onnx-diagnostic 0.8.2__py3-none-any.whl → 0.8.4__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- onnx_diagnostic/__init__.py +1 -1
- onnx_diagnostic/_command_lines_parser.py +412 -12
- onnx_diagnostic/export/api.py +111 -8
- onnx_diagnostic/export/control_flow.py +48 -345
- onnx_diagnostic/export/control_flow_onnx.py +528 -0
- onnx_diagnostic/export/control_flow_research.py +12 -7
- onnx_diagnostic/export/onnx_plug.py +531 -0
- onnx_diagnostic/ext_test_case.py +163 -48
- onnx_diagnostic/helpers/cache_helper.py +1 -1
- onnx_diagnostic/helpers/dot_helper.py +222 -0
- onnx_diagnostic/helpers/helper.py +108 -37
- onnx_diagnostic/helpers/mini_onnx_builder.py +3 -1
- onnx_diagnostic/helpers/model_builder_helper.py +27 -0
- onnx_diagnostic/helpers/onnx_helper.py +531 -6
- onnx_diagnostic/helpers/ort_session.py +45 -19
- onnx_diagnostic/helpers/torch_fx_graph_helper.py +164 -0
- onnx_diagnostic/helpers/torch_helper.py +131 -8
- onnx_diagnostic/reference/ort_evaluator.py +228 -46
- onnx_diagnostic/tasks/feature_extraction.py +15 -14
- onnx_diagnostic/tasks/summarization.py +72 -137
- onnx_diagnostic/torch_export_patches/patches/_patch_transformers_attention.py +236 -0
- onnx_diagnostic/torch_export_patches/patches/_patch_transformers_cache_utils.py +50 -0
- onnx_diagnostic/torch_export_patches/patches/_patch_transformers_causal_mask.py +89 -0
- onnx_diagnostic/torch_export_patches/patches/_patch_transformers_dynamic_cache.py +177 -0
- onnx_diagnostic/torch_export_patches/patches/_patch_transformers_gemma3.py +54 -0
- onnx_diagnostic/torch_export_patches/patches/_patch_transformers_generation_mixin.py +486 -0
- onnx_diagnostic/torch_export_patches/patches/_patch_transformers_idefics.py +156 -0
- onnx_diagnostic/torch_export_patches/patches/_patch_transformers_masking_utils.py +173 -0
- onnx_diagnostic/torch_export_patches/patches/_patch_transformers_qwen2.py +99 -0
- onnx_diagnostic/torch_export_patches/patches/_patch_transformers_qwen2_5.py +735 -0
- onnx_diagnostic/torch_export_patches/patches/_patch_transformers_qwen3.py +106 -0
- onnx_diagnostic/torch_export_patches/patches/_patch_transformers_rotary_embedding.py +412 -0
- onnx_diagnostic/torch_export_patches/patches/_patch_transformers_sam_mask_decoder.py +132 -0
- onnx_diagnostic/torch_export_patches/patches/patch_helper.py +28 -0
- onnx_diagnostic/torch_export_patches/patches/patch_transformers.py +64 -2608
- onnx_diagnostic/torch_models/code_sample.py +2 -1
- onnx_diagnostic/torch_models/hghub/model_inputs.py +34 -7
- onnx_diagnostic/torch_models/validate.py +64 -2
- onnx_diagnostic/torch_onnx/runtime_info.py +1 -24
- onnx_diagnostic/torch_onnx/sbs.py +969 -312
- onnx_diagnostic/torch_onnx/sbs_dataclasses.py +535 -0
- {onnx_diagnostic-0.8.2.dist-info → onnx_diagnostic-0.8.4.dist-info}/METADATA +1 -1
- {onnx_diagnostic-0.8.2.dist-info → onnx_diagnostic-0.8.4.dist-info}/RECORD +46 -27
- {onnx_diagnostic-0.8.2.dist-info → onnx_diagnostic-0.8.4.dist-info}/WHEEL +0 -0
- {onnx_diagnostic-0.8.2.dist-info → onnx_diagnostic-0.8.4.dist-info}/licenses/LICENSE.txt +0 -0
