onnx-diagnostic 0.8.0__py3-none-any.whl → 0.8.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- onnx_diagnostic/__init__.py +1 -1
- onnx_diagnostic/_command_lines_parser.py +78 -22
- onnx_diagnostic/export/api.py +35 -5
- onnx_diagnostic/export/control_flow.py +511 -0
- onnx_diagnostic/export/control_flow_research.py +135 -0
- onnx_diagnostic/ext_test_case.py +33 -9
- onnx_diagnostic/helpers/cache_helper.py +217 -203
- onnx_diagnostic/helpers/helper.py +6 -2
- onnx_diagnostic/helpers/log_helper.py +39 -5
- onnx_diagnostic/helpers/memory_peak.py +2 -0
- onnx_diagnostic/helpers/mini_onnx_builder.py +55 -3
- onnx_diagnostic/helpers/onnx_helper.py +13 -16
- onnx_diagnostic/helpers/rt_helper.py +579 -15
- onnx_diagnostic/helpers/torch_helper.py +5 -0
- onnx_diagnostic/tasks/image_text_to_text.py +5 -1
- onnx_diagnostic/tasks/text2text_generation.py +1 -0
- onnx_diagnostic/tasks/text_generation.py +84 -54
- onnx_diagnostic/torch_export_patches/eval/model_cases.py +28 -0
- onnx_diagnostic/torch_export_patches/onnx_export_errors.py +1 -1
- onnx_diagnostic/torch_export_patches/onnx_export_serialization.py +11 -7
- onnx_diagnostic/torch_export_patches/patches/patch_torch.py +4 -1
- onnx_diagnostic/torch_export_patches/patches/patch_transformers.py +563 -61
- onnx_diagnostic/torch_models/hghub/hub_data_cached_configs.py +53 -0
- onnx_diagnostic/torch_models/hghub/model_inputs.py +15 -2
- onnx_diagnostic/torch_models/validate.py +620 -213
- {onnx_diagnostic-0.8.0.dist-info → onnx_diagnostic-0.8.2.dist-info}/METADATA +1 -1
- {onnx_diagnostic-0.8.0.dist-info → onnx_diagnostic-0.8.2.dist-info}/RECORD +30 -28
- {onnx_diagnostic-0.8.0.dist-info → onnx_diagnostic-0.8.2.dist-info}/WHEEL +0 -0
- {onnx_diagnostic-0.8.0.dist-info → onnx_diagnostic-0.8.2.dist-info}/licenses/LICENSE.txt +0 -0
- {onnx_diagnostic-0.8.0.dist-info → onnx_diagnostic-0.8.2.dist-info}/top_level.txt +0 -0
|
@@ -56,6 +56,74 @@ def reduce_model_config(config: Any) -> Dict[str, Any]:
|
|
|
56
56
|
return kwargs
|
|
57
57
|
|
|
58
58
|
|
|
59
|
+
def _get_input_falcon_mamba(
|
|
60
|
+
model: torch.nn.Module,
|
|
61
|
+
config: Optional[Any],
|
|
62
|
+
dummy_max_token_id: int,
|
|
63
|
+
num_hidden_layers: int,
|
|
64
|
+
batch_size: int = 2,
|
|
65
|
+
sequence_length: int = 30,
|
|
66
|
+
sequence_length2: int = 3,
|
|
67
|
+
dynamic_rope: bool = False,
|
|
68
|
+
num_key_value_heads: Optional[int] = None,
|
|
69
|
+
head_dim: Optional[int] = None,
|
|
70
|
+
cls_cache: Optional[Union[type, str]] = None,
|
|
71
|
+
**kwargs, # unused
|
|
72
|
+
):
|
|
73
|
+
try:
|
|
74
|
+
from transformers.models.mamba.modeling_mamba import MambaCache
|
|
75
|
+
except ImportError:
|
|
76
|
+
from transformers.cache_utils import MambaCache
|
|
77
|
+
|
|
78
|
+
assert cls_cache in (
|
|
79
|
+
"MambaCache",
|
|
80
|
+
MambaCache,
|
|
81
|
+
