-label row
|
|
311
|
+
x_labels_text = " " * x_leading_space + (" " * spacing).join(x_labels)
|
|
312
|
+
|
|
313
|
+
return the_plot + "\n" + x_labels_text
|
onnx_ir/_type_casting.py
ADDED
|
@@ -0,0 +1,91 @@
|
|
|
1
|
+
# Copyright (c) Microsoft Corporation.
|
|
2
|
+
# Licensed under the MIT License.
|
|
3
|
+
"""Numpy utilities for non-native type operation."""
|
|
4
|
+
# TODO(justinchuby): Upstream the logic to onnx
|
|
5
|
+
|
|
6
|
+
from __future__ import annotations
|
|
7
|
+
|
|
8
|
+
import typing
|
|
9
|
+
from typing import Sequence
|
|
10
|
+
|
|
11
|
+
import ml_dtypes
|
|
12
|
+
import numpy as np
|
|
13
|
+
|
|
14
|
+
if typing.TYPE_CHECKING:
|
|
15
|
+
import numpy.typing as npt
|
|
16
|
+
|
|
17
|
+
|
|
18
|
+
def pack_int4(array: np.ndarray) -> npt.NDArray[np.uint8]:
|
|
19
|
+
"""Convert a numpy array to flatten, packed int4/uint4. Elements must be in the correct range."""
|
|
20
|
+
# Create a 1D copy
|
|
21
|
+
array_flat = array.ravel().view(np.uint8).copy()
|
|
22
|
+
size = array.size
|
|
23
|
+
odd_sized = size % 2 == 1
|
|
24
|
+
if odd_sized:
|
|
25
|
+
array_flat.resize([size + 1], refcheck=False)
|
|
26
|
+
array_flat &= 0x0F
|
|
27
|
+
array_flat[1::2] <<= 4
|
|
28
|
+
return array_flat[0::2] | array_flat[1::2] # type: ignore[return-type]
|
|
29
|
+
|
|
30
|
+
|
|
31
|
+
def _unpack_uint4_as_uint8(
|
|
32
|
+
data: npt.NDArray[np.uint8], dims: Sequence[int]
|
|
33
|
+
) -> npt.NDArray[np.uint8]:
|
|
34
|
+
"""Convert a packed uint4 array to unpacked uint4 array represented as uint8.
|
|
35
|
+
|
|
36
|
+
Args:
|
|
37
|
+
data: A numpy array.
|
|
38
|
+
dims: The dimensions are used to reshape the unpacked buffer.
|
|
39
|
+
|
|
40
|
+
Returns:
|
|
41
|
+
A numpy array of int8/uint8 reshaped to dims.
|
|
42
|
+
"""
|
|
43
|
+
result = np.empty([data.size * 2], dtype=data.dtype)
|
|
44
|
+
array_low = data & np.uint8(0x0F)
|
|
45
|
+
array_high = data & np.uint8(0xF0)
|
|
46
|
+
array_high >>= np.uint8(4)
|
|
47
|
+
result[0::2] = array_low
|
|
48
|
+
result[1::2] = array_high
|
|
49
|
+
if result.size == np.prod(dims) + 1:
|
|
50
|
+
# handle single-element padding due to odd number of elements
|
|
51
|
+
result = result[:-1]
|
|
52
|
+
result.resize(dims, refcheck=False)
|
|
53
|
+
return result
|
|
54
|
+
|
|
55
|
+
|
|
56
|
+
def unpack_uint4(
|
|
57
|
+
data: npt.NDArray[np.uint8], dims: Sequence[int]
|
|
58
|
+
) -> npt.NDArray[ml_dtypes.uint4]:
|
|
59
|
+
"""Convert a packed uint4 array to unpacked uint4 array represented as uint8.
|
|
60
|
+
|
|
61
|
+
Args:
|
|
62
|
+
data: A numpy array.
|
|
63
|
+
dims: The dimensions are used to reshape the unpacked buffer.
|
|
64
|
+
|
|
65
|
+
Returns:
|
|
66
|
+
A numpy array of int8/uint8 reshaped to dims.
|
|
67
|
+
"""
|
|
68
|
+
return _unpack_uint4_as_uint8(data, dims).view(ml_dtypes.uint4)
|
|
69
|
+
|
|
70
|
+
|
|
71
|
+
def _extend_int4_sign_bits(x: npt.NDArray[np.uint8]) -> npt.NDArray[np.int8]:
|
|
72
|
+
"""Extend 4-bit signed integer to 8-bit signed integer."""
