onnx-diagnostic 0.8.3__py3-none-any.whl → 0.8.4__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -4,6 +4,7 @@ import onnx
4
4
  import torch
5
5
  from ..api import TensorLike
6
6
  from ..helpers import string_type
7
+ from ..helpers.onnx_helper import get_hidden_inputs
7
8
 
8
9
 
9
10
  class RuntimeValueKind(enum.IntEnum):
@@ -151,30 +152,6 @@ class RuntimeValue:
151
152
  return self.kind == RuntimeValueKind.INITIALIZER
152
153
 
153
154
 
154
- def get_hidden_inputs(graph: onnx.GraphProto) -> Set[str]:
155
- """
156
- Returns the hidden inputs (inputs coming from an upper context)
157
- used by a subgraph.
158
- """
159
- hidden = set()
160
- memo = (
161
- set(i.name for i in graph.initializer)
162
- | set(i.name for i in graph.sparse_initializer)
163
- | set(i.name for i in graph.input)
164
- )
165
- for node in graph.node:
166
- for i in node.input:
167
- if i not in memo:
168
- hidden.add(i)
169
- for att in node.attribute:
170
- if att.type == onnx.AttributeProto.GRAPH and att.g:
171
- hid = get_hidden_inputs(att.g)
172
- less = set(h for h in hid if h not in memo)
173
- hidden |= less
174
- memo |= set(node.output)
175
- return hidden
176
-
177
-
178
155
  def set_is_shape(
179
156
  node: onnx.NodeProto, values: Dict[str, RuntimeValue], drop: Optional[Set[str]] = None
180
157
  ) -> List[str]:
@@ -7,7 +7,12 @@ import numpy as np
7
7
  import torch
8
8
  from ..helpers import string_type, string_diff, max_diff, flatten_object
9
9
  from ..helpers.onnx_helper import pretty_onnx
10
- from ..helpers.torch_helper import to_numpy, from_numpy, to_tensor, torch_dtype_to_onnx_dtype
10
+ from ..helpers.torch_helper import (
11
+ to_numpy,
12
+ from_numpy,
13
+ to_tensor,
14
+ torch_dtype_to_onnx_dtype,
15
+ )
11
16
  from ..helpers.torch_fx_graph_helper import prepare_args_kwargs, run_fx_node
12
17
  from ..reference.ort_evaluator import OnnxList, OnnxruntimeEvaluator
13
18
  from .sbs_dataclasses import (
@@ -381,7 +386,8 @@ def _preparation_with_fx_graph(
381
386
  assert len(torch_input_names) < len(onx.graph.input), (
382
387
  f"torch_input_names={torch_input_names!r}, "
383
388
  f"onnx_input_names={[n.name for n in onx.graph.input]}, "
384
- f"node.name={node.name!r} cannot be an input"
389
+ f"node.name={node.name!r} cannot be an input, "
390
+ f"placeholders_to_state_dict={sorted(placeholders_to_state_dict)}"
385
391
  )
386
392
  assert node.name not in skip_mapping_torch_onnx, (
387
393
  f"{node.name!r} is ambiguous, cannot be mapped due to "
@@ -772,9 +778,9 @@ def run_aligned(
772
778
  # preparation with ep.graph.nodes
773
779
  ep_state_dict = {**ep.state_dict, **dict(ep.named_buffers(), **ep.tensor_constants)}
774
780
  placeholders_to_state_dict = {
775
- **{f"p_{name.replace('.', '_')}": name for name in ep.state_dict},
776
- **{f"b_{name.replace('.', '_')}": name for name, _ in ep.named_buffers()},
777
- **{f"c_{name.replace('.', '_')}": name for name in ep.tensor_constants},
781
+ **{f"p_{name.replace('.', '_').lower()}": name for name in ep.state_dict},
782
+ **{f"b_{name.replace('.', '_').lower()}": name for name, _ in ep.named_buffers()},
783
+ **{f"c_{name.replace('.', '_').lower()}": name for name in ep.tensor_constants},
778
784
  }
779
785
  skip_mapping_torch_onnx = _duplicated_values(placeholders_to_state_dict)
780
786
  placeholders = {}
@@ -11,7 +11,12 @@ except ImportError:
11
11
  import onnx
12
12
  import numpy as np
13
13
  import torch
14
- from ..helpers.onnx_helper import extract_subset_of_nodes, make_submodel, from_array_extended
14
+ from ..helpers.onnx_helper import (
15
+ extract_subset_of_nodes,
16
+ make_submodel,
17
+ from_array_extended,
18
+ select_model_inputs_outputs,
19
+ )
15
20
  from ..helpers.torch_helper import torch_dtype_to_onnx_dtype
