onnx-diagnostic 0.7.8__py3-none-any.whl → 0.7.9__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -3,5 +3,5 @@ Patches, Investigates onnx models.
3
3
  Functions, classes to dig into a model when this one is right, slow, wrong...
4
4
  """
5
5
 
6
- __version__ = "0.7.8"
6
+ __version__ = "0.7.9"
7
7
  __author__ = "Xavier Dupré"
@@ -850,13 +850,13 @@ def get_parser_agg() -> ArgumentParser:
850
850
  "--filter-in",
851
851
  default="",
852
852
  help="adds a filter to filter in data, syntax is\n"
853
- '``"<column1>:<value1>;<value2>/<column2>:<value3>"`` ...',
853
+ '``"<column1>:<value1>;<value2>//<column2>:<value3>"`` ...',
854
854
  )
855
855
  parser.add_argument(
856
856
  "--filter-out",
857
857
  default="",
858
858
  help="adds a filter to filter out data, syntax is\n"
859
- '``"<column1>:<value1>;<value2>/<column2>:<value3>"`` ...',
859
+ '``"<column1>:<value1>;<value2>//<column2>:<value3>"`` ...',
860
860
  )
861
861
  parser.add_argument(
862
862
  "--sbs",
@@ -118,9 +118,11 @@ def filter_data(
118
118
  if isinstance(fmt, str):
119
119
  cols = fmt.split("//")
120
120
  for c in cols:
121
- assert ":" in c, f"Unexpected value {c!r} in fmt={fmt!r}"
121
+ assert ":" in c, f"Unexpected value {c!r} in fmt={fmt!r}, cols={cols!r}"
122
122
  spl = c.split(":")
123
- assert len(spl) == 2, f"Unexpected value {c!r} in fmt={fmt!r}"
123
+ assert (
124
+ len(spl) == 2
125
+ ), f"Unexpected value {c!r} in fmt={fmt!r}, spl={spl}, cols={cols}"
124
126
  name, fil = spl
125
127
  cond[name] = set(fil.split(";"))
126
128
  return cond
@@ -1,5 +1,6 @@
1
1
  import enum
2
2
  import io
3
+ import os
3
4
  import pprint
4
5
  import re
5
6
  import warnings
@@ -270,6 +271,10 @@ class CubePlot:
270
271
  def _to_images_bar(
271
272
  self, verbose: int = 0, merge: bool = True, title_suffix: Optional[str] = None
272
273
  ) -> List[bytes]:
274
+ """
275
+ Environment variable ``FIGSIZEH`` can be set to increase the
276
+ graph height. Default is 1.0.
277
+ """
273
278
  assert merge, f"merge={merge} not implemented yet"
274
279
  import matplotlib.pyplot as plt
275
280
 
@@ -279,7 +284,8 @@ class CubePlot:
279
284
  n_cols = 3
280
285
  nn = df.shape[1] // n_cols
281
286
  nn += int(df.shape[1] % n_cols != 0)
282
- fig, axs = plt.subplots(nn, n_cols, figsize=(6 * n_cols, nn * df.shape[0] / 5))
287
+ ratio = float(os.environ.get("FIGSIZEH", "1"))
288
+ fig, axs = plt.subplots(nn, n_cols, figsize=(6 * n_cols, nn * df.shape[0] / 3 * ratio))
283
289
  pos = 0
284
290
  imgs = []
285
291
  for c in self._make_loop(df.columns, verbose):
@@ -201,10 +201,12 @@ def create_model_builder(
201
201
  arch_map = {
202
202
  "ChatGLMForConditionalGeneration": builder.ChatGLMModel,
203
203
  "ChatGLMModel": builder.ChatGLMModel,
204
+ "Ernie4_5_ForCausalLM": builder.ErnieModel,
204
205
  "GemmaForCausalLM": builder.Gemma2Model,
205
206
  "Gemma3ForCausalLM": builder.Gemma3Model,
206
207
  "Gemma3ForConditionalGeneration": builder.Gemma3Model,
207
208
  "GraniteForCausalLM": builder.GraniteModel,
209
+ "GptOssForCausalLM": builder.GPTOSSModel,
208
210
  "LlamaForCausalLM": builder.LlamaModel,
209
211
  "MistralForCausalLM": builder.MistralModel,
210
212
  "NemotronForCausalLM": builder.NemotronModel,
@@ -235,6 +237,7 @@ def create_model_builder(
235
237
  "Phi4MMForCausalLM": builder.Phi4MMModel,
236
238
  "Qwen2ForCausalLM": builder.QwenModel,
237
239
  "Qwen3ForCausalLM": builder.Qwen3Model,
240
+ "SmolLM3ForCausalLM": builder.SmolLM3Model,
238
241
  }
239
242
 
240
243
  assert config.architectures[0] in arch_map, (
@@ -276,6 +279,8 @@ def create_model_builder(
276
279
  for key in text_config:
277
280
  if not hasattr(config, key):
278
281
  setattr(config, key, getattr(text_config, key))
282
+ elif config.architectures[0] == "GptOssForCausalLM":
283
+ delattr(config, "quantization_config")
279
284
  elif (
280
285
  config.architectures[0] == "PhiMoEForCausalLM"
281
286
  and config.max_position_embeddings != config.original_max_position_embeddings
@@ -76,7 +76,7 @@ def get_inputs(
76
76
  assert (
77
77
  "cls_cache" not in kwargs
78
78
  ), f"Not yet implemented for cls_cache={kwargs['cls_cache']!r}."