|
|
73
|
+
return np.where((x >> 3) == 0, x, x | 0xF0).astype(np.int8)
|
|
74
|
+
|
|
75
|
+
|
|
76
|
+
def unpack_int4(
|
|
77
|
+
data: npt.NDArray[np.uint8], dims: Sequence[int]
|
|
78
|
+
) -> npt.NDArray[ml_dtypes.int4]:
|
|
79
|
+
"""Convert a packed (signed) int4 array to unpacked int4 array represented as int8.
|
|
80
|
+
|
|
81
|
+
The sign bit is extended to the most significant bit of the int8.
|
|
82
|
+
|
|
83
|
+
Args:
|
|
84
|
+
data: A numpy array.
|
|
85
|
+
dims: The dimensions are used to reshape the unpacked buffer.
|
|
86
|
+
|
|
87
|
+
Returns:
|
|
88
|
+
A numpy array of int8 reshaped to dims.
|
|
89
|
+
"""
|
|
90
|
+
unpacked = _unpack_uint4_as_uint8(data, dims)
|
|
91
|
+
return _extend_int4_sign_bits(unpacked).view(ml_dtypes.int4)
|
onnx_ir/convenience.py
ADDED
|
@@ -0,0 +1,32 @@
|
|
|
1
|
+
# Copyright (c) Microsoft Corporation.
|
|
2
|
+
# Licensed under the MIT License.
|
|
3
|
+
"""Convenience methods for constructing and manipulating the IR."""
|
|
4
|
+
|
|
5
|
+
from __future__ import annotations
|
|
6
|
+
|
|
7
|
+
__all__ = [
|
|
8
|
+
"convert_attribute",
|
|
9
|
+
"convert_attributes",
|
|
10
|
+
"replace_all_uses_with",
|
|
11
|
+
"replace_nodes_and_values",
|
|
12
|
+
]
|
|
13
|
+
|
|
14
|
+
from onnx_ir._convenience import (
|
|
15
|
+
convert_attribute,
|
|
16
|
+
convert_attributes,
|
|
17
|
+
replace_all_uses_with,
|
|
18
|
+
replace_nodes_and_values,
|
|
19
|
+
)
|
|
20
|
+
|
|
21
|
+
# NOTE: Do not implement any other functions in this module.
|
|
22
|
+
# implement them in the _convenience module and import them here instead.
|
|
23
|
+
|
|
24
|
+
|
|
25
|
+
def __set_module() -> None:
|
|
26
|
+
"""Set the module of all functions in this module to this public module."""
|
|
27
|
+
global_dict = globals()
|
|
28
|
+
for name in __all__:
|
|
29
|
+
global_dict[name].__module__ = __name__
|
|
30
|
+
|
|
31
|
+
|
|
32
|
+
__set_module()
|
|
@@ -0,0 +1,33 @@
|
|
|
1
|
+
# Copyright (c) Microsoft Corporation.
|
|
2
|
+
# Licensed under the MIT License.
|
|
3
|
+
|
|
4
|
+
__all__ = [
|
|
5
|
+
"PassBase",
|
|
6
|
+
"PassResult",
|
|
7
|
+
"PassManager",
|
|
8
|
+
# Errors
|
|
9
|
+
"InvariantError",
|
|
10
|
+
"PreconditionError",
|
|
11
|
+
"PostconditionError",
|
|
12
|
+
"PassError",
|
|
13
|
+
]
|
|
14
|
+
|
|
15
|
+
from onnx_ir.passes._pass_infra import (
|
|
16
|
+
InvariantError,
|
|
17
|
+
PassBase,
|
|
18
|
+
PassError,
|
|
19
|
+
PassManager,
|
|
20
|
+
PassResult,
|
|
21
|
+
PostconditionError,
|
|
22
|
+
PreconditionError,
|
|
23
|
+
)
|
|
24
|
+
|
|
25
|
+
|
|
26
|
+
def __set_module() -> None:
|
|
27
|
+
"""Set the module of all functions in this module to this public module."""
