onnx-diagnostic 0.8.9__py3-none-any.whl → 0.8.11__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (49) hide show
  1. onnx_diagnostic/__init__.py +1 -1
  2. onnx_diagnostic/_command_lines_parser.py +136 -140
  3. onnx_diagnostic/ci_models/export_phi4_mm.py +2 -4
  4. onnx_diagnostic/export/api.py +24 -12
  5. onnx_diagnostic/export/validate.py +2 -0
  6. onnx_diagnostic/ext_test_case.py +32 -15
  7. onnx_diagnostic/helpers/args_helper.py +1 -0
  8. onnx_diagnostic/helpers/bench_run.py +0 -1
  9. onnx_diagnostic/helpers/cache_helper.py +6 -6
  10. onnx_diagnostic/helpers/doc_helper.py +7 -4
  11. onnx_diagnostic/helpers/graph_helper.py +6 -6
  12. onnx_diagnostic/helpers/log_helper.py +37 -14
  13. onnx_diagnostic/helpers/memory_peak.py +5 -1
  14. onnx_diagnostic/helpers/mini_onnx_builder.py +9 -14
  15. onnx_diagnostic/helpers/model_builder_helper.py +1 -1
  16. onnx_diagnostic/helpers/onnx_helper.py +283 -110
  17. onnx_diagnostic/helpers/ort_session.py +0 -1
  18. onnx_diagnostic/helpers/torch_helper.py +8 -9
  19. onnx_diagnostic/investigate/__init__.py +0 -0
  20. onnx_diagnostic/investigate/input_observer.py +329 -0
  21. onnx_diagnostic/reference/evaluator.py +0 -1
  22. onnx_diagnostic/reference/ort_evaluator.py +0 -1
  23. onnx_diagnostic/reference/report_results_comparison.py +9 -3
  24. onnx_diagnostic/reference/torch_evaluator.py +5 -1
  25. onnx_diagnostic/reference/torch_ops/_op_run.py +3 -5
  26. onnx_diagnostic/reference/torch_ops/sequence_ops.py +1 -1
  27. onnx_diagnostic/tasks/feature_extraction.py +0 -1
  28. onnx_diagnostic/torch_export_patches/__init__.py +0 -1
  29. onnx_diagnostic/torch_export_patches/onnx_export_serialization.py +5 -1
  30. onnx_diagnostic/torch_export_patches/patch_module.py +1 -1
  31. onnx_diagnostic/torch_export_patches/patches/_patch_transformers_rotary_embedding.py +2 -2
  32. onnx_diagnostic/torch_export_patches/patches/patch_torch.py +14 -13
  33. onnx_diagnostic/torch_export_patches/serialization/transformers_impl.py +44 -23
  34. onnx_diagnostic/torch_models/code_sample.py +5 -10
  35. onnx_diagnostic/torch_models/hghub/hub_data.py +2 -4
  36. onnx_diagnostic/torch_models/hghub/hub_data_cached_configs.py +7 -12
  37. onnx_diagnostic/torch_models/untrained/llm_phi2.py +1 -0
  38. onnx_diagnostic/torch_models/validate.py +1 -1
  39. onnx_diagnostic/torch_onnx/compare.py +0 -1
  40. onnx_diagnostic/torch_onnx/runtime_info.py +1 -1
  41. onnx_diagnostic/torch_onnx/sbs.py +1 -1
  42. onnx_diagnostic/torch_onnx/sbs_dataclasses.py +2 -4
  43. onnx_diagnostic/typing.py +15 -0
  44. {onnx_diagnostic-0.8.9.dist-info → onnx_diagnostic-0.8.11.dist-info}/METADATA +1 -1
  45. {onnx_diagnostic-0.8.9.dist-info → onnx_diagnostic-0.8.11.dist-info}/RECORD +48 -46
  46. {onnx_diagnostic-0.8.9.dist-info → onnx_diagnostic-0.8.11.dist-info}/WHEEL +1 -1
  47. onnx_diagnostic/api.py +0 -15
  48. {onnx_diagnostic-0.8.9.dist-info → onnx_diagnostic-0.8.11.dist-info}/licenses/LICENSE.txt +0 -0
  49. {onnx_diagnostic-0.8.9.dist-info → onnx_diagnostic-0.8.11.dist-info}/top_level.txt +0 -0
@@ -1,6 +1,7 @@
1
1
  import itertools
2
2
  from typing import Any, Callable, List, Set, Tuple
3
3
  import torch
4
+ import transformers.cache_utils
4
5
  from transformers.cache_utils import Cache, DynamicCache, EncoderDecoderCache, StaticCache
5
6
 
6
7
  try:
@@ -22,22 +23,43 @@ from transformers.modeling_outputs import BaseModelOutput
22
23
  from ...helpers.cache_helper import make_dynamic_cache, make_static_cache, CacheKeyValue
23
24
  from . import make_serialization_function_for_dataclass
24
25
 
25
-
26
26
  SUPPORTED_DATACLASSES: Set[type] = set()
27
27
  WRONG_REGISTRATIONS = {
28
28
  DynamicCache: "4.50",
29
29
  BaseModelOutput: None,
30
30
  }
31
+ SHORTEN_LAYER_NAMES = {
32
+ "DynamicLayer": "D",
33
+ "DynamicSlidingWindowLayer": "W",
34
+ "StaticLayer": "S",
35
+ "StaticSlidingWindowLayer": "X",
36
+ "D": "DynamicLayer",
37
+ "W": "DynamicSlidingWindowLayer",
38
+ "S": "StaticLayer",
39
+ "X": "StaticSlidingWindowLayer",
40
+ }
31
41
 
32
42
 
33
43
  def _flatten_key_value_cache(cache: Cache) -> Tuple[List[Any], torch.utils._pytree.Context]:
34
44
  ca = CacheKeyValue(cache)
35
45
  flat = list(itertools.chain.from_iterable(zip(ca.key_cache, ca.value_cache)))
36
- keys = list(
37
- itertools.chain.from_iterable(
38
- (f"key_{i}", f"value_{i}") for i in range(len(ca.key_cache))
46
+ unique = set(ca.cls_layers) if ca.cls_layers else None
47
+ if (
48
+ cache.__class__.__name__ != "DynamicCache"
49
+ or unique is None
50
+ or (len(unique) == 1 and unique.pop().__name__ == "DynamicLayer")
51
+ ):
52
+ keys = list(
53
+ itertools.chain.from_iterable(
54
+ (f"key_{i}", f"value_{i}") for i in range(len(ca.key_cache))
55
+ )
39
56
  )
40
- )
57
+ return flat, keys
58
+
59
+ keys = []
60
+ for i in range(len(ca.key_cache)):
61
+ letter = SHORTEN_LAYER_NAMES[ca.cls_layers[i].__name__]
62
+ keys.extend([f"key_{letter}{i}", f"value_{letter}{i}"])
41
63
  return flat, keys
42
64
 