79
- batch = torch.export.Dim("batch", min=1, max=1024)
79
+ batch = "batch"
80
80
  seq_length = "seq_length"
81
81
 
82
82
  shapes = {
@@ -47,7 +47,7 @@ def get_inputs(
47
47
  assert (
48
48
  "cls_cache" not in kwargs
49
49
  ), f"Not yet implemented for cls_cache={kwargs['cls_cache']!r}."
50
- batch = torch.export.Dim("batch", min=1, max=1024)
50
+ batch = "batch"
51
51
  seq_length = "sequence_length"
52
52
  shapes = {
53
53
  "input_ids": {0: batch, 1: seq_length},
@@ -42,7 +42,7 @@ def get_inputs(
42
42
  assert (
43
43
  "cls_cache" not in kwargs
44
44
  ), f"Not yet implemented for cls_cache={kwargs['cls_cache']!r}."
45
- batch = torch.export.Dim("batch", min=1, max=1024)
45
+ batch = "batch"
46
46
  seq_length = "sequence_length"
47
47
  shapes = {
48
48
  "input_ids": {0: batch, 1: seq_length},
@@ -107,7 +107,7 @@ def _get_inputs_gemma3(
107
107
  assert (
108
108
  "cls_cache" not in kwargs
109
109
  ), f"Not yet implemented for cls_cache={kwargs['cls_cache']!r}."
110
- batch = torch.export.Dim("batch", min=1, max=1024)
110
+ batch = "batch"
111
111
  seq_length = "seq_length" # torch.export.Dim("seq_length", min=1, max=4096)
112
112
  # cache_length = "cache_length" # torch.export.Dim("cache_length", min=1, max=4096)
113
113
 
@@ -230,7 +230,7 @@ def get_inputs(
230
230
  assert (
231
231
  "cls_cache" not in kwargs
232
232
  ), f"Not yet implemented for cls_cache={kwargs['cls_cache']!r}."
233
- batch = torch.export.Dim("batch", min=1, max=1024)
233
+ batch = "batch"
234
234
  batch_img = torch.export.Dim("batch_img", min=1, max=1024)
235
235
  seq_length = "seq_length" # torch.export.Dim("seq_length", min=1, max=4096)
236
236
  cache_length = "cache_length" # torch.export.Dim("cache_length", min=1, max=4096)
@@ -42,7 +42,7 @@ def get_inputs(
42
42
  assert (
43
43
  "cls_cache" not in kwargs
44
44
  ), f"Not yet implemented for cls_cache={kwargs['cls_cache']!r}."
45
- batch = torch.export.Dim("batch", min=1, max=1024)
45
+ batch = "batch"
46
46
  seq_length = "seq_length"
47
47
  shapes = {
48
48
  "input_ids": {0: batch, 1: seq_length},
@@ -70,7 +70,7 @@ def get_inputs(
70
70
  assert (
71
71
  "cls_cache" not in kwargs
72
72
  ), f"Not yet implemented for cls_cache={kwargs['cls_cache']!r}."