- {onnx_diagnostic-0.8.2.dist-info → onnx_diagnostic-0.8.4.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,528 @@
|
|
|
1
|
+
import contextlib
|
|
2
|
+
import inspect
|
|
3
|
+
from typing import Any, Callable, Dict, List, Optional, Sequence, Tuple, Union
|
|
4
|
+
import onnx
|
|
5
|
+
import onnx.helper as oh
|
|
6
|
+
import torch
|
|
7
|
+
from torch._higher_order_ops.utils import materialize_as_graph
|
|
8
|
+
from torch._higher_order_ops.utils import check_input_alias_and_mutation_return_outputs
|
|
9
|
+
from .api import to_onnx
|
|
10
|
+
|
|
11
|
+
_TEST_EXPORT = False
|
|
12
|
+
_REGISTERED_SCHEMA = {} # type: ignore[var-annotated]
|
|
13
|
+
_DISPATCHER = None
|
|
14
|
+
|
|
15
|
+
|
|
16
|
+
def create_global_dispatcher():
|
|
17
|
+
global _DISPATCHER
|
|
18
|
+
|
|
19
|
+
if not _DISPATCHER:
|
|
20
|
+
from experimental_experiment.torch_interpreter import Dispatcher
|
|
21
|
+
|
|
22
|
+
class ControlFlowDispatcher(Dispatcher):
|
|
23
|
+
def __init__(self):
|
|
24
|
+
super().__init__({})
|
|
25
|
+
|
|
26
|
+
def register(self, aten_name: str, converter: Callable):
|
|
27
|
+
assert aten_name not in self.registered_functions, (
|
|
28
|
+
f"Name {aten_name!r} is already registered in "
|
|
29
|
+
f"{sorted(self.registered_functions)}"
|
|
30
|
+
)
|
|
31
|
+
self.registered_functions[aten_name] = converter
|
|
32
|
+
|
|
33
|
+
_DISPATCHER = ControlFlowDispatcher()
|
|
34
|
+
return _DISPATCHER
|
|
35
|
+
|
|
36
|
+
|
|
37
|
+
@contextlib.contextmanager
|
|
38
|
+
def enable_code_export_control_flow():
|
|
39
|
+
"""Enables the code meant to be exported."""
|
|
40
|
+
global _TEST_EXPORT
|
|
41
|
+
old = _TEST_EXPORT
|
|
42
|
+
_TEST_EXPORT = True
|
|
43
|
+
try:
|
|
44
|
+
yield
|
|
45
|
+
finally:
|
|
46
|
+
_TEST_EXPORT = old
|
|
47
|
+
|
|
48
|
+
|
|
49
|
+
def is_exporting() -> bool:
|
|
50
|
+
"""
|
|
51
|
+
Returns :func:`torch.compiler.is_exporting` or
|
|
52
|
+
:func:`torch.compiler.is_compiling`.
|
|
53
|
+
Changes ``_TEST_EXPORT`` to make it trigger.
|
|
54
|
+
"""
|
|
55
|
+
return _TEST_EXPORT or torch.compiler.is_exporting() or torch.compiler.is_compiling()
|
|
56
|
+
|
|
57
|
+
|
|
58
|
+
def _loop_for_onnx_fn(n_iter, body_fn, reduction_dim, args):
|
|
59
|
+
"""
|
|
60
|
+
Python implementation of the loop.
|
|
61
|
+
|
|
62
|
+
:param n_iter: number of iteration
|
|
63
|
+
:param body_fn: function implementing the body
|
|
64
|
+
:param reduction_dim: dimension used to reduce the list produced by the loop
|
|
65
|
+
:param args: arguments to the loop body
|
|
66
|
+
:return: results
|
|
67
|
+
"""
|
|
68
|
+
res = []
|
|
69
|
+
for i in torch.arange(n_iter, dtype=n_iter.dtype):
|
|
70
|
+
r = body_fn(i, *args)
|
|
71
|
+
if isinstance(r, tuple):
|
|
72
|
+
assert not res or len(r) == len(res[-1]), (
|
|
73
|
+
f"Unexpected number of results {len(r)} for function {body_fn}, "
|
|
74
|
+
f"expected {len(res[-1])}"
|
|
75
|
+
)
|
|
76
|
+
res.append(r)
|
|
77
|
+
else:
|
|
78
|
+
assert isinstance(r, torch.Tensor), (
|
|
79
|
+
f"Unexpected type {r} for function {body_fn}, "
|
|
80
|
+
f"it must be a tuple or a Tensor."