|
|
28
|
+
global_dict = globals()
|
|
29
|
+
for name in __all__:
|
|
30
|
+
global_dict[name].__module__ = __name__
|
|
31
|
+
|
|
32
|
+
|
|
33
|
+
__set_module()
|
|
@@ -0,0 +1,172 @@
|
|
|
1
|
+
# Copyright (c) Microsoft Corporation.
|
|
2
|
+
# Licensed under the MIT License.
|
|
3
|
+
#
|
|
4
|
+
# This module implements some APIs described in
|
|
5
|
+
# https://pytorch.org/executorch/stable/compiler-custom-compiler-passes.html
|
|
6
|
+
# for the ONNX IR.
|
|
7
|
+
# The classes {PassResult and PassManager} are derived from
|
|
8
|
+
# https://github.com/pytorch/pytorch/blob/1e47c7b11b312b47a621efd547f5c90081f0d9cb/torch/fx/passes/infra/pass_base.py#L12
|
|
9
|
+
# and
|
|
10
|
+
# https://github.com/pytorch/pytorch/blob/1e47c7b11b312b47a621efd547f5c90081f0d9cb/torch/fx/passes/infra/pass_manager.py#L147
|
|
11
|
+
# The original code is licensed under the PyTorch License https://github.com/pytorch/pytorch/blob/main/LICENSE
|
|
12
|
+
|
|
13
|
+
"""Passes infrastructure for the IR."""
|
|
14
|
+
|
|
15
|
+
from __future__ import annotations
|
|
16
|
+
|
|
17
|
+
import dataclasses
|
|
18
|
+
import logging
|
|
19
|
+
from typing import Sequence
|
|
20
|
+
|
|
21
|
+
__all__ = [
|
|
22
|
+
"PassBase",
|
|
23
|
+
"PassManager",
|
|
24
|
+
"PassResult",
|
|
25
|
+
# Errors
|
|
26
|
+
"InvariantError",
|
|
27
|
+
"PreconditionError",
|
|
28
|
+
"PostconditionError",
|
|
29
|
+
"PassError",
|
|
30
|
+
]
|
|
31
|
+
|
|
32
|
+
import abc
|
|
33
|
+
|
|
34
|
+
import onnx_ir as ir
|
|
35
|
+
|
|
36
|
+
logger = logging.getLogger(__name__)
|
|
37
|
+
|
|
38
|
+
|
|
39
|
+
class InvariantError(Exception):
|
|
40
|
+
"""Raised when an invariant is violated."""
|
|
41
|
+
|
|
42
|
+
|
|
43
|
+
class PreconditionError(InvariantError):
|
|
44
|
+
"""Raised when a precondition is violated."""
|
|
45
|
+
|
|
46
|
+
|
|
47
|
+
class PostconditionError(InvariantError):
|
|
48
|
+
"""Raised when a postcondition is violated."""
|
|
49
|
+
|
|
50
|
+
|
|
51
|
+
class PassError(RuntimeError):
|
|
52
|
+
"""Raised when an error occurs during a pass."""
|
|
53
|
+
|
|
54
|
+
|
|
55
|
+
@dataclasses.dataclass
|
|
56
|
+
class PassResult:
|
|
57
|
+
"""Result of a pass.
|
|
58
|
+
|
|
59
|
+
Attributes:
|
|
60
|
+
model: The transformed model.
|
|
61
|
+
modified: Whether the model was modified.
|
|
62
|
+
"""
|
|
63
|
+
|
|
64
|
+
model: ir.Model
|
|
65
|
+
modified: bool
|
|
66
|
+
|
|
67
|
+
|
|
68
|
+
class PassBase(abc.ABC):
|
|
69
|
+
"""Base class for all passes.
|
|
70
|
+
|
|
71
|
+
Class attributes:
|
|
72
|
+
in_place: Whether the pass modifies the model in place.
|
|
73
|
+
"""
|
|
74
|
+
|
|
75
|
+
in_place: bool = True
|
|
76
|
+
|
|
77
|
+
def __call__(self, model: ir.Model) -> PassResult:
|
|
78
|
+
return self.call(model)
|
|
79
|
+
|
|
80
|
+
@abc.abstractmethod
|
|
81
|
+
def call(self, model: ir.Model) -> PassResult:
|
|
82
|
+
"""The main entry point for the pass."""
|
|
83
|
+
...
|
|
84
|
+
|
|
85
|
+
def requires(self, model: ir.Model) -> None:
|
|
86
|
+
"""Pre-conditions for the pass.
|
|
87
|
+
|
|
88
|
+
This is optional to implement, will be called before call() if run by a pass manager.