73
- batch = torch.export.Dim("batch", min=1, max=1024)
73
+ batch = "batch"
74
74
  seq_length = "seq_length" # torch.export.Dim("seq_length", min=1, max=4096)
75
75
  cache_length = "cache_length_key" # torch.export.Dim("cache_length", min=1, max=4096)
76
76
  cache_length2 = "cache_length_val" # torch.export.Dim("cache_length2", min=1, max=4096)
@@ -72,7 +72,7 @@ def get_inputs(
72
72
  assert (
73
73
  "cls_cache" not in kwargs
74
74
  ), f"Not yet implemented for cls_cache={kwargs['cls_cache']!r}."
75
- batch = torch.export.Dim("batch", min=1, max=1024)
75
+ batch = "batch"
76
76
  seq_length = "seq_length" # torch.export.Dim("seq_length", min=1, max=4096)
77
77
  cache_length = "cache_length_key"
78
78
  cache_length2 = "cache_length_val"
@@ -42,7 +42,7 @@ def get_inputs(
42
42
  assert (
43
43
  "cls_cache" not in kwargs
44
44
  ), f"Not yet implemented for cls_cache={kwargs['cls_cache']!r}."
45
- batch = torch.export.Dim("batch", min=1, max=1024)
45
+ batch = "batch"
46
46
  seq_length = "seq_length" # torch.export.Dim("sequence_length", min=1, max=1024)
47
47
  shapes = {
48
48
  "input_ids": {0: batch, 1: seq_length},
@@ -83,7 +83,7 @@ def get_inputs(
83
83
  :class:`transformers.cache_utils.DynamicCache`
84
84
  :return: dictionary
85
85
  """
86
- batch = torch.export.Dim("batch", min=1, max=1024)
86
+ batch = "batch"
87
87
  seq_length = "seq_length" # torch.export.Dim("seq_length", min=1, max=4096)
88
88
  cache_length = "cache_length" # torch.export.Dim("cache_length", min=1, max=4096)
89
89
 
@@ -65,7 +65,7 @@ def get_inputs(
65
65
  input_width, int
66
66
  ), f"Unexpected type for input_height {type(input_height)}{config}"
67
67
 
68
- batch = torch.export.Dim("batch", min=1, max=1024)
68
+ batch = "batch"
69
69
  seq_length = "seq_length" # torch.export.Dim("seq_length", min=1, max=4096)
70
70
  shapes = {
71
71
  "input_ids": {0: batch, 1: seq_length},
@@ -205,7 +205,10 @@ class patched_ShapeEnv:
205
205
  # Precondition: a == tgt
206
206
  assert isinstance(a, sympy.Symbol)
207
207
 
208
- if self.allow_complex_guards_as_runtime_asserts and not _is_supported_equivalence(tgt):
208
+ if (
209
+ getattr(self, "allow_complex_guards_as_runtime_asserts", False)
210
+ or getattr(self, "prefer_deferred_runtime_asserts_over_guards", False)
211
+ ) and not _is_supported_equivalence(tgt):
209
212
  # continuing leads to placeholder shapes
210
213
  # having complex expressions that we can't resolve
211
214
  return
@@ -496,9 +496,15 @@ def validate_model(
496
496
  cpl = CoupleInputsDynamicShapes(
497
497
  tuple(), data[k], dynamic_shapes=data["dynamic_shapes"]
498
498
  )
499