|
|
81
|
+
)
|
|
82
|
+
assert not res or len(res[-1]) == 1, (
|
|
83
|
+
f"Unexpected number of results {len(r)} for function {body_fn}, "
|
|
84
|
+
f"expected {len(res[-1])}"
|
|
85
|
+
)
|
|
86
|
+
res.append((r,))
|
|
87
|
+
|
|
88
|
+
if not res:
|
|
89
|
+
return torch.empty(tuple(), dtype=torch.float32, device=args[0].device)
|
|
90
|
+
if len(res) == 1:
|
|
91
|
+
final = res[0]
|
|
92
|
+
else:
|
|
93
|
+
n_res = len(res[0])
|
|
94
|
+
final = [
|
|
95
|
+
torch.cat(
|
|
96
|
+
[r[i] for r in res],
|
|
97
|
+
dim=(
|
|
98
|
+
0 if reduction_dim is None or i >= len(reduction_dim) else reduction_dim[i]
|
|
99
|
+
),
|
|
100
|
+
)
|
|
101
|
+
for i in range(n_res)
|
|
102
|
+
]
|
|
103
|
+
return tuple(final) if len(final) > 1 else final[0]
|
|
104
|
+
|
|
105
|
+
|
|
106
|
+
def make_custom_loop_for_onnx(
|
|
107
|
+
n_iter: torch.Tensor,
|
|
108
|
+
body_fn: Callable,
|
|
109
|
+
reduction_dim: Optional[Sequence[int]],
|
|
110
|
+
args: Sequence[torch.Tensor],
|
|
111
|
+
body_gm: Optional[torch.fx.GraphModule] = None,
|
|
112
|
+
body_mutated_inputs: Optional[List[Any]] = None,
|
|
113
|
+
body_outputs: Optional[List[Any]] = None,
|
|
114
|
+
) -> Tuple[str, torch.library.CustomOpDef]:
|
|
115
|
+
"""
|
|
116
|
+
Defines a custom operator for a loop in order to avoid
|
|
117
|
+
:func:`torch.export.export` digging into it.
|
|
118
|
+
It registers the custom op and a custom conversion
|
|
119
|
+
to ONNX.
|
|
120
|
+
|
|
121
|
+
:param n_iter: number of iterations defined by a tensor of no dimension
|
|
122
|
+
:param body_fn: the loop body defined as a function
|
|
123
|
+
:param reduction_dim: dimension used to concatenated the results
|
|
124
|
+
:param args: list of tensors, input to the body
|
|
125
|
+
:param body_gm: torch.fx.GraphModule equivalent to *body_gm*
|
|
126
|
+
:param body_mutated_inputs: inputs to *body_gm*
|
|
127
|
+
:param body_outputs: outputs to *body_gm*
|
|
128
|
+
:return: a name and the custom op definition, the name
|
|
129
|
+
is used to cache the custom op
|
|
130
|
+
"""
|
|
131
|
+
global _DISPATCHER
|
|
132
|
+
assert body_gm is not None, "body_gm cannot be None"
|
|
133
|
+
assert body_mutated_inputs is not None, "body_mutated_inputs cannot be None"
|
|
134
|
+
assert body_outputs is not None, "body_outputs cannot be None"
|
|
135
|
+
srank = "_".join("x".join(map(str, s.shape)) for s in body_outputs)
|
|
136
|
+
sred = "x".join(map(str, reduction_dim)) if reduction_dim else ""
|
|
137
|
+
full_name = (
|
|
138
|
+
body_fn.__qualname__.replace("<locals>", "L")
|
|
139
|
+
.replace("<lambda>", "l")
|
|
140
|
+
.replace(".", "_")
|
|
141
|
+
)
|
|
142
|
+
name = f"loop_for_onnx_{full_name}_{srank}_{sred}"
|
|
143
|
+
if name in _REGISTERED_SCHEMA:
|
|
144
|
+
return name, _REGISTERED_SCHEMA[name][0]
|
|
145
|
+
sig = inspect.signature(body_fn)
|
|
146
|
+
inputs = ", ".join([f"Tensor {p}" for p in sig.parameters])
|
|
147
|
+
schema = f"({inputs}) -> Tensor"
|
|
148
|
+
if len(body_outputs) > 1:
|
|
149
|
+
schema += "[]"
|
|
150
|
+
custom_def = torch.library.CustomOpDef("onnx_higher_ops", name, schema, body_fn)
|
|
151
|
+
custom_def.register_kernel("cpu")(body_fn)
|
|
152
|
+
|
|
153
|
+
custom_def._abstract_fn = lambda *_args, _o=body_outputs: (
|
|
154
|
+
tuple([torch.empty_like(s) for s in _o]) if len(_o) > 1 else torch.empty_like(_o[0])
|
|
155
|
+
)
|
|
156
|
+
|
|
157
|
+
def _make_onx(
|
|
158
|
+
body_gm=body_gm, args=args, target_opset=None, verbose=0, exporter_kwargs=None
|
|
159
|
+
):
|
|
160
|
+
return convert_into_onnx(
|
|
161
|
+
body_gm,
|
|
162
|
+
args,