16
21
 
17
22
 
@@ -61,12 +66,16 @@ class ReplayConfiguration:
61
66
  :param selected_names: list of results names to dump
62
67
  :param selected_op_types: list of onnx operators to dump
63
68
  :param threshold: only keep those whose discrepancies is greater than that threshold
69
+ :param dump_prefix_model: after dumping the smallest model able to replicate
70
+ one given output, if also dumps the models producing the inputs
71
+ and the outputs truncated from the big one
64
72
  """
65
73
 
66
74
  dump_folder: str
67
75
  selected_names: Optional[Set[str]] = None
68
76
  selected_op_types: Optional[Set[str]] = None
69
77
  threshold: float = 0.1
78
+ dump_prefix_model: bool = False
70
79
 
71
80
  def __post_init__(self):
72
81
  assert self.dump_folder, "dump_folder is empty and this is not allowed for the replay"
@@ -243,7 +252,17 @@ class ReplayConfiguration:
243
252
  :return: the folder created to dump everything
244
253
  """
245
254
  if verbose:
246
- print(f"[ReplayConfiguration.dump] extract subset of node for {name!r}")
255
+ print(
256
+ f"[ReplayConfiguration.dump] extract subset of nodes for "
257
+ f"{name!r} (onnx_id_node={onnx_id_node})"
258
+ )
259
+ if verbose >= 10:
260
+ print(f"[ReplayConfiguration.dump] onnx_results={sorted(onnx_results)}")
261
+ print(f"[ReplayConfiguration.dump] torch_results={sorted(torch_results)}")
262
+ print(
263
+ f"[ReplayConfiguration.dump] onnx_name_to_ep_name="
264
+ f"{sorted(onnx_name_to_ep_name)}"
265
+ )
247
266
  nodes = extract_subset_of_nodes(
248
267
  model=model,
249
268
  name=name,
@@ -253,7 +272,8 @@ class ReplayConfiguration:
253
272
  if not nodes:
254
273
  if verbose:
255
274
  print(
256
- f"[ReplayConfiguration.dump] could not extract subset of node for {name!r}"
275
+ f"[ReplayConfiguration.dump] could not extract subset of "
276
+ f"nodes for {name!r}"
257
277
  )
258
278
  return None
259
279
  if verbose:
@@ -286,7 +306,7 @@ class ReplayConfiguration:
286
306
  del submodel.graph.input[:]
287
307
  submodel.graph.input.extend(new_inputs)
288
308
  if verbose:
289
- print(f"[ReplayConfiguration.dump] removed input {removed_inputs}")
309
+ print(f"[ReplayConfiguration.dump] removed inputs {removed_inputs}")
290
310
  print(f"[ReplayConfiguration.dump] final model inputs {input_names}")
291
311
 
292
312
  onnx.save(submodel, os.path.join(folder, "model.onnx"))
@@ -307,6 +327,30 @@ class ReplayConfiguration:
307
327
  )
308
328
  with open(os.path.join(folder, "replay.py"), "w") as f:
309
329
  f.write(self.get_replay_code())
330
+
331
+ if self.dump_prefix_model:
332
+ main_inputs = {
333
+ i.name: onnx_inputs.get(i.name, torch_inputs.get(i.name, None))
334
+ for i in model.graph.input
335
+ }
336
+ # only saving onnx inputs, torch should be the same
337
+ torch.save(main_inputs, os.path.join(folder, "onnx_main_inputs.pt"))
338
+
339
+ model_inputs_file = os.path.join(folder, "model.inputs.onnx")
340
+ exclude = {i.name for i in model.graph.input} | {
341
+ i.name for i in model.graph.initializer
342
+ }
343
+ model_inputs = select_model_inputs_outputs(
344
+ model, outputs=[i.name for i in submodel.graph.input if i.name not in exclude]
345
+ )
346
+ onnx.save(model_inputs, model_inputs_file)
347
+
348
+ model_outputs_file = os.path.join(folder, "model.outputs.onnx")
349
+ model_outputs = select_model_inputs_outputs(
350
+ model, outputs=[i.name for i in submodel.graph.output]
351
+ )
352
+ onnx.save(model_outputs, model_outputs_file)
353
+
310
354
  if verbose:
311
355
  print(f"[ReplayConfiguration.dump] done {folder!r}")
312
356
  return folder
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: onnx-diagnostic
3
- Version: 0.8.3
3
+ Version: 0.8.4
4
4
  Summary: Tools to help converting pytorch models into ONNX.