- data[k] = cpl.change_dynamic_dimensions(
500
- desired_values=dict(batch=1), only_desired=True
501
- )
499
+ if patch_kwargs.get("patch", False):
500
+ with torch_export_patches(**patch_kwargs): # type: ignore[arg-type]
501
+ data[k] = cpl.change_dynamic_dimensions(
502
+ desired_values=dict(batch=1), only_desired=True
503
+ )
504
+ else:
505
+ data[k] = cpl.change_dynamic_dimensions(
506
+ desired_values=dict(batch=1), only_desired=True
507
+ )
502
508
  if verbose:
503
509
  print(f"[validate_model] batch=1 --> {string_type(data[k], with_shape=True)}")
504
510
 
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: onnx-diagnostic
3
- Version: 0.7.8
3
+ Version: 0.7.9
4
4
  Summary: Investigate ONNX models
5
5
  Home-page: https://github.com/sdpython/onnx-diagnostic
6
6
  Author: Xavier Dupré
@@ -1,6 +1,6 @@
1
- onnx_diagnostic/__init__.py,sha256=atIZhOUaWoHQQ1pUnGu6Qn-uTq_KocBvIG5yInBKI04,173
1
+ onnx_diagnostic/__init__.py,sha256=kVcl-JnGE4IT1aVApD12HyIKRM7Rq6QRFtmH09JgMwY,173
2
2
  onnx_diagnostic/__main__.py,sha256=YmyV_Aq_ianDlHyKLHMa6h8YK3ZmFPpLVHLKjM91aCk,79
3
- onnx_diagnostic/_command_lines_parser.py,sha256=8JlT1vzyGztkJT2v6lpQx5itLKY4FYlpFng3z8n3TAU,32937
3
+ onnx_diagnostic/_command_lines_parser.py,sha256=TVPlDjsWZd_Zb9DzN3zj0OGxd8nz_nUsjQyGkmyMNsA,32939
4
4
  onnx_diagnostic/api.py,sha256=BhCl_yCd78N7TlVtPOHjeYv1QBEy39TjZ647rcHqLh0,345
5
5
  onnx_diagnostic/doc.py,sha256=t3RELgfooYnVMAi0JSpggWkQEgUsREz8NmRvn0TnLI8,2829
6
6
  onnx_diagnostic/ext_test_case.py,sha256=emfQGiQSz5FVDhyJ1Acsv_Tast7tWl426TjtpNqxDBU,43558
@@ -9,7 +9,7 @@ onnx_diagnostic/export/dynamic_shapes.py,sha256=Go4_sIwiolCy_m1djQ3U_bX6C1EFw4al
9
9
  onnx_diagnostic/export/shape_helper.py,sha256=PI_SgE1MNRKSrQ414eYoBZ54QGZbYisHSvqi9tstL2s,7795
10
10
  onnx_diagnostic/export/validate.py,sha256=_PGUql2DJhIgGKo0WjTGUc5AgsZUx8fEs00MePy-w98,6043
11
11
  onnx_diagnostic/helpers/__init__.py,sha256=GJ2GT7cgnlIveVUwMZhuvUwidbTJaKv8CsSIOpZDsJg,83
12
- onnx_diagnostic/helpers/_log_helper.py,sha256=zZ7AqGpiF3O2-9N8fLuPeB5VfJpbg3tQ20ccDRdQPVE,16753
12
+ onnx_diagnostic/helpers/_log_helper.py,sha256=OTwQH0OIxs9B6nrSvR7MoxMimSw_8mU0mj133NvLk5o,16832
13
13
  onnx_diagnostic/helpers/args_helper.py,sha256=SRWnqC7EENg09RZlA50B_PcdiIhdbgA4C3ACfzl5nMs,4419
14
14
  onnx_diagnostic/helpers/bench_run.py,sha256=CGA6VMJZMH2gDhVueT9ypNm4PMcjGrrGFYp08nhWj9k,16539
15
15
  onnx_diagnostic/helpers/cache_helper.py,sha256=dFiKPnD3qT_rel9C7Az9AEnbV2drfSMSdXBRotJJUU4,24686
@@ -17,10 +17,10 @@ onnx_diagnostic/helpers/config_helper.py,sha256=H2mOcMXfrcolFnt8EuqmRFkpQ3YdNRDf
17
17
  onnx_diagnostic/helpers/doc_helper.py,sha256=pl5MZd3_FaE8BqQnqoBuSBxoNCFcd2OJd3eITUSku5c,5897