), f"Unexpected value for cls_cache={cls_cache} and config={config}"
|
|
82
|
+
|
|
83
|
+
batch = "batch"
|
|
84
|
+
seq_length_multiple = 8
|
|
85
|
+
sequence_length = (
|
|
86
|
+
(sequence_length + seq_length_multiple) // seq_length_multiple * seq_length_multiple
|
|
87
|
+
)
|
|
88
|
+
# sequence_inc = seq_length_multiple
|
|
89
|
+
sequence_length2 = seq_length_multiple
|
|
90
|
+
|
|
91
|
+
shapes = {
|
|
92
|
+
"input_ids": {0: batch, 1: "sequence_length"},
|
|
93
|
+
"attention_mask": {
|
|
94
|
+
0: batch,
|
|
95
|
+
1: "cache+seq", # cache_length + seq_length
|
|
96
|
+
},
|
|
97
|
+
"cache_position": {
|
|
98
|
+
0: batch,
|
|
99
|
+
1: "cache+seq", # cache_length + seq_length
|
|
100
|
+
},
|
|
101
|
+
"cache_params": [{0: batch} for _ in range(num_hidden_layers * 2)],
|
|
102
|
+
}
|
|
103
|
+
inputs = dict(
|
|
104
|
+
input_ids=torch.randint(
|
|
105
|
+
0, dummy_max_token_id, (batch_size, sequence_length + sequence_length2)
|
|
106
|
+
).to(torch.int64),
|
|
107
|
+
attention_mask=torch.ones((batch_size, sequence_length + sequence_length2)).to(
|
|
108
|
+
torch.int64
|
|
109
|
+
),
|
|
110
|
+
cache_position=torch.arange(0, kwargs["conv_kernel"]).to(torch.int64),
|
|
111
|
+
# .expand((batch_size, -1))
|
|
112
|
+
cache_params=make_mamba_cache(
|
|
113
|
+
[
|
|
114
|
+
(
|
|
115
|
+
torch.randn(
|
|
116
|
+
batch_size, kwargs["intermediate_size"], kwargs["conv_kernel"]
|
|
117
|
+
),
|
|
118
|
+
torch.randn(batch_size, kwargs["intermediate_size"], kwargs["state_size"]),
|
|
119
|
+
)
|
|
120
|
+
for i in range(num_hidden_layers)
|
|
121
|
+
]
|
|
122
|
+
),
|
|
123
|
+
)
|
|
124
|
+
return dict(inputs=inputs, dynamic_shapes=shapes)
|
|
125
|
+
|
|
126
|
+
|
|
59
127
|
def get_inputs(
|
|
60
128
|
model: torch.nn.Module,
|
|
61
129
|
config: Optional[Any],
|
|
@@ -68,7 +136,7 @@ def get_inputs(
|
|
|
68
136
|
num_key_value_heads: Optional[int] = None,
|
|
69
137
|
head_dim: Optional[int] = None,
|
|
70
138
|
cls_cache: Optional[Union[type, str]] = None,
|
|
71
|
-
add_second_input: int =
|
|
139
|
+
add_second_input: Optional[int] = None,
|
|
72
140
|
**kwargs, # unused
|
|
73
141
|
):
|
|
74
142
|
"""
|
|
@@ -84,6 +152,7 @@ def get_inputs(
|
|
|
84
152
|
:param dynamic_rope: use dynamic rope (see :class:`transformers.LlamaConfig`)
|
|
85
153
|
:param cls_cache: cache class, by default it is
|
|
86
154
|
:class:`transformers.cache_utils.DynamicCache`
|
|
155
|
+
:param add_second_input: adds other kinds of inputs
|
|
87
156
|
:return: dictionary
|
|
88
157
|
"""
|
|
89
158
|
batch = "batch"
|
|
@@ -91,60 +160,20 @@ def get_inputs(
|
|
|
91
160
|
cache_length = "cache_length" # torch.export.Dim("cache_length", min=1, max=4096)
|
|
92
161
|
|
|
93
162
|
if config is not None and config.__class__.__name__ == "FalconMambaConfig":
|
|
94
|
-
|
|
95
|
-
|
|
96
|
-
|
|
97
|
-
|
|
98
|
-
|
|
99
|
-
|
|
100
|
-
|
|
101
|
-
|