43
65
 
@@ -55,7 +77,20 @@ def _unflatten_cache(
55
77
  output_type=None,
56
78
  ) -> DynamicCache:
57
79
  """Restores a :class:`transformers.cache_utils.DynamicCache` from python objects."""
58
- res = make_cache(list(zip(values[::2], values[1::2])))
80
+ expected = list(
81
+ itertools.chain.from_iterable(
82
+ (f"key_{i}", f"value_{i}") for i in range(len(values) // 2)
83
+ )
84
+ )
85
+ if expected == context:
86
+ res = make_cache(list(zip(values[::2], values[1::2])))
87
+ else:
88
+ cls_layer_names = [SHORTEN_LAYER_NAMES[name.split("_")[1][0]] for name in context][::2]
89
+ cls_layers = [
90
+ getattr(transformers.cache_utils, cls_name) for cls_name in cls_layer_names
91
+ ]
92
+ res = make_cache(list(zip(values[::2], values[1::2])), cls_layers=cls_layers)
93
+
59
94
  assert output_type is None or isinstance(
60
95
  res, output_type
61
96
  ), f"Type mismatch between {output_type} (expected) and {type(res)}"
@@ -71,14 +106,6 @@ def flatten_dynamic_cache(
71
106
  dynamic_cache: DynamicCache,
72
107
  ) -> Tuple[List[Any], torch.utils._pytree.Context]:
73
108
  """Serializes a :class:`transformers.cache_utils.DynamicCache` with python objects."""
74
- assert (
75
- not hasattr(dynamic_cache, "layers")
76
- or not dynamic_cache.layers
77
- or all(lay.__class__.__name__ == "DynamicLayer" for lay in dynamic_cache.layers)
78
- ), (
79
- f"The serialization does not work yet on other layers "
80
- f"than DynamicLayer, but layers={[lay.__class__ for lay in dynamic_cache.layers]}"
81
- )
82
109
  return _flatten_key_value_cache(dynamic_cache)
83
110
 
84
111
 
@@ -86,14 +113,6 @@ def flatten_with_keys_dynamic_cache(
86
113
  dynamic_cache: DynamicCache,
87
114
  ) -> Tuple[List[Tuple[torch.utils._pytree.KeyEntry, Any]], torch.utils._pytree.Context]:
88
115
  """Serializes a :class:`transformers.cache_utils.DynamicCache` with python objects."""
89
- assert (
90
- not hasattr(dynamic_cache, "layers")
91
- or not dynamic_cache.layers
92
- or all(lay.__class__.__name__ == "DynamicLayer" for lay in dynamic_cache.layers)
93
- ), (
94
- f"The serialization does not work yet on other layers "
95
- f"than DynamicLayer, but layers={[lay.__class__ for lay in dynamic_cache.layers]}"
96
- )
97
116
  return _flatten_with_keys_cache(dynamic_cache)
98
117
 
99
118
 
@@ -161,7 +180,9 @@ def unflatten_static_cache(
161
180
  ) -> StaticCache:
162
181
  """Restores a :class:`transformers.cache_utils.StaticCache` from python objects."""
163
182
  return _unflatten_cache(
164
- lambda *args: make_static_cache(*args, max_cache_len=values[0].shape[2]),
183
+ lambda *args, **kwargs: make_static_cache(
184
+ *args, max_cache_len=values[0].shape[2], **kwargs
185
+ ),
165
186
  values,
166
187
  context,
167
188
  output_type=output_type,
@@ -8,11 +8,9 @@ from .hghub.model_inputs import _preprocess_model_id
8
8
  from .hghub import get_untrained_model_with_inputs
9
9
  from .validate import filter_inputs, make_patch_kwargs
10
10
 
11
-
12
11
  CODE_SAMPLES = {
13
12
  "imports": "from typing import Any\nimport torch",
14
- "get_model_with_inputs": textwrap.dedent(
15
- """
13
+ "get_model_with_inputs": textwrap.dedent("""
16
14
  def get_model_with_inputs(
17
15
  model_id:str,
18
16
  subfolder: str | None = None,
@@ -57,8 +55,7 @@ CODE_SAMPLES = {
57
55
  if device:
58
56
  data["model"] = data["model"].to(device)
59
57
  return data["model"]
60
- """
61
- ),
58
+ """),
62
59
  }
63
60
 
64
61
 
@@ -198,7 +195,7 @@ def code_sample(
198
195
  this is not always possible
199
196
  :param use_pretrained: use the trained model, not the untrained one
200
197
  :param optimization: optimization to apply to the exported model,
201
- depend on the the exporter
198
+ depend on the exporter
202
199
  :param quiet: if quiet, catches exception if any issue
203
200
  :param patch: applies patches (``patch_transformers=True, path_diffusers=True``)
204
201
  if True before exporting
@@ -326,11 +323,9 @@ def code_sample(
326
323
  imports,
327
324
  cache_import,
328
325
  CODE_SAMPLES["get_model_with_inputs"],
329
- textwrap.dedent(
330
- f"""
326
+ textwrap.dedent(f"""
331
327
  model = get_model_with_inputs({model_args})
332
- """
333
- ),
328
+ """),
334
329
  f"inputs = {input_code}",
335
330
  exporter_code,
336
331
  ]
@@ -10,8 +10,7 @@ __data_arch_values__ = {
10
10
  "ResNetForImageClassification": dict(image_size=224),
11
11
  }
12
12
 
13
- __data_arch__ = textwrap.dedent(
14
- """
13
+ __data_arch__ = textwrap.dedent("""
15
14
  architecture,task
16
15
  ASTModel,feature-extraction
17
16
  AutoencoderKL,image-to-image
@@ -166,8 +165,7 @@ __data_arch__ = textwrap.dedent(
166
165
  YolosModel,image-feature-extraction
167
166
  Alibaba-NLP/gte-large-en-v1.5,sentence-similarity
168
167
  emilyalsentzer/Bio_ClinicalBERT,fill-mask
169
- nvidia/Cosmos-Predict2-2B-Video2World//transformer,image-to-video"""
170
- )
168
+ nvidia/Cosmos-Predict2-2B-Video2World//transformer,image-to-video""")
171
169
 
172
170
  __data_tasks__ = [
173
171
  "audio-classification",
@@ -143,6 +143,7 @@ def _ccached_microsoft_phi2():
143
143
  "transformers_version": "4.51.0.dev0",
144
144
  "use_cache": true,
145
145
  "vocab_size": 51200,
146
+ "pad_token_id": 0,
146
147
  }
147
148
  )
148
149
 
@@ -193,8 +194,7 @@ def _ccached_hf_internal_testing_tiny_random_beitforimageclassification():
193
194
 