18
18
  onnx_diagnostic/helpers/graph_helper.py,sha256=hevQT5a7_QuriVPQcbT5qe18n99Doyl5h3-qshx1-uk,14093
19
19
  onnx_diagnostic/helpers/helper.py,sha256=OsQz2um10DgGiX3fgOulTDFQop0wCMX6shPonQgN71w,62940
20
- onnx_diagnostic/helpers/log_helper.py,sha256=rBYtZo85n61uQRIpxKpxkKTtKv-bDZvAc1J1uHRDosc,82567
20
+ onnx_diagnostic/helpers/log_helper.py,sha256=ODtMLFfJvkyss9PJwEZFd5_8bLcliaMq0A17t0dSIFA,82771
21
21
  onnx_diagnostic/helpers/memory_peak.py,sha256=OT6mz0muBbBZY0pjgW2_eCk_lOtFRo-5w4jFo2Z6Kok,6380
22
22
  onnx_diagnostic/helpers/mini_onnx_builder.py,sha256=FgK-Kws1WpSYdYJCPyONwQYY3AjbgUHimZlaYyiNUfE,21286
23
- onnx_diagnostic/helpers/model_builder_helper.py,sha256=RvDyPFqRboEU3HsQV_xi9oy-o3_4KuGFVzs5MhksduY,12552
23
+ onnx_diagnostic/helpers/model_builder_helper.py,sha256=tJi4VkP0TS2yyDSxQPNu9WRoSnPCAjr6L0J49X2LdXk,12810
24
24
  onnx_diagnostic/helpers/onnx_helper.py,sha256=GApd3fmweLZ85GjEqo49ZCiOUSJ7vtXCBs-Tp3WlydI,39825
25
25
  onnx_diagnostic/helpers/ort_session.py,sha256=UgUUeUslDxEFBc6w6f3HMq_a7bn4TBlItmojqWquSj4,29281
26
26
  onnx_diagnostic/helpers/rt_helper.py,sha256=qbV6zyMs-iH6H65WHC2tu4h0psnHg0TX5fwfO_k-glg,4623
@@ -73,21 +73,21 @@ onnx_diagnostic/reference/torch_ops/sequence_ops.py,sha256=3EiVKpGfN4d1Iry4hgnr3
73
73
  onnx_diagnostic/reference/torch_ops/shape_ops.py,sha256=pJrNR2UB4PlWl6cv4EDl1uGl8YTBUUMQkhJcsh5K4sA,4291
74
74
  onnx_diagnostic/reference/torch_ops/unary_ops.py,sha256=dwu6HPr4V_roxu85U3VLTtDLx5bfxKalT_-zlQxZ5wc,1850
75
75
  onnx_diagnostic/tasks/__init__.py,sha256=uWFP7HIr-VnxmXD5i_QAfXnLXc1HwUq2e8v9cKLqraQ,2492
76
- onnx_diagnostic/tasks/automatic_speech_recognition.py,sha256=tguoQO77okXo8vcJrN2FAmpO9zkq04WSY8OKgm5sqRw,7185
77
- onnx_diagnostic/tasks/feature_extraction.py,sha256=pcFON5uGKoykjg52bMsvpYG7KJvXd8JDC43rAjXIzB0,5572
78
- onnx_diagnostic/tasks/fill_mask.py,sha256=Z0OyDs3pcnjJLzZBbS52d6pa6jh6m2Uy8-h3nF5wbDA,2675
76
+ onnx_diagnostic/tasks/automatic_speech_recognition.py,sha256=umZmjGW1gDUFkqvBJnQyaL7D7-HqiwlQpsq6Ip187Dg,7150
77
+ onnx_diagnostic/tasks/feature_extraction.py,sha256=Zh9p_Q8FqEO2_aqI0cCiq8OXuM3WUZbwItlLOmLnNl8,5537
78
+ onnx_diagnostic/tasks/fill_mask.py,sha256=5Gt6zlj0p6vuifox7Wmj-TpHXJvPS0CEH8evgdBHDNA,2640
79
79
  onnx_diagnostic/tasks/image_classification.py,sha256=nLpBBB1Gkog3Fk6pu2waiHcuQr4ILPptc9FhQ-pn460,4682
80
- onnx_diagnostic/tasks/image_text_to_text.py,sha256=XlikpvAdB2q4sQ9U17JZWLUZ77_rGsbICM-xxcgqfQc,17498
80
+ onnx_diagnostic/tasks/image_text_to_text.py,sha256=wkFrUaEvQAW-D-jql2xSnae1XvQBl-sSbhmAmJ76qGo,17428
81
81
  onnx_diagnostic/tasks/mask_generation.py,sha256=fjdD3rd-O-mFL0hQy3la3JXKth_0bH2HL7Eelq-3Dbs,5057