5
5
  Home-page: https://github.com/sdpython/onnx-diagnostic
6
6
  Author: Xavier Dupré
@@ -1,16 +1,16 @@
1
- onnx_diagnostic/__init__.py,sha256=q-JGXWdB5HIHrAPUbiGuZ3aflvcrMyhNffVzOd5xO-8,173
1
+ onnx_diagnostic/__init__.py,sha256=BuvSD4fYmz8ZVadwiG4GCHeb46p5sNX7-_GM16OtKW0,173
2
2
  onnx_diagnostic/__main__.py,sha256=YmyV_Aq_ianDlHyKLHMa6h8YK3ZmFPpLVHLKjM91aCk,79
3
- onnx_diagnostic/_command_lines_parser.py,sha256=KFKyH254F7FdcKKc2QrtAjpGLpLwnduflPvqm3FM0UI,51441
3
+ onnx_diagnostic/_command_lines_parser.py,sha256=Xkh_7fIDbT5ghTpLqlVhx4cIxAUXqv6zvPdnN3aCdOY,52254
4
4
  onnx_diagnostic/api.py,sha256=BhCl_yCd78N7TlVtPOHjeYv1QBEy39TjZ647rcHqLh0,345
5
5
  onnx_diagnostic/doc.py,sha256=t3RELgfooYnVMAi0JSpggWkQEgUsREz8NmRvn0TnLI8,2829
6
- onnx_diagnostic/ext_test_case.py,sha256=bA4oK1mnccbt5Ien24I9nhiDgay0IjCxOeH1lPU5E-g,47798
6
+ onnx_diagnostic/ext_test_case.py,sha256=rVZWqFEfnvwnsD3wF4jeDblh5uj5ckZ8C6DZQ0RGb_E,49599
7
7
  onnx_diagnostic/export/__init__.py,sha256=yEIoWiOeTwBsDhyYt2fTKuhtA0Ya1J9u9ZzMTOTWaWs,101
8
- onnx_diagnostic/export/api.py,sha256=xivxtvjFAIbKquAsGLjVp9J_CZl6KWeO8IT4wii9FOI,9649
8
+ onnx_diagnostic/export/api.py,sha256=c3ZASq2upUAoiQ4aymm8vOAEySN_Yk6l0o1hWf6Ailo,10065
9
9
  onnx_diagnostic/export/control_flow.py,sha256=zU5n_QYhNcBllyMsl1_i6ohZt2CshqG2MokJghrvA60,7751
10
10
  onnx_diagnostic/export/control_flow_onnx.py,sha256=sODOD4v7EJj6LWhrfcdCW68r9nYKsRM4SRnqDw4TrSI,18049
11
- onnx_diagnostic/export/control_flow_research.py,sha256=UMAlriHKBLoYJzdq3kCmsUIKOlYQE0OjFbJ8zkuvuwI,5220
11
+ onnx_diagnostic/export/control_flow_research.py,sha256=RuYz9_eM42Bk6TKSiPV6dS68LIMZu-6WBCFCKoSvjrk,5422
12
12
  onnx_diagnostic/export/dynamic_shapes.py,sha256=M2hlpHSTbkzZwGKAbrpQXng5HQrwjF5Z6wGGxEgnp74,42061
13
- onnx_diagnostic/export/onnx_plug.py,sha256=vwUyOtF5aihAO-98QSmY_sD9w0hNMnGKaSxG0cF0ZCo,14660
13
+ onnx_diagnostic/export/onnx_plug.py,sha256=WqqdTBk2pV26AplNQysIdhR9y3ZFdQ-5KXu5ogTNcgI,21053
14
14
  onnx_diagnostic/export/shape_helper.py,sha256=m628y0oRCQbeZkeh8JDHIfWMsSjoJoeX-IPiPGDHT-w,11273
15
15
  onnx_diagnostic/export/validate.py,sha256=_PGUql2DJhIgGKo0WjTGUc5AgsZUx8fEs00MePy-w98,6043
16
16
  onnx_diagnostic/helpers/__init__.py,sha256=GJ2GT7cgnlIveVUwMZhuvUwidbTJaKv8CsSIOpZDsJg,83
@@ -20,22 +20,22 @@ onnx_diagnostic/helpers/bench_run.py,sha256=CGA6VMJZMH2gDhVueT9ypNm4PMcjGrrGFYp0