|
|
163
|
+
exporter_kwargs=exporter_kwargs,
|
|
164
|
+
target_opset=target_opset,
|
|
165
|
+
verbose=verbose,
|
|
166
|
+
)
|
|
167
|
+
|
|
168
|
+
to_register = (
|
|
169
|
+
custom_def,
|
|
170
|
+
_make_onx,
|
|
171
|
+
(
|
|
172
|
+
lambda g, sts, outputs, *args, bc=_make_onx, rd=reduction_dim, name=name: (
|
|
173
|
+
convert_custom_loop_into_onnx(
|
|
174
|
+
g,
|
|
175
|
+
sts,
|
|
176
|
+
outputs,
|
|
177
|
+
*args,
|
|
178
|
+
body_callable=bc,
|
|
179
|
+
reduction_dim=rd,
|
|
180
|
+
name=name,
|
|
181
|
+
)
|
|
182
|
+
)
|
|
183
|
+
),
|
|
184
|
+
)
|
|
185
|
+
if _DISPATCHER is None:
|
|
186
|
+
create_global_dispatcher()
|
|
187
|
+
assert _DISPATCHER
|
|
188
|
+
_DISPATCHER.register(f"onnx_higher_ops::{name}", to_register[-1])
|
|
189
|
+
_REGISTERED_SCHEMA[name] = to_register
|
|
190
|
+
return name, custom_def
|
|
191
|
+
|
|
192
|
+
|
|
193
|
+
def convert_custom_loop_into_onnx(
|
|
194
|
+
g: Any, # "GreaphBuilder"
|
|
195
|
+
sts: Dict[str, Any],
|
|
196
|
+
outputs: List[str],
|
|
197
|
+
*args: str,
|
|
198
|
+
body_callable: Callable[..., onnx.ModelProto],
|
|
199
|
+
reduction_dim: Optional[Sequence[int]] = None,
|
|
200
|
+
name: str = "loop_for_onnx",
|
|
201
|
+
) -> Union[str, List[str]]:
|
|
202
|
+
"""
|
|
203
|
+
Converts a custom op ``higher_ops::loop_for_onnx...`` into e sequence of node.
|
|
204
|
+
|
|
205
|
+
:param g: GreaphBuilder
|
|
206
|
+
:param sts: if not defined, torch does not know the output shapes
|
|
207
|
+
:param outputs: output names
|
|
208
|
+
:param args: input argument known at export time
|
|
209
|
+
:param body: GraphProto, the loop body
|
|
210
|
+
:param reduction_dim: the dimension to follow when aggregating the
|
|
211
|
+
list of tensors after the loop ran
|
|
212
|
+
:param name: to give the onnx nodes a name
|
|
213
|
+
:return: output names
|
|
214
|
+
"""
|
|
215
|
+
assert body_callable is not None, "body_callable cannot be None"
|
|
216
|
+
# This should be part of a public API.
|
|
217
|
+
body = body_callable(
|
|
218
|
+
target_opset=g.main_opset,
|
|
219
|
+
verbose=g.verbose,
|
|
220
|
+
exporter_kwargs={"options": g.optimization_options},
|
|
221
|
+
)
|
|
222
|
+
|
|
223
|
+
graph = body.graph if isinstance(body, onnx.ModelProto) else body
|
|
224
|
+
assert isinstance(
|
|
225
|
+
graph, onnx.GraphProto
|
|
226
|
+
), f"Unexpected type {type(body)} for body{g.get_debug_msg()}"
|
|
227
|
+
assert len(outputs) == 1, f"Only one outputs is expected but outputs={outputs!r}"
|
|
228
|
+
if len(graph.output) != 1:
|
|
229
|
+
outputs = [f"{outputs[0]}#{i}" for i in range(len(graph.output))]
|
|
230
|
+
input_names = [i.name for i in graph.input]
|
|
231
|
+
inputs = [
|
|
232
|
+
*graph.input[:1],
|
|
233
|
+
oh.make_tensor_value_info("cond_unused", onnx.TensorProto.BOOL, []),
|
|
234
|
+
*[
|
|
235
|
+
oh.make_tensor_sequence_value_info(
|
|
236
|
+
f"loop_in{i}", graph.output[i].type.tensor_type.elem_type, None
|
|
237
|
+
)
|
|
238
|
+
for i in range(len(graph.output))
|
|
239
|
+
],
|
|
240
|
+
# hidden inputs are not added
|
|
241
|
+
]
|
|
242
|
+
nodes = [
|
|
243
|
+
oh.make_node("Identity", ["cond_unused"], ["cond_out"]),
|
|
244
|
+
*[oh.make_node("Identity", [a], [r]) for a, r in zip(args[1:], input_names[1:])],
|
|
245
|
+
*graph.node,
|
|
246
|
+
*[
|
|
247
|
+
oh.make_node(
|
|
248
|
+
"SequenceInsert",
|
|
249
|
+
[f"loop_in{i}", graph.output[i].name],
|
|
250
|
+
[f"loop_out{i}"],
|
|
251
|
+
)
|
|
252
|
+
for i in range(len(graph.output))
|
|
253
|
+
],
|
|
254
|
+
]
|
|
255
|
+
graph_outputs = [
|
|
256
|
+