82
82
  onnx_diagnostic/tasks/mixture_of_expert.py,sha256=al4tk1BrHidtRiHlAaiflWiJaAte0d5M8WcBioANG9k,2808
83
83
  onnx_diagnostic/tasks/object_detection.py,sha256=3FiT8ya5FCd9lwjQCRXhAwXspNwYTlAD3Gpk8aAcG5w,4279
84
- onnx_diagnostic/tasks/sentence_similarity.py,sha256=Azpw9hxLwxM7O14Rj0mzH73LrrYGhiBm8fIb_tVnXCM,2690
85
- onnx_diagnostic/tasks/summarization.py,sha256=tH2aX8undH8n-CGzDp-d-nBil2TD4Kv3PqeiaiFLkqY,8327
86
- onnx_diagnostic/tasks/text2text_generation.py,sha256=-5Iy938AsQBXmA2chxYc7MUZQ7ZlmWJQ7k_O66wGTTo,8637
87
- onnx_diagnostic/tasks/text_classification.py,sha256=JbKjnMoocr-k3-RVC5b-68kZaKJTPTm3aKSTXShHEo0,2746
88
- onnx_diagnostic/tasks/text_generation.py,sha256=i1tX_cOMnKwIvEcm2EFNWtZ4DwJGcQ6EGQGSJmu69Oc,12858
84
+ onnx_diagnostic/tasks/sentence_similarity.py,sha256=vPqNZgAnIvY0rKWPUTs0IlU3RFQDkXAHL7IVfRFmilY,2655
85
+ onnx_diagnostic/tasks/summarization.py,sha256=8vB_JiRzDEacIvr8CYTuVQTH73xG_jNkndoS9RHJTSs,8292
86
+ onnx_diagnostic/tasks/text2text_generation.py,sha256=35eF_RlSeMdLTZPooLMAnszs-z0bkKZ34Iej3JgA96A,8602
87
+ onnx_diagnostic/tasks/text_classification.py,sha256=CGc72SpXFzTUyzAHEMPgyy_s187DaYGsRdrosxG80_Q,2711
88
+ onnx_diagnostic/tasks/text_generation.py,sha256=hV-oK1bWjtepxkA491Va_0CWrELZbfP4E3N8xQ950zk,12823
89
89
  onnx_diagnostic/tasks/text_to_image.py,sha256=mOS3Ruosi3hzRMxXLDN7ZkAbi7NnQb7MWwQP_okGVHs,2962
90
- onnx_diagnostic/tasks/zero_shot_image_classification.py,sha256=1iqYamkq5kZNXEXsySw748ernc0O94GkwpYAIEl6Kj4,4659
90
+ onnx_diagnostic/tasks/zero_shot_image_classification.py,sha256=jJCMWuOqGv5ahCfjrcqxuYCJFhTgHV5KUf2yyv2yxYA,4624
91
91
  onnx_diagnostic/torch_export_patches/__init__.py,sha256=0SaZedwznm1hQUCvXZsGZORV5vby954wEExr5faepGg,720
92
92
  onnx_diagnostic/torch_export_patches/onnx_export_errors.py,sha256=Nx3HLII-KIemfMydraTRlwK9O0kgVug57SiLT9y9KOY,23749
93
93
  onnx_diagnostic/torch_export_patches/onnx_export_serialization.py,sha256=klvqiMjccwGhiRnLRVbwTi5WWkMfvtnOV5ycirPcAdA,11354
@@ -98,14 +98,14 @@ onnx_diagnostic/torch_export_patches/patch_module_helper.py,sha256=2U0AdyZuU0W54
98
98
  onnx_diagnostic/torch_export_patches/eval/__init__.py,sha256=57x62uZNA80XiWgkG8Fe0_8YJcIVrvKLPqvwLDPJwgc,24008
99
99
  onnx_diagnostic/torch_export_patches/eval/model_cases.py,sha256=DTvdHPtNQh25Akv5o3D4Jxf1L1-SJ7w14tgvj8AAns8,26577
100
100
  onnx_diagnostic/torch_export_patches/patches/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
101
- onnx_diagnostic/torch_export_patches/patches/patch_torch.py,sha256=g1UjL6A6iB7Qh2Cs1efuKk5377IvsSnZXUk3jNeRu_E,18830
101
+ onnx_diagnostic/torch_export_patches/patches/patch_torch.py,sha256=TFjuw--sTYPCoVEaYlYLJuElx_CUynJR6s6ypoZtRWw,18956