20
20
  onnx_diagnostic/helpers/cache_helper.py,sha256=OLghsSUuZ8cWGkua8eH75KBF-mbVqejnNUYfFo5lRf0,28498
21
21
  onnx_diagnostic/helpers/config_helper.py,sha256=cWRETgFhZ7tayIZPnMqF8BF5AvTU64G2BMqyzgO7lzs,5670
22
22
  onnx_diagnostic/helpers/doc_helper.py,sha256=pl5MZd3_FaE8BqQnqoBuSBxoNCFcd2OJd3eITUSku5c,5897
23
- onnx_diagnostic/helpers/dot_helper.py,sha256=Ii6jg-1YUJPI6cPhhTeD8rc5PJR0GIiGa2PLOdWJyA8,7798
23
+ onnx_diagnostic/helpers/dot_helper.py,sha256=hwgTJsbsUv0qq7euyPDnc1NsBZDGOwv32JXSZxIHJkE,8118
24
24
  onnx_diagnostic/helpers/fake_tensor_helper.py,sha256=J7wnK3WTuVKnYiMzLVTAPkdJr3hQfIfMC9ZlOu7oGmI,11024
25
25
  onnx_diagnostic/helpers/graph_helper.py,sha256=hevQT5a7_QuriVPQcbT5qe18n99Doyl5h3-qshx1-uk,14093
26
- onnx_diagnostic/helpers/helper.py,sha256=aCPkAU6iNmHA3Glt_uehEiBOIIZtXDgq9hjhdG5Ol3Y,65568
26
+ onnx_diagnostic/helpers/helper.py,sha256=f5w53QR0IO1-zqAMacgeGpZNA8uAo0c2k_ZYXP_BRhE,65840
27
27
  onnx_diagnostic/helpers/log_helper.py,sha256=0lJiTF87lliI-LmgpUH_V2N8NuzJ0LryH0mSYpkRaL8,93272
28
28
  onnx_diagnostic/helpers/memory_peak.py,sha256=M3m4_thWFIwP5HytbJYEqaijXIv5v5BW_vlcJowIYI4,6434
29
29
  onnx_diagnostic/helpers/mini_onnx_builder.py,sha256=jR2lkRZEQ0N30H0FqeBwaxJd_w_6kyxFagrnulqFjhE,23883
30
30
  onnx_diagnostic/helpers/model_builder_helper.py,sha256=qKIq4Naqq03gk6NfqXLQjSDiKL5FFNc1AEyVX0R8GmA,18540
31
- onnx_diagnostic/helpers/onnx_helper.py,sha256=BCf1djXB--eY_FJv9ldD85bQ--OMI_uPDJN6SumdbdM,43057
32
- onnx_diagnostic/helpers/ort_session.py,sha256=TFCDgcG3Nvj_1S0xTIUqDw0WTSeav0NMJFYCfT_W-dw,30505
31
+ onnx_diagnostic/helpers/onnx_helper.py,sha256=MshvqMSTNUUZIpkkRYGDymdW2t2KtB2BgYtOPHIDwvQ,57508
32
+ onnx_diagnostic/helpers/ort_session.py,sha256=XvRazj7yyepaQwYHpPkKKi9v8u_h9A4ZiFH6IxjqPKs,30502
33
33
  onnx_diagnostic/helpers/rt_helper.py,sha256=OOxHSCKZup2u7zTvVJxPkRHb4jQZ03KpkiDGrfwibMM,38135
34
34
  onnx_diagnostic/helpers/torch_fx_graph_helper.py,sha256=7xFe4svdbr4gV3OTNcx8eJejjDyHAv4hD_RNNKSxL0c,6571
35
- onnx_diagnostic/helpers/torch_helper.py,sha256=gtkk31BptY5JvNOvbx_1Bfyuns_mQu9gEO0upoUTdy4,38294
35
+ onnx_diagnostic/helpers/torch_helper.py,sha256=ADV81WWCskQ-jmzn1GI_LU8GqBtufCHS3oeLG-3Uw0E,38954
36
36
  onnx_diagnostic/reference/__init__.py,sha256=rLZsxOlnb7-81F2CzepGnZLejaROg4JvgFaGR9FwVQA,208