oh.make_tensor_value_info("cond_out", onnx.TensorProto.BOOL, []),
|
|
257
|
+
*[
|
|
258
|
+
oh.make_tensor_sequence_value_info(
|
|
259
|
+
f"loop_out{i}", graph.output[i].type.tensor_type.elem_type, None
|
|
260
|
+
)
|
|
261
|
+
for i in range(len(graph.output))
|
|
262
|
+
],
|
|
263
|
+
]
|
|
264
|
+
graph = oh.make_graph(
|
|
265
|
+
nodes, graph.name, inputs, graph_outputs, graph.initializer, graph.sparse_initializer
|
|
266
|
+
)
|
|
267
|
+
|
|
268
|
+
itypes = [
|
|
269
|
+
graph.output[i].type.sequence_type.elem_type.tensor_type.elem_type
|
|
270
|
+
for i in range(1, len(graph.output))
|
|
271
|
+
]
|
|
272
|
+
assert len(outputs) == len(
|
|
273
|
+
itypes
|
|
274
|
+
), f"Length mismatch between outputs={outputs} and graph.output={graph.output}"
|
|
275
|
+
assert (
|
|
276
|
+
0 not in itypes
|
|
277
|
+
), f"Undefined types are not allowed in itype={itypes}, graph.output={graph.output}"
|
|
278
|
+
sequences = [g.op.SequenceEmpty(dtype=itype) for itype in itypes]
|
|
279
|
+
|
|
280
|
+
outloop = [g.unique_name(f"loop_for_onnx{i}") for i in range(len(sequences))]
|
|
281
|
+
|
|
282
|
+
for i, s in enumerate(sequences):
|
|
283
|
+
g.set_sequence(s, graph.output[i].type.tensor_type.elem_type)
|
|
284
|
+
g.make_node("Loop", [args[0], "", *sequences], outloop, name=name, body=graph)
|
|
285
|
+
for i, o in enumerate(outloop):
|
|
286
|
+
g.set_sequence(o, graph.output[i].type.tensor_type.elem_type)
|
|
287
|
+
_res = [
|
|
288
|
+
g.op.ConcatFromSequence(
|
|
289
|
+
out,
|
|
290
|
+
outputs=[o],
|
|
291
|
+
name=name,
|
|
292
|
+
axis=0 if not reduction_dim or i >= len(reduction_dim) else reduction_dim[i],
|
|
293
|
+
)
|
|
294
|
+
for i, (out, o) in enumerate(zip(outloop, outputs))
|
|
295
|
+
]
|
|
296
|
+
if not sts:
|
|
297
|
+
for i, o in enumerate(outputs):
|
|
298
|
+
g.set_type(o, graph.output[i].type.sequence_type.elem_type.tensor_type.elem_type)
|
|
299
|
+
g.set_rank(
|
|
300
|
+
o, len(graph.output[i].type.sequence_type.elem_type.tensor_type.shape.dims)
|
|
301
|
+
)
|
|
302
|
+
return outputs if len(outputs) > 1 else outputs[0]
|
|
303
|
+
|
|
304
|
+
|
|
305
|
+
def convert_into_onnx(
|
|
306
|
+
body_gm: torch.fx.GraphModule,
|
|
307
|
+
args: Sequence[torch.Tensor],
|
|
308
|
+
target_opset: Optional[int] = None,
|
|
309
|
+
verbose: int = 0,
|
|
310
|
+
exporter_kwargs: Optional[Dict[str, Any]] = None,
|
|
311
|
+
) -> onnx.ModelProto:
|
|
312
|
+
"""
|
|
313
|
+
Converts a torch.fx.GraphModule into ONNX.
|
|
314
|
+
It returns a ModelProto.
|
|
315
|
+
|
|
316
|
+
:param body_gm: a torch.fx.GraphModule
|
|
317
|
+
:param args: arguments known at export time
|
|
318
|
+
:param target_opset: targeted opset
|
|
319
|
+
:param verbose: verbosity level
|
|
320
|
+
:param exporter_kwargs: additional exporter arguments
|
|
321
|
+
:return: a ModelProto
|
|
322
|
+
"""
|
|
323
|
+
# This does not work with onnx-dynamo.
|
|
324
|
+
# opset still needs to be defined
|
|
325
|
+
container = to_onnx(
|
|
326
|
+
body_gm,
|
|
327
|
+
args,
|
|
328
|
+
exporter="custom",
|
|
329
|
+
exporter_kwargs=exporter_kwargs,
|
|
330
|
+
target_opset=target_opset,
|
|
331
|
+
verbose=verbose,
|
|
332
|
+
)
|
|
333
|
+
return container.model_proto
|
|
334
|
+
|
|
335
|
+
|
|
336
|
+
def loop_for_onnx(
|
|
337
|
+
n_iter: Union[torch.SymInt, torch.Tensor],
|
|
338
|
+
body_fn: Callable[..., Tuple[torch.Tensor]],
|
|
339
|
+
args: Sequence[torch.Tensor],
|
|
340
|
+
reduction_dim: Optional[Sequence[int]] = None,
|
|
341
|
+
) -> Tuple[torch.Tensor, ...]:
|
|
342
|
+
"""
|
|
343
|
+
High operators used to easily export a loop in ONNX.