194
195
  def _ccached_hf_internal_testing_tiny_random_convnext():
195
196
  "hf-internal-testing/tiny-random-convnext"
196
- t64 = textwrap.dedent(
197
- """
197
+ t64 = textwrap.dedent("""
198
198
  ewogICJhcmNoaXRlY3R1cmVzIjogWwogICAgIkNvbnZOZXh0Rm9ySW1hZ2VDbGFzc2lmaWNhdGlvbiIKI
199
199
  CBdLAogICJkZXB0aHMiOiBbCiAgICAzLAogICAgMywKICAgIDksCiAgICAzCiAgXSwKICAiZHJvcF9wYX
200
200
  RoX3JhdGUiOiAwLjAsCiAgImhpZGRlbl9hY3QiOiAiZ2VsdSIsCiAgImhpZGRlbl9zaXplcyI6IFsKICA
@@ -1344,8 +1344,7 @@ def _ccached_hf_internal_testing_tiny_random_convnext():
1344
1344
  F0Y2hfc2l6ZSI6IDQsCiAgInN0YWdlX25hbWVzIjogWwogICAgInN0ZW0iLAogICAgInN0YWdlMSIsCiA
1345
1345
  gICAic3RhZ2UyIiwKICAgICJzdGFnZTMiLAogICAgInN0YWdlNCIKICBdLAogICJ0b3JjaF9kdHlwZSI6
1346
1346
  ICJmbG9hdDMyIiwKICAidHJhbnNmb3JtZXJzX3ZlcnNpb24iOiAiNC41MS4wLmRldjAiCn0K
1347
- """.strip()
1348
- )
1347
+ """.strip())
1349
1348
  js = base64.b64decode(t64.encode("utf-8"))
1350
1349
  kwargs = json.loads(js)
1351
1350
  return transformers.ConvNextConfig(**kwargs)
@@ -1816,8 +1815,7 @@ def _ccached_sshleifer_tiny_marian_en_de():
1816
1815
 
1817
1816
  def _ccached_hf_internal_testing_tiny_random_maskformerforinstancesegmentation():
1818
1817
  "hf-internal-testing/tiny-random-MaskFormerForInstanceSegmentation"
1819
- t64 = textwrap.dedent(
1820
- """
1818
+ t64 = textwrap.dedent("""
1821
1819
  ewogICJhcmNoaXRlY3R1cmVzIjogWwogICAgIk1hc2tGb3JtZXJGb3JJbnN0YW5jZVNlZ21lbnRhdGlvb
1822
1820
  iIKICBdLAogICJiYWNrYm9uZSI6IG51bGwsCiAgImJhY2tib25lX2NvbmZpZyI6IHsKICAgICJhdHRlbn
1823
1821
  Rpb25fcHJvYnNfZHJvcG91dF9wcm9iIjogMC4wLAogICAgImRlcHRocyI6IFsKICAgICAgMSwKICAgICA
@@ -1865,8 +1863,7 @@ def _ccached_hf_internal_testing_tiny_random_maskformerforinstancesegmentation()
1865
1863
  b2F0MzIiLAogICJ0cmFuc2Zvcm1lcnNfdmVyc2lvbiI6ICI0LjUxLjAuZGV2MCIsCiAgInVzZV9hdXhpb
1866
1864
  GlhcnlfbG9zcyI6IGZhbHNlLAogICJ1c2VfcHJldHJhaW5lZF9iYWNrYm9uZSI6IGZhbHNlLAogICJ1c2
1867
1865
  VfdGltbV9iYWNrYm9uZSI6IGZhbHNlCn0K
1868
- """.strip()
1869
- )
1866
+ """.strip())
1870
1867
  js = base64.b64decode(t64.encode("utf-8"))
1871
1868
  kwargs = json.loads(js)
1872
1869
  return transformers.MaskFormerConfig(**kwargs)
@@ -1909,8 +1906,7 @@ def _ccached_echarlaix_tiny_random_mistral():
1909
1906
 
1910
1907
  def _ccached_hf_internal_testing_tiny_random_mobilevit():
1911
1908
  "hf-internal-testing/tiny-random-mobilevit"
1912
- t64 = textwrap.dedent(
1913
- """
1909
+ t64 = textwrap.dedent("""
1914
1910
  ewogICJhcmNoaXRlY3R1cmVzIjogWwogICAgIk1vYmlsZVZpVEZvckltYWdlQ2xhc3NpZmljYXRpb24iC
1915
1911
  iAgXSwKICAiYXNwcF9kcm9wb3V0X3Byb2IiOiAwLjEsCiAgImFzcHBfb3V0X2NoYW5uZWxzIjogMjU2LA
1916
1912
  ogICJhdHJvdXNfcmF0ZXMiOiBbCiAgICA2LAogICAgMTIsCiAgICAxOAogIF0sCiAgImF0dGVudGlvbl9
@@ -3063,8 +3059,7 @@ def _ccached_hf_internal_testing_tiny_random_mobilevit():
3063
3059
  iAgIm91dHB1dF9zdHJpZGUiOiAzMiwKICAicGF0Y2hfc2l6ZSI6IDIsCiAgInFrdl9iaWFzIjogdHJ1ZS
3064
3060
  wKICAic2VtYW50aWNfbG9zc19pZ25vcmVfaW5kZXgiOiAyNTUsCiAgInRvcmNoX2R0eXBlIjogImZsb2F
3065
3061
  0MzIiLAogICJ0cmFuc2Zvcm1lcnNfdmVyc2lvbiI6ICI0LjUxLjAuZGV2MCIKfQo=
3066
- """.strip()
3067
- )
3062
+ """.strip())
3068
3063
  js = base64.b64decode(t64.encode("utf-8"))
3069
3064
  kwargs = json.loads(js)
3070
3065
  return transformers.MobileViTConfig(**kwargs)
@@ -53,6 +53,7 @@ def get_phi2(
53
53
  "transformers_version": "4.37.0",
54
54
  "use_cache": True,
55
55
  "vocab_size": 51200,
56
+ "pad_token_id": 0,
56
57
  }
57
58
  config.update(**kwargs)
58
59
  conf = transformers.PhiConfig(**config)
@@ -871,7 +871,7 @@ def validate_model(
871
871
  this is not always possible
872
872
  :param use_pretrained: use the trained model, not the untrained one
873
873
  :param optimization: optimization to apply to the exported model,
874
- depend on the the exporter
874
+ depend on the exporter
875
875
  :param quiet: if quiet, catches exception if any issue
876
876
  :param patch: applies patches (``patch_transformers=True, path_diffusers=True``)
877
877
  if True before exporting
@@ -5,7 +5,6 @@ import numpy as np
5
5
  import onnx
6
6
  from ..helpers.onnx_helper import onnx_dtype_name
7
7
 