37
37
  onnx_diagnostic/reference/evaluator.py,sha256=RzNzjFDeMe-4X51Tb22N6aagazY5ktNq-mRmPcfY5EU,8848
38
- onnx_diagnostic/reference/ort_evaluator.py,sha256=RsTboIAL1QqudV6X3P3VxBPxLtJJF8TsxNdyy0L5epE,34773
38
+ onnx_diagnostic/reference/ort_evaluator.py,sha256=q7Dn0yC3LPadlfRnhiRzVn32k9ma_IivdYyhyecgNgc,33930
39
39
  onnx_diagnostic/reference/quantized_tensor.py,sha256=5u67uS2uGacdMD5VYCbpojNjiesDlV_kO0fAJ0vUWGE,1098
40
40
  onnx_diagnostic/reference/report_results_comparison.py,sha256=OsyQN8EHZZoj97u74RQP-7WFpebPOso5GEDpdkLWu6M,3645
41
41
  onnx_diagnostic/reference/torch_evaluator.py,sha256=Tx1teWvfGEX5RmkDnI83UiOlo5eBOC72vPhgTWdFUF0,27689
@@ -110,7 +110,7 @@ onnx_diagnostic/torch_export_patches/patch_module_helper.py,sha256=2U0AdyZuU0W54
110
110
  onnx_diagnostic/torch_export_patches/eval/__init__.py,sha256=YQoOGt9XQLWqnJ15NnT7ri_jDevfvpuQwEJo38E-VRU,25056
111
111
  onnx_diagnostic/torch_export_patches/eval/model_cases.py,sha256=9h4yo9vKiK-E6zaXyAsxXGM-lCjd88ONybA1F3YcTI4,27988
112
112
  onnx_diagnostic/torch_export_patches/patches/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
113
- onnx_diagnostic/torch_export_patches/patches/_patch_transformers_attention.py,sha256=kI0qgAGFxkyvx8wikQtPcik_zpPpTAQypQ1cMQsjetw,7730
113
+ onnx_diagnostic/torch_export_patches/patches/_patch_transformers_attention.py,sha256=5JOyT95BNwHIuxaSFJDSEGsoI-6IwbgNnFwg2q3UM-Q,7731
114
114
  onnx_diagnostic/torch_export_patches/patches/_patch_transformers_cache_utils.py,sha256=UdxLii-od2OpQmUJbmXmZinXeLBItVFrr75BVT1Y0zw,2041
115
115
  onnx_diagnostic/torch_export_patches/patches/_patch_transformers_causal_mask.py,sha256=h37DPVxsq8iAWECnTlKW5tVqSBgPBF52xr3uxsjdi2k,3113
116
116
  onnx_diagnostic/torch_export_patches/patches/_patch_transformers_dynamic_cache.py,sha256=lEdYqX60pyi_w6PrbCTk7NC96nB8FFcFRf_JMjXSAZE,7961
@@ -119,7 +119,7 @@ onnx_diagnostic/torch_export_patches/patches/_patch_transformers_generation_mixi
119
119
  onnx_diagnostic/torch_export_patches/patches/_patch_transformers_idefics.py,sha256=kTjuTRsfkGGGhspJnMxAMQSchZgGC_IruJzpHh_FmI8,6348
120
120
  onnx_diagnostic/torch_export_patches/patches/_patch_transformers_masking_utils.py,sha256=R4YwnN9ktxjjImiJtLRxiKtKLr9LuFlwkPXkTJ6BTIo,6895
121
121