|
|
344
|
+
Does not fully work with :func:`torch.export.export`,
|
|
345
|
+
it does replaces a custom op with a loop operator afterwards.
|
|
346
|
+
Every iteration produces tensors, all of them are gathered
|
|
347
|
+
into lists, all these lists are concatenated into tensors.
|
|
348
|
+
|
|
349
|
+
:param n_iter: number of iterations, it can be fixed on
|
|
350
|
+
variable, in that case it should a tensor with no dimension
|
|
351
|
+
:param body_fn: function body, takes only tensors and returns
|
|
352
|
+
only tensors, the first argument is the iteration number
|
|
353
|
+
in a tensor with no dimension, all the others
|
|
354
|
+
are not changed during the loop
|
|
355
|
+
:param args: the available tensors at every loop
|
|
356
|
+
:param reduction_dim: the loop aggregated the results into list,
|
|
357
|
+
one of each output, each of them is concatenated into one
|
|
358
|
+
tensor along one dimension, by default, it is the first
|
|
359
|
+
dimension, but it can be defined otherwise
|
|
360
|
+
|
|
361
|
+
.. runpython::
|
|
362
|
+
:showcode:
|
|
363
|
+
|
|
364
|
+
import torch
|
|
365
|
+
import onnxruntime
|
|
366
|
+
from onnx_diagnostic.export.api import to_onnx
|
|
367
|
+
from onnx_diagnostic.export.control_flow_onnx import loop_for_onnx
|
|
368
|
+
|
|
369
|
+
|
|
370
|
+
class Model(torch.nn.Module):
|
|
371
|
+
def forward(self, n_iter, x):
|
|
372
|
+
def body(i, x):
|
|
373
|
+
return x[: i.item() + 1].unsqueeze(1)
|
|
374
|
+
|
|
375
|
+
return loop_for_onnx(n_iter, body, (x,))
|
|
376
|
+
|
|
377
|
+
|
|
378
|
+
model = Model()
|
|
379
|
+
n_iter = torch.tensor(4, dtype=torch.int64)
|
|
380
|
+
x = torch.arange(10, dtype=torch.float32)
|
|
381
|
+
expected = model(n_iter, x)
|
|
382
|
+
print("expected:", expected)
|
|
383
|
+
|
|
384
|
+
onx = to_onnx(
|
|
385
|
+
model,
|
|
386
|
+
(n_iter, x),
|
|
387
|
+
dynamic_shapes=({}, ({0: torch.export.Dim.DYNAMIC})),
|
|
388
|
+
exporter="custom",
|
|
389
|
+
use_control_flow_dispatcher=True,
|
|
390
|
+
).model_proto
|
|
391
|
+
|
|
392
|
+
sess = onnxruntime.InferenceSession(
|
|
393
|
+
onx.SerializeToString(), providers=["CPUExecutionProvider"]
|
|
394
|
+
)
|
|
395
|
+
got = sess.run(None, dict(zip(["n_iter", "x"], [n_iter.numpy(), x.numpy()])))
|
|
396
|
+
print("got:", got)