8
-
9
8
  _NOT_SO_FAR_OPS = [
10
9
  {"MatMul", "Gemm", "FusedMatMul"},
11
10
  {"Conv", "FusedConv"},
@@ -2,7 +2,7 @@ import enum
2
2
  from typing import Any, Dict, List, Optional, Set, Tuple, Union
3
3
  import onnx
4
4
  import torch
5
- from ..api import TensorLike
5
+ from ..typing import TensorLike
6
6
  from ..helpers import string_type
7
7
  from ..helpers.onnx_helper import get_hidden_inputs
8
8
 
@@ -374,7 +374,7 @@ def _preparation_with_fx_graph(
374
374
  positions[n] = dict(fx=i)
375
375
  if node.op == "placeholder":
376
376
  if node.name in placeholders_to_state_dict:
377
- # This a weight.
377
+ # This is a weight.
378
378
  placeholders[node.name] = ep_state_dict[placeholders_to_state_dict[node.name]]
379
379
  torch_results[node.name] = placeholders[node.name]
380
380
  assert isinstance(torch_results[node.name], torch.Tensor), (
@@ -120,8 +120,7 @@ class ReplayConfiguration:
120
120
  rc = ReplayConfiguration(dump_folder="unused")
121
121
  print(rc.get_replay_code())
122
122
  """
123
- return textwrap.dedent(
124
- """
123
+ return textwrap.dedent("""
125
124
  import onnx
126
125
  import torch
127
126
  from onnx_diagnostic.helpers import max_diff, string_diff, string_type
@@ -225,8 +224,7 @@ class ReplayConfiguration:
225
224
  sess.run(None, ep_feeds)
226
225
  obj = prof.key_averages()
227
226
  print(obj.table())
228
- """
229
- )
227
+ """)
230
228
 