  onnx_diagnostic/torch_export_patches/patches/_patch_transformers_qwen2.py,sha256=OxYdlLrwtd_KGHt3E17poduxvWFg-CfGS57-yN1i6gI,3827
122
- onnx_diagnostic/torch_export_patches/patches/_patch_transformers_qwen2_5.py,sha256=-THcoMvJ1MhLZFQP6c2IEGqpkY7sTg_xYyAwCE7_91o,29511
122
+ onnx_diagnostic/torch_export_patches/patches/_patch_transformers_qwen2_5.py,sha256=icjSrI3LFrShtV_AYQ8F2qiMFHZ74Qg5I2c-V23uEgg,31601
123
123
  onnx_diagnostic/torch_export_patches/patches/_patch_transformers_qwen3.py,sha256=cND9Iqo1aKdlX-BXGr9Qlq_Y4EW1L5VWSwZfqYTVazU,4888
124
124
  onnx_diagnostic/torch_export_patches/patches/_patch_transformers_rotary_embedding.py,sha256=4bJ_z2gizZQla_fcCVt0dmuhzO9Vu-D7CCMWdxMlrKM,16893
125
125
  onnx_diagnostic/torch_export_patches/patches/_patch_transformers_sam_mask_decoder.py,sha256=-6TuBm3sLAFEGuW3vRfOTtE5uP6aINFfu7xMnl27Dws,5703
@@ -130,24 +130,24 @@ onnx_diagnostic/torch_export_patches/serialization/__init__.py,sha256=BHLdRPtNAt
130
130
  onnx_diagnostic/torch_export_patches/serialization/diffusers_impl.py,sha256=drq3EH_yjcSuIWYsVeUWm8Cx6YCZFU6bP_1PLtPfY5I,945
131
131
  onnx_diagnostic/torch_export_patches/serialization/transformers_impl.py,sha256=sIHFvUQoMK8ytXQYB-k7OL62z8A3f5uDaq-S5R5uN-M,10034
132
132
  onnx_diagnostic/torch_models/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
133
- onnx_diagnostic/torch_models/code_sample.py,sha256=PWf7piGx7Eiv7BOTpL2bLUtWwaVcw7SMBvkSpEzZDPs,12883
133
+ onnx_diagnostic/torch_models/code_sample.py,sha256=rCDZY64pkn6uIbJJSBuC5TlU_-uleI73I9GlbXtJd54,12923
134
134
  onnx_diagnostic/torch_models/llms.py,sha256=soyg4yC87ptGoeulJhKqw5opGmuLvH1pn_ZDXZ4Jr8E,90
135
- onnx_diagnostic/torch_models/validate.py,sha256=yhcCjZJ7pgjeHQBV-rCbQJ-ot_tngEwSYoonyNhEH5g,94426
135
+ onnx_diagnostic/torch_models/validate.py,sha256=fnbTl5v1n5nM2MpmCgCMaWa6c7DGpb5mZYSuHXXCJEs,94829
136
136
  onnx_diagnostic/torch_models/hghub/__init__.py,sha256=vi1Q7YHdddj1soiBN42MSvJdFqe2_KUoWafHISjwOu8,58
137
137
  onnx_diagnostic/torch_models/hghub/hub_api.py,sha256=rFbiPNLET-KdBpnv-p0nKgwHX6d7C_Z0s9zZ86_92kQ,14307
138
138
  onnx_diagnostic/torch_models/hghub/hub_data.py,sha256=8V_pAgACPLPsLRYUododg7MSL6str-T3tBEGY4OaeYQ,8724
139
139
  onnx_diagnostic/torch_models/hghub/hub_data_cached_configs.py,sha256=GimzkI8W3guATkDx7RQ-w2xNGVaFDVegfTnnmNxf4iE,292068
140