|
102
|
-
|
|
103
|
-
|
|
104
|
-
|
|
105
|
-
|
|
106
|
-
|
|
107
|
-
* seq_length_multiple
|
|
108
|
-
)
|
|
109
|
-
# sequence_inc = seq_length_multiple
|
|
110
|
-
sequence_length2 = seq_length_multiple
|
|
111
|
-
|
|
112
|
-
shapes = {
|
|
113
|
-
"input_ids": {0: batch, 1: "sequence_length"},
|
|
114
|
-
"attention_mask": {
|
|
115
|
-
0: batch,
|
|
116
|
-
1: "cache+seq", # cache_length + seq_length
|
|
117
|
-
},
|
|
118
|
-
"cache_position": {
|
|
119
|
-
0: batch,
|
|
120
|
-
1: "cache+seq", # cache_length + seq_length
|
|
121
|
-
},
|
|
122
|
-
"cache_params": [{0: batch} for _ in range(num_hidden_layers * 2)],
|
|
123
|
-
}
|
|
124
|
-
inputs = dict(
|
|
125
|
-
input_ids=torch.randint(
|
|
126
|
-
0, dummy_max_token_id, (batch_size, sequence_length + sequence_length2)
|
|
127
|
-
).to(torch.int64),
|
|
128
|
-
attention_mask=torch.ones((batch_size, sequence_length + sequence_length2)).to(
|
|
129
|
-
torch.int64
|
|
130
|
-
),
|
|
131
|
-
cache_position=torch.arange(0, kwargs["conv_kernel"]).to(torch.int64),
|
|
132
|
-
# .expand((batch_size, -1))
|
|
133
|
-
cache_params=make_mamba_cache(
|
|
134
|
-
[
|
|
135
|
-
(
|
|
136
|
-
torch.randn(
|
|
137
|
-
batch_size, kwargs["intermediate_size"], kwargs["conv_kernel"]
|
|
138
|
-
),
|
|
139
|
-
torch.randn(
|
|
140
|
-
batch_size, kwargs["intermediate_size"], kwargs["state_size"]
|
|
141
|
-
),
|
|
142
|
-
)
|
|
143
|
-
for i in range(num_hidden_layers)
|
|
144
|
-
]
|
|
145
|
-
),
|
|
163
|
+
res = _get_input_falcon_mamba(
|
|
164
|
+
model=model,
|
|
165
|
+
config=config,
|
|
166
|
+
dummy_max_token_id=dummy_max_token_id,
|
|
167
|
+
num_hidden_layers=num_hidden_layers,
|
|
168
|
+
batch_size=batch_size,
|
|
169
|
+
sequence_length=sequence_length,
|
|
170
|
+
sequence_length2=sequence_length2,
|
|
171
|
+
dynamic_rope=dynamic_rope,
|
|
172
|
+
num_key_value_heads=num_key_value_heads,
|
|
173
|
+
head_dim=head_dim,
|
|
174
|
+
cls_cache=cls_cache,
|
|
175
|
+
**kwargs, # unused
|
|
146
176
|
)
|
|
147
|
-
res = dict(inputs=inputs, dynamic_shapes=shapes)
|
|
148
177
|
else:
|
|
149
178
|
if head_dim is None:
|
|
150
179
|
assert config, "head_dim is None, the value cannot be set without a configuration"
|
|
@@ -244,6 +273,7 @@ def get_inputs(
|
|
|
244
273
|
)
|
|
245
274
|
res = dict(inputs=inputs, dynamic_shapes=shapes)
|
|
246
275
|
if add_second_input:
|
|
276
|
+
res["inputs_prompt"] = dict(input_ids=torch.randint(1000, 30000, (1, 11)))
|
|
247
277
|
res["inputs2"] = get_inputs(
|
|
248
278
|
model=model,
|
|
249
279
|
config=config,
|
|
@@ -570,6 +570,34 @@ class ControlFlowScanDecomposition_151564(torch.nn.Module):
|
|
|
570
570
|
_dynamic = {"images": {0: DYN, 1: DYN}, "position": {0: DYN}}
|
|
571
571
|
|
|
572
572
|
|
|
573
|
+
class ControlFlowWhileDec(torch.nn.Module):
|
|
574
|
+
def forward(self, ci, a, b):
|
|
575
|
+
def cond_fn(i, x, y):