102
102
  onnx_diagnostic/torch_export_patches/patches/patch_transformers.py,sha256=tcDNJzOIivyOM6XbTm4munHKHAmVrOKE6nbqIdl-4dg,66290
103
103
  onnx_diagnostic/torch_export_patches/serialization/__init__.py,sha256=BHLdRPtNAtNPAS-bPKEj3-foGSPvwAbZXrHzGGPDLEw,1876
104
104
  onnx_diagnostic/torch_export_patches/serialization/diffusers_impl.py,sha256=drq3EH_yjcSuIWYsVeUWm8Cx6YCZFU6bP_1PLtPfY5I,945
105
105
  onnx_diagnostic/torch_export_patches/serialization/transformers_impl.py,sha256=dAKi4zujlBxDvxvaVI_qH4qW9AlpVFMtCkvGTNCJCUY,9353
106
106
  onnx_diagnostic/torch_models/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
107
107
  onnx_diagnostic/torch_models/llms.py,sha256=soyg4yC87ptGoeulJhKqw5opGmuLvH1pn_ZDXZ4Jr8E,90
108
- onnx_diagnostic/torch_models/validate.py,sha256=fFDe68M5-1W67UEkLLFqKbaUNjN1qyehyBMxrlZTs90,65588
108
+ onnx_diagnostic/torch_models/validate.py,sha256=IkWyuwKmIqetMN5ziD9jPwSgRAMzJnQqPElIQFJiJwc,65907
109
109
  onnx_diagnostic/torch_models/hghub/__init__.py,sha256=vi1Q7YHdddj1soiBN42MSvJdFqe2_KUoWafHISjwOu8,58
110
110
  onnx_diagnostic/torch_models/hghub/hub_api.py,sha256=Bvr-sTAhS6s6UCkt-KsY_7Mdai08-AQzvHrzbYCSuvk,13186
111
111
  onnx_diagnostic/torch_models/hghub/hub_data.py,sha256=W05mciqUqhaYEfYNHtUeuwOMOZoQTuDidRLEIx4z1CE,8523
@@ -117,8 +117,8 @@ onnx_diagnostic/torch_models/untrained/llm_tiny_llm.py,sha256=QXw_Bs2SzfeiQMf-tm
117
117
  onnx_diagnostic/torch_onnx/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
118
118
  onnx_diagnostic/torch_onnx/runtime_info.py,sha256=1g9F_Jf9AAgYQU4stbsrFXwQl-30mWlQrFbQ7val8Ps,9268
119
119
  onnx_diagnostic/torch_onnx/sbs.py,sha256=1EL25DeYFzlBSiFG_XjePBLvsiItRXbdDrr5-QZW2mA,16878
120
- onnx_diagnostic-0.7.8.dist-info/licenses/LICENSE.txt,sha256=Vv6TXglX6Rc0d-f8aREhayhT-6PMQXEyOmI2NKlUCMc,1045
121
- onnx_diagnostic-0.7.8.dist-info/METADATA,sha256=6szG1djw7CRRO3FOrgBWGW3hZ3hNL6zwIOlcWrmtl9k,7431
122
- onnx_diagnostic-0.7.8.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
123
- onnx_diagnostic-0.7.8.dist-info/top_level.txt,sha256=KwNkXewmcobM3ZT1DJLVWH6ebJzA5qKg7cWqKfpGNT4,16
124
- onnx_diagnostic-0.7.8.dist-info/RECORD,,
120
+ onnx_diagnostic-0.7.9.dist-info/licenses/LICENSE.txt,sha256=Vv6TXglX6Rc0d-f8aREhayhT-6PMQXEyOmI2NKlUCMc,1045
121
+ onnx_diagnostic-0.7.9.dist-info/METADATA,sha256=UIT85yMNIqhtCArUezpyfFnbkz1KY4Q11EjKCBKZVWs,7431
122
+ onnx_diagnostic-0.7.9.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
123
+ onnx_diagnostic-0.7.9.dist-info/top_level.txt,sha256=KwNkXewmcobM3ZT1DJLVWH6ebJzA5qKg7cWqKfpGNT4,16
124
+ onnx_diagnostic-0.7.9.dist-info/RECORD,,