- onnx_diagnostic/torch_models/hghub/model_inputs.py,sha256=bVjf7Tm8tTi0dbqQZbcbNXDWuS5g6YBfR3xyeQ-NAWM,16285
140
+ onnx_diagnostic/torch_models/hghub/model_inputs.py,sha256=tCGqigRyY1omxm2rczRUvCTsweZGbF1MccWI3MmCH20,17423
141
141
  onnx_diagnostic/torch_models/hghub/model_specific.py,sha256=j50Nu7wddJMoqmD4QzMbNdFDUUgUmSBKRzPDH55TlUQ,2498
142
142
  onnx_diagnostic/torch_models/untrained/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
143
143
  onnx_diagnostic/torch_models/untrained/llm_phi2.py,sha256=y_akbdApi136qHcEQgykwIAYVw0Yfi0lbjb3DNuafaU,3948
144
144
  onnx_diagnostic/torch_models/untrained/llm_tiny_llm.py,sha256=QXw_Bs2SzfeiQMf-tmtVl83SmVOL4-Um7Qy-f0E48QI,2507
145
145
  onnx_diagnostic/torch_onnx/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
146
- onnx_diagnostic/torch_onnx/runtime_info.py,sha256=1g9F_Jf9AAgYQU4stbsrFXwQl-30mWlQrFbQ7val8Ps,9268
147
- onnx_diagnostic/torch_onnx/sbs.py,sha256=Q2nbj1Ovasf_HDFc5_tNVH8taJhzhgUXPY6N1uajayk,40615
148
- onnx_diagnostic/torch_onnx/sbs_dataclasses.py,sha256=ctJitdW09gLhg900yjT-Zqbx8SU2n4ZdgyVZ47dmlvQ,18475
149
- onnx_diagnostic-0.8.3.dist-info/licenses/LICENSE.txt,sha256=Vv6TXglX6Rc0d-f8aREhayhT-6PMQXEyOmI2NKlUCMc,1045
150
- onnx_diagnostic-0.8.3.dist-info/METADATA,sha256=MsLK613cwgCcvJ4JkLvP2ysF48KEgTmzqm83IBUO5JM,6734
151
- onnx_diagnostic-0.8.3.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
152
- onnx_diagnostic-0.8.3.dist-info/top_level.txt,sha256=KwNkXewmcobM3ZT1DJLVWH6ebJzA5qKg7cWqKfpGNT4,16
153
- onnx_diagnostic-0.8.3.dist-info/RECORD,,
146
+ onnx_diagnostic/torch_onnx/runtime_info.py,sha256=u1bD6VXqzBCRmqmbzQtDswaPs1PH_ygr1r-CrcfXpNU,8562
147
+ onnx_diagnostic/torch_onnx/sbs.py,sha256=8okBEIupMgw7TtKc80YFimMtwnY3GchdY05FsA9ooa0,40749
148
+ onnx_diagnostic/torch_onnx/sbs_dataclasses.py,sha256=UctdBjzoPTQG1LS0tZ8A6E9hpoq5HWUYaJLPOPJc9FI,20299
149
+ onnx_diagnostic-0.8.4.dist-info/licenses/LICENSE.txt,sha256=Vv6TXglX6Rc0d-f8aREhayhT-6PMQXEyOmI2NKlUCMc,1045
150
+ onnx_diagnostic-0.8.4.dist-info/METADATA,sha256=8S9bFx2lTef7dTeL_dTCtGj1MalIyoUvs5dMzrMffNg,6734
151
+ onnx_diagnostic-0.8.4.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
152
+ onnx_diagnostic-0.8.4.dist-info/top_level.txt,sha256=KwNkXewmcobM3ZT1DJLVWH6ebJzA5qKg7cWqKfpGNT4,16
153
+ onnx_diagnostic-0.8.4.dist-info/RECORD,,