231
229
  def dump(
232
230
  self,
@@ -0,0 +1,15 @@
1
+ from typing import Any, Dict, List, Protocol, Tuple, runtime_checkable
2
+
3
+
4
+ @runtime_checkable
5
+ class TensorLike(Protocol):
6
+ @property
7
+ def shape(self) -> Tuple[int, ...]: ...
8
+ @property
9
+ def dtype(self) -> object: ...
10
+
11
+
12
+ @runtime_checkable
13
+ class InferenceSessionLike(Protocol):
14
+ def __init__(self, model: Any, **kwargs): ...
15
+ def run(self, feeds: Dict[str, TensorLike]) -> List[TensorLike]: ...
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: onnx-diagnostic
3
- Version: 0.8.9
3
+ Version: 0.8.11
4
4
  Summary: Tools to help converting pytorch models into ONNX.
5
5
  Home-page: https://github.com/sdpython/onnx-diagnostic
6
6
  Author: Xavier Dupré
@@ -1,48 +1,50 @@
1
- onnx_diagnostic/__init__.py,sha256=9vcutQbxSFR9MMn3ikZxIH3SQ1tgKjRC1yhyumWJ0Go,173
1
+ onnx_diagnostic/__init__.py,sha256=Rvw2q5b1Qw5vuqQ3xWEgU1oyUhLffzhnDfncZoOx6Qc,174
2
2
  onnx_diagnostic/__main__.py,sha256=YmyV_Aq_ianDlHyKLHMa6h8YK3ZmFPpLVHLKjM91aCk,79
3
- onnx_diagnostic/_command_lines_parser.py,sha256=g_udwHBHmY6X_d41Qby_DqMpEHL1p9GfUhJGBCihl8c,57784
4
- onnx_diagnostic/api.py,sha256=BhCl_yCd78N7TlVtPOHjeYv1QBEy39TjZ647rcHqLh0,345
3
+ onnx_diagnostic/_command_lines_parser.py,sha256=nR-WI-15da9e0o-z5mIKezCH4dGFU66gCbyuAFu2FzY,59315
5
4
  onnx_diagnostic/doc.py,sha256=-w2qaes0G0TM0PQFTzBVcJPh0r_IR6Vd2j2fj9iV65Y,10478
6
- onnx_diagnostic/ext_test_case.py,sha256=A6BkrRm-QbvM8A-qRRMLt9o9ZO6wMXE9jrotggjpGfE,50460
5
+ onnx_diagnostic/ext_test_case.py,sha256=5WQrMdILgr-j8hrqBs7Vi6IFMD3TXNHD7Dlr9K5y1es,51495
6
+ onnx_diagnostic/typing.py,sha256=okLjQGA_ikThoMQ1ikjeu-pCi9FiaO8uhSoKz1ufCQ8,409
7
7
  onnx_diagnostic/ci_models/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
8
8
  onnx_diagnostic/ci_models/ci_helpers.py,sha256=lblOF7z2kLcCRAwMOdqp-Tz1EL1oBywHfVokhqiTQRg,15592
9
- onnx_diagnostic/ci_models/export_phi4_mm.py,sha256=DH225jXhOG_S8KZE9Kn7FGNE4VqFyc9ZDnG-qxZn-hk,41668
9
+ onnx_diagnostic/ci_models/export_phi4_mm.py,sha256=hekQikmMJi4ihUf494zXVTgMFm0l7RXyfklzroObsYs,41646
10
10
  onnx_diagnostic/ci_models/export_qwen25_vl.py,sha256=_rYPr8PPraWizr2MPcGuYjrJ55ilJOyKl8kg0wq4L90,20405
11
11
  onnx_diagnostic/export/__init__.py,sha256=yEIoWiOeTwBsDhyYt2fTKuhtA0Ya1J9u9ZzMTOTWaWs,101
12
- onnx_diagnostic/export/api.py,sha256=iowYszK9ygdciW6P-C0isvW8ZAJW4yvI-3bjiWr2WAE,42945
12
+ onnx_diagnostic/export/api.py,sha256=CL2mwRAJU5tv4ujdlLgMLiC5GoqqeheTW4-xdVRry2M,43172
13
13
  onnx_diagnostic/export/cf_simple_loop_for.py,sha256=OHPGQc9AC-0TBtCYpP6cm-iHP9gmNt8WYRrPlO9ewlc,21158
14
14
  onnx_diagnostic/export/control_flow_onnx.py,sha256=izGlctqQANrHzSxPMbT7hoauNbnIBdx6hb8ry7HtVmM,18263
15
15
  onnx_diagnostic/export/dynamic_shapes.py,sha256=_3xnWXa4n7fTkAT0NSLyLkcEJqm896wHKA8ilEyxvm0,44746
16
16
  onnx_diagnostic/export/onnx_plug.py,sha256=U13fL0BjnhMzcDGxaAOqM4TQte5Z4zKDg4ESS0iktjM,22704
17
17
  onnx_diagnostic/export/shape_helper.py,sha256=K3y8-vFXYGg5R1tgeVOm_RjCZ8-yyrvYkQ4b3ILM5H4,10990
18
- onnx_diagnostic/export/validate.py,sha256=_PGUql2DJhIgGKo0WjTGUc5AgsZUx8fEs00MePy-w98,6043
18
+ onnx_diagnostic/export/validate.py,sha256=t8NZjgLqLjabKpUDjO5A5nBk_-BAsN1cdq-6UJ0Jm88,6127
19
19
  onnx_diagnostic/helpers/__init__.py,sha256=GJ2GT7cgnlIveVUwMZhuvUwidbTJaKv8CsSIOpZDsJg,83
20
20
  onnx_diagnostic/helpers/_log_helper.py,sha256=OTwQH0OIxs9B6nrSvR7MoxMimSw_8mU0mj133NvLk5o,16832
21
- onnx_diagnostic/helpers/args_helper.py,sha256=SRWnqC7EENg09RZlA50B_PcdiIhdbgA4C3ACfzl5nMs,4419
22
- onnx_diagnostic/helpers/bench_run.py,sha256=Vvzb7Wy0baIT5O0dx4RKQTx-5V08PiHxPJh6XPkY-lU,16544
23
- onnx_diagnostic/helpers/cache_helper.py,sha256=aKy566IGuNTZI14Fk3BlByxPYzuU-401eiXY8GN_UWE,31895
21
+ onnx_diagnostic/helpers/args_helper.py,sha256=qHxXJAM4ovBSYeufVVGMRQwrOW2AuP_HFQgqgU-QBQM,4463
22
+ onnx_diagnostic/helpers/bench_run.py,sha256=9T26icFQOSo3HB1gEw31bf-mD5BrVATrRDhuyWESxz8,16543
23
+ onnx_diagnostic/helpers/cache_helper.py,sha256=p7BB7Ba8n2hAPtpvhEuWJ9h9nQF3TlMQZPiMjJZQe70,32029
24
24
  onnx_diagnostic/helpers/config_helper.py,sha256=cWRETgFhZ7tayIZPnMqF8BF5AvTU64G2BMqyzgO7lzs,5670
25
- onnx_diagnostic/helpers/doc_helper.py,sha256=pl5MZd3_FaE8BqQnqoBuSBxoNCFcd2OJd3eITUSku5c,5897
25
+ onnx_diagnostic/helpers/doc_helper.py,sha256=9rigmq36D20yCKG5VkQnODiWMG2eJ0p22UdHew66UrQ,5983
26
26
  onnx_diagnostic/helpers/dot_helper.py,sha256=hwgTJsbsUv0qq7euyPDnc1NsBZDGOwv32JXSZxIHJkE,8118
27
27
  onnx_diagnostic/helpers/fake_tensor_helper.py,sha256=59046wDIw84or6PJxLaa2CFqaWT7Y3mpYr-BB2shcBE,12027
28
- onnx_diagnostic/helpers/graph_helper.py,sha256=hevQT5a7_QuriVPQcbT5qe18n99Doyl5h3-qshx1-uk,14093
28
+ onnx_diagnostic/helpers/graph_helper.py,sha256=ailTFdJu1Kir1VQ4GDsm9bUDIevZmgsJVJBGu7CFbCM,14100
29
29
  onnx_diagnostic/helpers/helper.py,sha256=7rBu2mQVxQxXrW1YuK433Lp68lvgNOhEqUNkuv9GxJw,66454