|
|
89
|
+
"""
|
|
90
|
+
del model # Unused
|
|
91
|
+
|
|
92
|
+
def ensures(self, model: ir.Model) -> None:
|
|
93
|
+
"""Post-conditions for the pass.
|
|
94
|
+
|
|
95
|
+
This is optional to implement, will be called after call() if run by a pass manager.
|
|
96
|
+
"""
|
|
97
|
+
del model # Unused
|
|
98
|
+
|
|
99
|
+
|
|
100
|
+
class PassManager:
|
|
101
|
+
"""Pass manager for the IR.
|
|
102
|
+
|
|
103
|
+
The PassManager is a callable that runs a sequence of passes on a model.
|
|
104
|
+
|
|
105
|
+
Attributes:
|
|
106
|
+
passes: The passes to run.
|
|
107
|
+
check_invariants: Whether to check invariants before and after each pass.
|
|
108
|
+
steps: The number of times to run the passes.
|
|
109
|
+
"""
|
|
110
|
+
|
|
111
|
+
def __init__(
|
|
112
|
+
self,
|
|
113
|
+
passes: Sequence[PassBase],
|
|
114
|
+
check_invariants: bool = False,
|
|
115
|
+
steps: int = 1,
|
|
116
|
+
):
|
|
117
|
+
# TODO(justinchuby): Implement constraints
|
|
118
|
+
self.passes = list(passes)
|
|
119
|
+
self.check_invariants = check_invariants
|
|
120
|
+
self.steps = steps
|
|
121
|
+
|
|
122
|
+
def __call__(self, model: ir.Model) -> PassResult:
|
|
123
|
+
"""Run the set of passes `steps` number of times or until the graph stops changing."""
|
|
124
|
+
overall_modified = False
|
|
125
|
+
for step in range(self.steps):
|
|
126
|
+
step_result = self._run_one_step(model, step)
|
|
127
|
+
model = step_result.model
|
|
128
|
+
modified = step_result.modified
|
|
129
|
+
overall_modified = overall_modified or modified
|
|
130
|
+
# If the graph no longer changes, then we can stop running these passes
|
|
131
|
+
if not modified:
|
|
132
|
+
logger.info("PassManager: No more graph changes detected after step %s", step)
|
|
133
|
+
break
|
|
134
|
+
return PassResult(model, overall_modified)
|
|
135
|
+
|
|
136
|
+
def _run_one_step(self, model: ir.Model, step: int) -> PassResult:
|
|
137
|
+
modified = False
|
|
138
|
+
for i, pass_ in enumerate(self.passes):
|
|
139
|
+
logger.debug("Running the %s-th pass '%s', (step %s)", i, pass_, step)
|
|
140
|
+
|
|
141
|
+
# 1. Check preconditions
|
|
142
|
+
if self.check_invariants:
|
|
143
|
+
try:
|
|
144
|
+
pass_.requires(model)
|
|
145
|
+
except Exception as e:
|
|
146
|
+
raise PreconditionError(f"Pre-condition failed for {pass_}") from e
|
|
147
|
+
|
|
148
|
+
# 2. Run the pass
|
|
149
|
+
try:
|
|
150
|
+
pass_result = pass_(model)
|
|
151
|
+
except Exception as e:
|
|
152
|
+
prev_pass_names = [str(p) for p in self.passes[:i]]
|
|
153
|
+
raise PassError(
|
|
154
|
+
f"An error occurred when running the '{pass_}' pass after the "
|
|
155
|
+
f"following passes: {prev_pass_names} during step {step}"
|
|
156
|
+
) from e
|
|
157
|
+
if not isinstance(pass_result, PassResult):
|
|
158
|
+
raise TypeError(
|
|
159
|
+
f"The result of the pass {pass_} should be type PassResult."
|
|
160
|
+
"Please create one with ir.passes.PassResult()."
|
|
161
|
+
)
|
|
162
|
+
|
|
163
|
+
model = pass_result.model
|
|
164
|
+
modified = modified or pass_result.modified
|
|
165
|
+
|
|
166
|
+
# 3. Check postconditions
|
|
167
|
+
if self.check_invariants:
|
|
168
|
+
try:
|
|
169
|
+
pass_.ensures(model)
|
|
170
|
+
except Exception as e:
|
|
171
|
+
raise PostconditionError(f"Post-condition failed for {pass_}") from e
|
|
172
|
+
return PassResult(model, modified)
|