|
|
576
|
+
return i > 0
|
|
577
|
+
|
|
578
|
+
def body_fn(i, x, y):
|
|
579
|
+
return i - 1, x + y, y - x
|
|
580
|
+
|
|
581
|
+
return torch._higher_order_ops.while_loop(cond_fn, body_fn, [ci, a, b])
|
|
582
|
+
|
|
583
|
+
_inputs = [(torch.tensor(1), torch.randn(2, 3), torch.randn(2, 3))]
|
|
584
|
+
_dynamic = {}, {0: DYN, 1: DYN}, {0: DYN}
|
|
585
|
+
|
|
586
|
+
|
|
587
|
+
class ControlFlowWhileInc(torch.nn.Module):
|
|
588
|
+
def forward(self, ci, a, b):
|
|
589
|
+
def cond_fn(i, x, y):
|
|
590
|
+
return i < x.size(0)
|
|
591
|
+
|
|
592
|
+
def body_fn(i, x, y):
|
|
593
|
+
return i + 1, x + y, y - x
|
|
594
|
+
|
|
595
|
+
return torch._higher_order_ops.while_loop(cond_fn, body_fn, [ci, a, b])
|
|
596
|
+
|
|
597
|
+
_inputs = [(torch.tensor(1), torch.randn(2, 3), torch.randn(2, 3))]
|
|
598
|
+
_dynamic = {}, {0: DYN, 1: DYN}, {0: DYN}
|
|
599
|
+
|
|
600
|
+
|
|
573
601
|
class SignatureInt1(torch.nn.Module):
|
|
574
602
|
def __init__(self, n_dims: int = 3, n_targets: int = 1):
|
|
575
603
|
super().__init__()
|
|
@@ -32,7 +32,7 @@ def get_patches(mod, verbose: int = 0) -> Tuple[str, List[Any]]:
|
|
|
32
32
|
v = getattr(mod, k)
|
|
33
33
|
if hasattr(v, "_PATCHED_CLASS_") and hasattr(v, "_PATCHES_"):
|
|
34
34
|
to_patch.append(v)
|
|
35
|
-
|
|
35
|
+
elif v.__doc__:
|
|
36
36
|
# a function
|
|
37
37
|
doc = v.__doc__.lstrip()
|
|
38
38
|
if doc.startswith("manual patch"):
|
|
@@ -4,14 +4,18 @@ import packaging.version as pv
|
|
|
4
4
|
import optree
|
|
5
5
|
import torch
|
|
6
6
|
import transformers
|
|
7
|
-
from transformers.cache_utils import
|
|
8
|
-
DynamicCache,
|
|
9
|
-
EncoderDecoderCache,
|
|
10
|
-
HybridCache,
|
|
11
|
-
SlidingWindowCache,
|
|
12
|
-
StaticCache,
|
|
13
|
-
)
|
|
7
|
+
from transformers.cache_utils import DynamicCache, StaticCache
|
|
14
8
|
|
|
9
|
+
try:
|
|
10
|
+
from transformers.cache_utils import (
|
|
11
|
+
EncoderDecoderCache,
|
|
12
|
+
HybridCache,
|
|
13
|
+
SlidingWindowCache,
|
|
14
|
+
)
|
|
15
|
+
except ImportError:
|
|
16
|
+
EncoderDecoderCache = None
|
|
17
|
+
HybridCache = None
|
|
18
|
+
SlidingWindowCache = None
|
|
15
19
|
from ..helpers import string_type
|
|
16
20
|
from .serialization import _lower_name_with_
|
|
17
21
|
|
|
@@ -195,9 +195,12 @@ class patched_ShapeEnv:
|
|
|
195
195
|
if self.frozen:
|
|
196
196
|
self.counter["ignored_backward_guard"] += 1
|
|
197
197
|
# PATCHED: raised an exception instead of logging.
|
|
198
|
+
import transformers
|
|
199
|
+
|
|
198
200
|
raise AssertionError(
|
|
199
201
|
f"[patched_ShapeEnv] Ignored guard {expr} == {concrete_val}, "
|
|
200
|
-
f"this could result in accuracy problems"
|
|
202
|
+
f"this could result in accuracy problems, transformers.__version__="
|
|
203
|
+
f"{transformers.__version__!r}"
|
|
201
204
|
)
|
|
202
205
|
|
|
203
206
|
def _set_replacement(
|