30
- onnx_diagnostic/helpers/log_helper.py,sha256=3mWQd-nLKCctKZt9N8SpoWgLC8O7YdNQ2pfW5QXYWDQ,93232
31
- onnx_diagnostic/helpers/memory_peak.py,sha256=M3m4_thWFIwP5HytbJYEqaijXIv5v5BW_vlcJowIYI4,6434
32
- onnx_diagnostic/helpers/mini_onnx_builder.py,sha256=jR2lkRZEQ0N30H0FqeBwaxJd_w_6kyxFagrnulqFjhE,23883
33
- onnx_diagnostic/helpers/model_builder_helper.py,sha256=qKIq4Naqq03gk6NfqXLQjSDiKL5FFNc1AEyVX0R8GmA,18540
34
- onnx_diagnostic/helpers/onnx_helper.py,sha256=f5iyzNIXWS90COkERnEb8txafH19CRYWKdKVY_lF05Q,57801
30
+ onnx_diagnostic/helpers/log_helper.py,sha256=njGse2PeD1muXVYvEMl6dsWTDja76wCWipxrEMAkLiw,94504
31
+ onnx_diagnostic/helpers/memory_peak.py,sha256=kigKbD3cq6ZCkE_nhOgNIkr9zHP9zp7ezZhut8GTrcI,6596
32
+ onnx_diagnostic/helpers/mini_onnx_builder.py,sha256=3IAJRf7bphKN0sY714me7H1UzEA1ejJQNYY7cMbGkCo,23878
33
+ onnx_diagnostic/helpers/model_builder_helper.py,sha256=r8LG3xh_-gwp4RODVM9jhB9HNWvccuNypwygWHoU2jA,18548
34
+ onnx_diagnostic/helpers/onnx_helper.py,sha256=1C-ZOsSS0mPHSMT02MD_0kBXpvJTkbsaom45IPiyu_4,64447
35
35
  onnx_diagnostic/helpers/optim_helper.py,sha256=0NiYRwV9GLTub4SEny0dqEhLcajRjEhcgkeBDVr9bGQ,4424
36
- onnx_diagnostic/helpers/ort_session.py,sha256=Y6iJojJcQtPesy9dRaaxRSeRTLXk0Pdh6-_fzdiPDm0,30779
36
+ onnx_diagnostic/helpers/ort_session.py,sha256=NNgJZ756f2zXCTkJidzoTQ5HiQLlkzQzk8hYQp9b0qM,30778
37
37
  onnx_diagnostic/helpers/rt_helper.py,sha256=YhVB7v5iR_UT9IqCeqyg58IEIx18f_TnCO6u6GhUciQ,38711
38
38
  onnx_diagnostic/helpers/torch_fx_graph_helper.py,sha256=7xFe4svdbr4gV3OTNcx8eJejjDyHAv4hD_RNNKSxL0c,6571
39
- onnx_diagnostic/helpers/torch_helper.py,sha256=H_rNXq4G78-45pJ2vsO0b_VxYVpSp6DVrOKaal6-VXo,39346
39
+ onnx_diagnostic/helpers/torch_helper.py,sha256=zy2F3pSKnby_0gHH-1rBiE1dvu6NVp_pLNro560ATgs,39449
40
+ onnx_diagnostic/investigate/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
41
+ onnx_diagnostic/investigate/input_observer.py,sha256=O42MxwjlrFBgb8nmg1UGLRYUBxoVv0JsSkUARxl0HQk,13882
40
42
  onnx_diagnostic/reference/__init__.py,sha256=rLZsxOlnb7-81F2CzepGnZLejaROg4JvgFaGR9FwVQA,208
41
- onnx_diagnostic/reference/evaluator.py,sha256=RzNzjFDeMe-4X51Tb22N6aagazY5ktNq-mRmPcfY5EU,8848
42
- onnx_diagnostic/reference/ort_evaluator.py,sha256=q7Dn0yC3LPadlfRnhiRzVn32k9ma_IivdYyhyecgNgc,33930
43
+ onnx_diagnostic/reference/evaluator.py,sha256=5PcPL_5xuEmm4j16KK0o2N5UkdUpuTSxQYc48MPWLpw,8847
44
+ onnx_diagnostic/reference/ort_evaluator.py,sha256=J3keuxFGnQIKP9V80U61y9rpU3zE26RR7HPozeaeiYo,33929
43
45
  onnx_diagnostic/reference/quantized_tensor.py,sha256=5u67uS2uGacdMD5VYCbpojNjiesDlV_kO0fAJ0vUWGE,1098
44
- onnx_diagnostic/reference/report_results_comparison.py,sha256=OsyQN8EHZZoj97u74RQP-7WFpebPOso5GEDpdkLWu6M,3645
45
- onnx_diagnostic/reference/torch_evaluator.py,sha256=Tx1teWvfGEX5RmkDnI83UiOlo5eBOC72vPhgTWdFUF0,27689
46
+ onnx_diagnostic/reference/report_results_comparison.py,sha256=aldQTYnjfHRdRVOUNldQpCS8U76_KDxwv77-CbNDcNc,3914
47
+ onnx_diagnostic/reference/torch_evaluator.py,sha256=n8BCLcmpi6-ur8JWTHbzuk-dRpJQj42_AwBF94Pdu7U,27921
46
48
  onnx_diagnostic/reference/ops/__init__.py,sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZOCcBY74-YBdrKVGs,1
47
49
  onnx_diagnostic/reference/ops/op_add_add_mul_mul.py,sha256=CXQVtgVrT066gDJFwxL4nDSY4G8r08XNu3EwhWqMapU,1521
48
50
  onnx_diagnostic/reference/ops/op_attention.py,sha256=ThALMDF53v3QeG1bohi0bvX2o90HZhGJbbAFOtwEHPE,2027
@@ -73,7 +75,7 @@ onnx_diagnostic/reference/ops/op_slice.py,sha256=yRxfYBs8b7QezyyG9JHCD8MIJHij2qR
73
75
  onnx_diagnostic/reference/ops/op_transpose_cast.py,sha256=ifef74rvh0Yvq1Zx51B4mfnISbxV9uRg9DFjkdL1_68,361
74
76
  onnx_diagnostic/reference/ops/op_tri_matrix.py,sha256=Yn2gxAyygcwtF5Hjau9ihXDAzul0BAkdqVimVahtFBU,519
75
77
  onnx_diagnostic/reference/torch_ops/__init__.py,sha256=fIDMG0KhNYuB4q_57Z5zz0ME6_w8Q0tnqUCooijoOW4,1163
76
- onnx_diagnostic/reference/torch_ops/_op_run.py,sha256=EEUIwfbRldEFDhULquYhk9x5ZDa9t6f2mKJ1sM__D6A,10517
78
+ onnx_diagnostic/reference/torch_ops/_op_run.py,sha256=qBGaLUWg0wWaTCUlbJq9OpmbHQRiQjtiP7Pbf7LgBXY,10536
77
79
  onnx_diagnostic/reference/torch_ops/access_ops.py,sha256=Zfs5OF03PV1CqlCqKI5VV-c4MY3KyQxmO7QZksxQjX8,3274
78
80
  onnx_diagnostic/reference/torch_ops/binary_ops.py,sha256=-KxMcCYGDTcZyOss9qU1nU0rmdyg9SdVHJQohseSTcQ,2653
79
81
  onnx_diagnostic/reference/torch_ops/controlflow_ops.py,sha256=uOEmzbM4nR2FwZQ8UikwEaHih3yw6T24D_VLYkr5RSU,4518
@@ -81,12 +83,12 @@ onnx_diagnostic/reference/torch_ops/generator_ops.py,sha256=dqqFvhkazVxRUDYhO2t-
81
83
  onnx_diagnostic/reference/torch_ops/nn_ops.py,sha256=TeFxQEiTezx9UUzu82ToCLUnUOU56kKv6X81RdZ8UC8,7238
82
84
  onnx_diagnostic/reference/torch_ops/other_ops.py,sha256=FnCY60mhdrzrsiHgvN-XpFRHYUpI0gIRqxgVK5J_na0,3995
83
85
  onnx_diagnostic/reference/torch_ops/reduce_ops.py,sha256=9gFfraPTQbe_ZEUNCUis1JSmA5dj4tSzjAOpZPJKG4Y,5102
84