|
|
397
|
+
|
|
398
|
+
|
|
399
|
+
# The loop is exported as a custom ops.
|
|
400
|
+
ep = torch.export.export(
|
|
401
|
+
model, (n_iter, x), dynamic_shapes=({}, ({0: torch.export.Dim.DYNAMIC}))
|
|
402
|
+
)
|
|
403
|
+
print(ep)
|
|
404
|
+
|
|
405
|
+
Another example with two outputs:
|
|
406
|
+
|
|
407
|
+
.. runpython::
|
|
408
|
+
:showcode:
|
|
409
|
+
|
|
410
|
+
import torch
|
|
411
|
+
import onnxruntime
|
|
412
|
+
from onnx_diagnostic.export.api import to_onnx
|
|
413
|
+
from onnx_diagnostic.export.control_flow_onnx import loop_for_onnx
|
|
414
|
+
|
|
415
|
+
|
|
416
|
+
class Model(torch.nn.Module):
|
|
417
|
+
def forward(self, n_iter, x):
|
|
418
|
+
def body(i, x):
|
|
419
|
+
return x[: i.item() + 1].unsqueeze(1), x[: i.item() + 1].unsqueeze(1) + 1
|
|
420
|
+
|
|
421
|
+
two = loop_for_onnx(n_iter, body, (x,))
|
|
422
|
+
return two[0] + two[1]
|
|
423
|
+
|
|
424
|
+
|
|
425
|
+
model = Model()
|
|
426
|
+
n_iter = torch.tensor(4, dtype=torch.int64)
|
|
427
|
+
x = torch.arange(10, dtype=torch.float32)
|
|
428
|
+
expected = model(n_iter, x)
|
|
429
|
+
print("expected:", expected)
|
|
430
|
+
|
|
431
|
+
onx = to_onnx(
|
|
432
|
+
model,
|
|
433
|
+
(n_iter, x),
|
|
434
|
+
dynamic_shapes=({}, ({0: torch.export.Dim.DYNAMIC})),
|
|
435
|
+
exporter="custom",
|
|
436
|
+
use_control_flow_dispatcher=True,
|
|
437
|
+
).model_proto
|
|
438
|
+
|
|
439
|
+
sess = onnxruntime.InferenceSession(
|
|
440
|
+
onx.SerializeToString(), providers=["CPUExecutionProvider"]
|
|
441
|
+
)
|
|
442
|
+
got = sess.run(None, dict(zip(["n_iter", "x"], [n_iter.numpy(), x.numpy()])))
|
|
443
|
+
print("got:", got)
|
|
444
|
+
|
|
445
|
+
|
|
446
|
+
# The loop is exported as a custom ops.
|
|
447
|
+
ep = torch.export.export(
|
|
448
|
+
model, (n_iter, x), dynamic_shapes=({}, ({0: torch.export.Dim.DYNAMIC}))
|
|
449
|
+
)
|
|
450
|
+
print(ep)
|
|
451
|
+
|
|
452
|
+
A last example with ``reduction_dim``:
|
|
453
|
+
|
|
454
|
+
.. runpython::
|
|
455
|
+
:showcode:
|
|
456
|
+
|
|
457
|
+
import torch
|
|
458
|
+
import onnxruntime
|
|
459
|
+
from onnx_diagnostic.export.api import to_onnx
|
|
460
|
+
from onnx_diagnostic.export.control_flow_onnx import loop_for_onnx
|
|
461
|
+
|
|
462
|
+
|
|
463
|
+
class Model(torch.nn.Module):
|
|
464
|
+
def forward(self, n_iter, x):
|
|
465
|
+
def body(i, x):
|
|
466
|
+
return x[: i.item() + 1].unsqueeze(1), x[: i.item() + 1].unsqueeze(0) + 1
|
|
467
|
+
|
|
468
|
+
two = loop_for_onnx(n_iter, body, (x,), reduction_dim=[0, 1])
|
|
469
|
+
return two[0] + two[1].T
|
|
470
|
+
|
|
471
|
+
|
|
472
|
+
model = Model()
|
|
473
|
+
n_iter = torch.tensor(4, dtype=torch.int64)
|
|
474
|
+
x = torch.arange(10, dtype=torch.float32)
|
|
475
|
+
expected = model(n_iter, x)
|
|
476
|
+
print("expected:", expected)
|
|
477
|
+
|
|
478
|
+
onx = to_onnx(
|
|
479
|
+
model,
|
|
480
|
+
(n_iter, x),
|
|
481
|
+
dynamic_shapes=({}, ({0: torch.export.Dim.DYNAMIC})),
|
|
482
|
+
exporter="custom",
|
|
483
|
+
use_control_flow_dispatcher=True,
|
|
484
|
+
).model_proto
|
|
485
|
+
|
|
486
|
+
sess = onnxruntime.InferenceSession(
|
|
487
|
+
onx.SerializeToString(), providers=["CPUExecutionProvider"]
|
|
488
|
+
)
|
|
489
|
+
got = sess.run(None, dict(zip(["n_iter", "x"], [n_iter.numpy(), x.numpy()])))
|
|
490
|
+
print("got:", got)
|
|
491
|
+
|
|
492
|
+
|
|
493
|
+
# The loop is exported as a custom ops.
|
|
494
|
+
ep = torch.export.export(
|
|
495
|
+
model, (n_iter, x), dynamic_shapes=({}, ({0: torch.export.Dim.DYNAMIC}))
|
|
496
|
+
)
|
|
497
|
+
print(ep)
|
|
498
|
+
"""
|
|
499
|
+
assert args, "The function should have at least one arg."