- onnx_diagnostic/reference/torch_ops/sequence_ops.py,sha256=3EiVKpGfN4d1Iry4hgnr3MIJyEEKUrAIDgmRGsUXXa0,2297
86
+ onnx_diagnostic/reference/torch_ops/sequence_ops.py,sha256=POEYPF2sCDM5Ev5w_awpgtcr1XrVhLNva5vgXMUh_UU,2323
85
87
  onnx_diagnostic/reference/torch_ops/shape_ops.py,sha256=pJrNR2UB4PlWl6cv4EDl1uGl8YTBUUMQkhJcsh5K4sA,4291
86
88
  onnx_diagnostic/reference/torch_ops/unary_ops.py,sha256=dwu6HPr4V_roxu85U3VLTtDLx5bfxKalT_-zlQxZ5wc,1850
87
89
  onnx_diagnostic/tasks/__init__.py,sha256=kk-I2tgtb32A_ANh6Ux_u982mA2SrQKO_MDp0KsRi28,2774
88
90
  onnx_diagnostic/tasks/automatic_speech_recognition.py,sha256=aMufLDGW005f7aLMZ9alIQtg2s_WIUk5Rd9udS_BZ38,6964
89
- onnx_diagnostic/tasks/feature_extraction.py,sha256=IS9z9fPNE0hhGUebBfmNZl0twdXobMc7MFKpQB9qZI0,5388
91
+ onnx_diagnostic/tasks/feature_extraction.py,sha256=qfYjK_Pl555eoQjPuk_XnycTKAkr84FtvwrivyRPEc0,5387
90
92
  onnx_diagnostic/tasks/fill_mask.py,sha256=5Gt6zlj0p6vuifox7Wmj-TpHXJvPS0CEH8evgdBHDNA,2640
91
93
  onnx_diagnostic/tasks/image_classification.py,sha256=nLpBBB1Gkog3Fk6pu2waiHcuQr4ILPptc9FhQ-pn460,4682
92
94
  onnx_diagnostic/tasks/image_text_to_text.py,sha256=LFHngpedt4Ws2lj1v0QIqmbTvpV_IbOE05M3o2GRPfs,22289
@@ -103,13 +105,13 @@ onnx_diagnostic/tasks/text_to_image.py,sha256=mOS3Ruosi3hzRMxXLDN7ZkAbi7NnQb7MWw
103
105
  onnx_diagnostic/tasks/zero_shot_image_classification.py,sha256=jJCMWuOqGv5ahCfjrcqxuYCJFhTgHV5KUf2yyv2yxYA,4624
104
106
  onnx_diagnostic/tasks/data/__init__.py,sha256=uJoemrWgEjI6oA-tMX7r3__x-b3siPmkgqaY7bgIles,401
105
107
  onnx_diagnostic/tasks/data/dummies_imagetext2text_generation_gemma3.onnx,sha256=UbtvmWMqcZOKJ-I-HXWI1A6YR6QDaFS5u_yXm5C3ZBw,10299
106
- onnx_diagnostic/torch_export_patches/__init__.py,sha256=0SaZedwznm1hQUCvXZsGZORV5vby954wEExr5faepGg,720
108
+ onnx_diagnostic/torch_export_patches/__init__.py,sha256=KcBsUXOzw0n-Eo6uFQUUCnJjDsHLnR_J7u-SJu0d6bo,719
107
109
  onnx_diagnostic/torch_export_patches/onnx_export_errors.py,sha256=XHYtU7w3vsaTMCuF5X1YtOKxgwL8eEuktXzVZpRz55o,43431
108
- onnx_diagnostic/torch_export_patches/onnx_export_serialization.py,sha256=zvvtKlqKiC0625vrKP3JNrUHCM3sFV_rPoKWH8Yq9OM,12523
110
+ onnx_diagnostic/torch_export_patches/onnx_export_serialization.py,sha256=KZgr8WbLvmZte1G1hKA0zIlio5ZHz9MKIwGPqNamB6E,12690
109
111
  onnx_diagnostic/torch_export_patches/patch_details.py,sha256=UHBo4QTLF3ZgQ4951yYHIQqxOeRYNaG7x56XFcRTtg4,11794
110
112
  onnx_diagnostic/torch_export_patches/patch_expressions.py,sha256=VOsv71FsR_UZtxz4-5_VKL2sHQhOkHy9RkPJME2h7UU,3271
111
113
  onnx_diagnostic/torch_export_patches/patch_inputs.py,sha256=-TgcyjVzxTb5Y-_ibssTeaA5PFz6FJrV6q84HMUAsJw,8075
112
- onnx_diagnostic/torch_export_patches/patch_module.py,sha256=1Mn3xdpK1jSdRs6z1C-mJGkfGmD2TNRwLNoPaOW_EFI,40061
114
+ onnx_diagnostic/torch_export_patches/patch_module.py,sha256=Tcgi3osMcTGUsKg03GnbFL7HfZRVncVsJQ50KRHM4Z8,40064
113
115
  onnx_diagnostic/torch_export_patches/patch_module_helper.py,sha256=2U0AdyZuU0W54QTdE7tY7imVzMnpQ5091ADNtTCkT8Y,6967
114
116
  onnx_diagnostic/torch_export_patches/eval/__init__.py,sha256=15FNHm0Ztz9kuHeXiL0dIT_ABaNtKh_jMRbM8Kt0h7Y,25057
115
117
  onnx_diagnostic/torch_export_patches/eval/model_cases.py,sha256=9h4yo9vKiK-E6zaXyAsxXGM-lCjd88ONybA1F3YcTI4,27988
@@ -126,34 +128,34 @@ onnx_diagnostic/torch_export_patches/patches/_patch_transformers_masking_utils.p
126
128
  onnx_diagnostic/torch_export_patches/patches/_patch_transformers_qwen2.py,sha256=OxYdlLrwtd_KGHt3E17poduxvWFg-CfGS57-yN1i6gI,3827
127
129
  onnx_diagnostic/torch_export_patches/patches/_patch_transformers_qwen2_5.py,sha256=oYz0tr-6KH0DabpgaISytnXAGxQosoA8gV5LpksO4yI,34834
128
130
  onnx_diagnostic/torch_export_patches/patches/_patch_transformers_qwen3.py,sha256=cND9Iqo1aKdlX-BXGr9Qlq_Y4EW1L5VWSwZfqYTVazU,4888
129
- onnx_diagnostic/torch_export_patches/patches/_patch_transformers_rotary_embedding.py,sha256=LAqoL5SWISekZO15G1HIcCkN1JlBxGqb9XbK_eLzalA,16949
131
+ onnx_diagnostic/torch_export_patches/patches/_patch_transformers_rotary_embedding.py,sha256=AQTAAGhpg_Jlzc_26c9rmoZRuhmJcrFX488_W_Z0QD8,16945
130
132
  onnx_diagnostic/torch_export_patches/patches/_patch_transformers_sam_mask_decoder.py,sha256=-6TuBm3sLAFEGuW3vRfOTtE5uP6aINFfu7xMnl27Dws,5703
131
133
  onnx_diagnostic/torch_export_patches/patches/patch_helper.py,sha256=kK_CGW643iVXxa-m6pttDBS7HTyMQaPypza7iqIInn4,721
132
- onnx_diagnostic/torch_export_patches/patches/patch_torch.py,sha256=hia-wQRv2LNvUlb-GqML5JGu4a1LEs-lAvooQZefmyM,45196
134
+ onnx_diagnostic/torch_export_patches/patches/patch_torch.py,sha256=IpvyM5yhA3tioyDAwAEe3gZDvbRUwCI_CzKmm76zwyU,45297
133
135
  onnx_diagnostic/torch_export_patches/patches/patch_transformers.py,sha256=1W3iKVYx2QT2xJTKlz1UmtjySuwv-rfT5yVL9DjOfzI,3376
134
136
  onnx_diagnostic/torch_export_patches/serialization/__init__.py,sha256=BHLdRPtNAtNPAS-bPKEj3-foGSPvwAbZXrHzGGPDLEw,1876
135
137
  onnx_diagnostic/torch_export_patches/serialization/diffusers_impl.py,sha256=drq3EH_yjcSuIWYsVeUWm8Cx6YCZFU6bP_1PLtPfY5I,945
136
- onnx_diagnostic/torch_export_patches/serialization/transformers_impl.py,sha256=kcjMbGfNqftt5X1cP-d153qvK_d5FRRuDyCuieHGieU,10941
138
+ onnx_diagnostic/torch_export_patches/serialization/transformers_impl.py,sha256=divFi7xZcSIm7pERsMg0Eb9a7gDSmXPsdebA_yjoZk4,11530
137
139
  onnx_diagnostic/torch_models/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
138
- onnx_diagnostic/torch_models/code_sample.py,sha256=rCDZY64pkn6uIbJJSBuC5TlU_-uleI73I9GlbXtJd54,12923
140
+ onnx_diagnostic/torch_models/code_sample.py,sha256=D0Hv5PJQj2J8Nivoha-RzCdvVhsWYFVFEoG2D2yKm5k,12882
139
141
  onnx_diagnostic/torch_models/llms.py,sha256=soyg4yC87ptGoeulJhKqw5opGmuLvH1pn_ZDXZ4Jr8E,90
140
- onnx_diagnostic/torch_models/validate.py,sha256=JsEMv7aeg9tGGriKZ_CJeqGDfNUmZNdGtPu5jQN9TWY,96739
142
+ onnx_diagnostic/torch_models/validate.py,sha256=THCsMInLdWQ5a5LJbBtziDWHhKMlBXiHORoUr1NVflw,96735
141
143
  onnx_diagnostic/torch_models/hghub/__init__.py,sha256=vi1Q7YHdddj1soiBN42MSvJdFqe2_KUoWafHISjwOu8,58
142
144
  onnx_diagnostic/torch_models/hghub/hub_api.py,sha256=V3azxUqb7mkmHQ8m5DCgg1WUU2NYBK12USEUy_sfYIA,14709
143
- onnx_diagnostic/torch_models/hghub/hub_data.py,sha256=6jR8A83cGP4Xw1Wg-q1zzKFpqzoVrybqm0Fm3yurkrE,9030
144
- onnx_diagnostic/torch_models/hghub/hub_data_cached_configs.py,sha256=Dxa13rsnTQ8eH_BcQvbY2bp1AYFtzuFrJ-J_urrSmeQ,292694
145
+ onnx_diagnostic/torch_models/hghub/hub_data.py,sha256=Xr7bRZk_zCa7sylgZKSRpMcbdFxS4hWxNalM7YKcoDU,9024
146
+ onnx_diagnostic/torch_models/hghub/hub_data_cached_configs.py,sha256=M5B-wa0qi01iivDSgk74QCGE7iy7PvTpgJz7qugj3NM,292683
145
147
  onnx_diagnostic/torch_models/hghub/model_inputs.py,sha256=XahJ-m6ajdXg6vFGUOfV5IvFwn-yjAsIOU37nISbBoo,17646
146
148
  onnx_diagnostic/torch_models/hghub/model_specific.py,sha256=j50Nu7wddJMoqmD4QzMbNdFDUUgUmSBKRzPDH55TlUQ,2498
147
149
  onnx_diagnostic/torch_models/untrained/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
148
- onnx_diagnostic/torch_models/untrained/llm_phi2.py,sha256=y_akbdApi136qHcEQgykwIAYVw0Yfi0lbjb3DNuafaU,3948
150
+ onnx_diagnostic/torch_models/untrained/llm_phi2.py,sha256=HKj0krVNDI--mWHaTzagZ2RWAwe68P2n4JHKuW2ybFI,3975
149
151
  onnx_diagnostic/torch_models/untrained/llm_tiny_llm.py,sha256=QXw_Bs2SzfeiQMf-tmtVl83SmVOL4-Um7Qy-f0E48QI,2507
150
152
  onnx_diagnostic/torch_onnx/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
151
- onnx_diagnostic/torch_onnx/compare.py,sha256=O0lws4kzn8WAXr8-x-YMPr7oyBC9DtSIs4OfOr4S5-E,12305
152
- onnx_diagnostic/torch_onnx/runtime_info.py,sha256=u1bD6VXqzBCRmqmbzQtDswaPs1PH_ygr1r-CrcfXpNU,8562
153
- onnx_diagnostic/torch_onnx/sbs.py,sha256=8okBEIupMgw7TtKc80YFimMtwnY3GchdY05FsA9ooa0,40749
154
- onnx_diagnostic/torch_onnx/sbs_dataclasses.py,sha256=UctdBjzoPTQG1LS0tZ8A6E9hpoq5HWUYaJLPOPJc9FI,20299
155
- onnx_diagnostic-0.8.9.dist-info/licenses/LICENSE.txt,sha256=Vv6TXglX6Rc0d-f8aREhayhT-6PMQXEyOmI2NKlUCMc,1045
156
- onnx_diagnostic-0.8.9.dist-info/METADATA,sha256=cVfclVmpVRwo-9HRCRdVH-YIvWjMWaJloPzmCyN_WOg,6903
157
- onnx_diagnostic-0.8.9.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
158
- onnx_diagnostic-0.8.9.dist-info/top_level.txt,sha256=KwNkXewmcobM3ZT1DJLVWH6ebJzA5qKg7cWqKfpGNT4,16
159
- onnx_diagnostic-0.8.9.dist-info/RECORD,,
153
+ onnx_diagnostic/torch_onnx/compare.py,sha256=pXPZ168pT7J_-UOOvsbmS_dCJcwaPjA7GxiLR7Ug8GQ,12304
154
+ onnx_diagnostic/torch_onnx/runtime_info.py,sha256=Mv6WQXNtfNF31zgLm5Hk3x2fTDS6p8UjPh51_Jn4tl0,8565
155
+ onnx_diagnostic/torch_onnx/sbs.py,sha256=xeq4jrMnTeLvZ3UjFlMNpm-VBbP_16fPwTi1_Ujvilo,40752
156
+ onnx_diagnostic/torch_onnx/sbs_dataclasses.py,sha256=WPu9hdz8dIXqvFYy-xtPX9liD_DUVkXOWO_vElOGksY,20277
157
+ onnx_diagnostic-0.8.11.dist-info/licenses/LICENSE.txt,sha256=Vv6TXglX6Rc0d-f8aREhayhT-6PMQXEyOmI2NKlUCMc,1045
158
+ onnx_diagnostic-0.8.11.dist-info/METADATA,sha256=aQ94UbORi24koH-hkkyOjrpCFqnVLYLWXSMrqC_IbOc,6904
159
+ onnx_diagnostic-0.8.11.dist-info/WHEEL,sha256=qELbo2s1Yzl39ZmrAibXA2jjPLUYfnVhUNTlyF1rq0Y,92
160
+ onnx_diagnostic-0.8.11.dist-info/top_level.txt,sha256=KwNkXewmcobM3ZT1DJLVWH6ebJzA5qKg7cWqKfpGNT4,16
161
+ onnx_diagnostic-0.8.11.dist-info/RECORD,,
@@ -1,5 +1,5 @@
1
1
  Wheel-Version: 1.0
2
- Generator: setuptools (80.9.0)
2
+ Generator: setuptools (80.10.1)
3
3
  Root-Is-Purelib: true
4
4
  Tag: py3-none-any
5
5
 
onnx_diagnostic/api.py DELETED
@@ -1,15 +0,0 @@
1
- from typing import Any
2
-
3
-
4
- class TensorLike:
5
- """Mocks a tensor."""
6
-
7
- @property
8
- def dtype(self) -> Any:
9
- "Must be overwritten."
10
- raise NotImplementedError("dtype must be overwritten.")
11
-
12
- @property
13
- def shape(self) -> Any:
14
- "Must be overwritten."
15
- raise NotImplementedError("shape must be overwritten.")