|
|
500
|
+
assert (
|
|
501
|
+
isinstance(n_iter, torch.Tensor)
|
|
502
|
+
and n_iter.dtype == torch.int64
|
|
503
|
+
and len(n_iter.shape) == 0
|
|
504
|
+
), f"Only a tensor for one int64 is allowed for n_iter but it equal to {n_iter}."
|
|
505
|
+
if is_exporting():
|
|
506
|
+
body_gm: torch.fx.GraphModule = materialize_as_graph(
|
|
507
|
+
body_fn, (torch.tensor(0, dtype=torch.int64), *args)
|
|
508
|
+
)
|
|
509
|
+
(
|
|
510
|
+
_1,
|
|
511
|
+
_2,
|
|
512
|
+
_3,
|
|
513
|
+
body_mutated_inputs,
|
|
514
|
+
body_outputs,
|
|
515
|
+
) = check_input_alias_and_mutation_return_outputs(body_gm)
|
|
516
|
+
name, _custom_ops = make_custom_loop_for_onnx(
|
|
517
|
+
n_iter,
|
|
518
|
+
body_fn,
|
|
519
|
+
reduction_dim,
|
|
520
|
+
args,
|
|
521
|
+
body_gm=body_gm,
|
|
522
|
+
body_mutated_inputs=body_mutated_inputs,
|
|
523
|
+
body_outputs=body_outputs,
|
|
524
|
+
)
|
|
525
|
+
fct = getattr(torch.ops.onnx_higher_ops, name)
|
|
526
|
+
return fct(n_iter, *args)
|
|
527
|
+
|
|
528
|
+
return _loop_for_onnx_fn(n_iter, body_fn, reduction_dim, args)
|
|
@@ -14,7 +14,7 @@ from torch._higher_order_ops.utils import (
|
|
|
14
14
|
)
|
|
15
15
|
from torch.fx.experimental.proxy_tensor import ProxyTorchDispatchMode, track_tensor_tree
|
|
16
16
|
from torch.utils._python_dispatch import _get_current_dispatch_mode
|
|
17
|
-
from .
|
|
17
|
+
from .control_flow_onnx import _loop_for_onnx_fn
|
|
18
18
|
|
|
19
19
|
|
|
20
20
|
class SimpleLoopForOp(HigherOrderOperator):
|
|
@@ -66,7 +66,7 @@ def simple_loop_for(
|
|
|
66
66
|
return simple_loop_for_op(n_iter, body_fn, (n_iter, *operands))
|
|
67
67
|
|
|
68
68
|
if isinstance(n_iter, (bool, int, float)):
|
|
69
|
-
return
|
|
69
|
+
return _loop_for_onnx_fn(body_fn, n_iter, None, *operands)
|
|
70
70
|
|
|
71
71
|
def _validate_input(n_iter, body_fn, operands):
|
|
72
72
|
assert isinstance(
|
|
@@ -92,10 +92,11 @@ def simple_loop_for(
|
|
|
92
92
|
|
|
93
93
|
from torch._higher_order_ops.utils import setup_compilation_env
|
|
94
94
|
|
|
95
|
-
with setup_compilation_env() as
|
|
96
|
-
return
|
|
97
|
-
|
|
98
|
-
|
|
95
|
+
with setup_compilation_env() as _backend:
|
|
96
|
+
return _loop_for_op_wrapper(n_iter, body_fn, *operands)
|
|
97
|
+
# return torch.compile(_loop_for_op_wrapper, backend=backend, fullgraph=True)(
|
|
98
|
+
# n_iter, body_fn, operands
|
|
99
|
+
# )
|
|
99
100
|
|
|
100
101
|
|
|
101
102
|
def trace_loop_for(proxy_mode, func_overload, n_iter, body_fn, operands):
|
|
@@ -127,9 +128,13 @@ def loop_for_op_dense(n_iter, body_fn, operands):
|
|
|
127
128
|
), f"Dense implementation operands must be a list of tensors and ints {operands}"
|
|
128
129
|
mode = _get_current_dispatch_mode()
|
|
129
130
|
assert mode is None, "Mode should never be enabled for CPU/CUDA key"
|
|
130
|
-
return
|
|
131
|
+
return _loop_for_onnx_fn(body_fn, n_iter, None, operands)
|
|
131
132
|
|
|
132
133
|
|
|
133
134
|
@simple_loop_for_op.py_impl(ProxyTorchDispatchMode)
|
|
134
135
|
def inner(mode, n_iter, body_fn, operands):
|
|
135
136
|
return trace_loop_for(mode, simple_loop_for_op, n_iter, body_fn, operands)
|
|
137
|
+
|
|
138
|
+
|
|
139
|
+
simple_loop_for_op.fallthrough(torch._C.DispatchKey.AutogradCPU)
|
|
140
|
+
simple_loop_for_op.fallthrough(torch._C.DispatchKey.AutogradCUDA)
|