onnx-diagnostic 0.7.5__py3-none-any.whl → 0.7.6__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,15 +1,25 @@
1
1
  from typing import Any, List, Set, Tuple
2
2
  import torch
3
- import transformers
4
3
  from transformers.cache_utils import (
5
4
  DynamicCache,
6
- MambaCache,
7
5
  EncoderDecoderCache,
6
+ HybridCache,
8
7
  SlidingWindowCache,
9
8
  StaticCache,
10
9
  )
10
+
11
+ try:
12
+ from transformers.models.mamba.modeling_mamba import MambaCache
13
+ except ImportError:
14
+ from transformers.cache_utils import MambaCache
11
15
  from transformers.modeling_outputs import BaseModelOutput
12
- from ...helpers.cache_helper import make_static_cache
16
+ from ...helpers.cache_helper import (
17
+ make_dynamic_cache,
18
+ make_hybrid_cache,
19
+ make_sliding_window_cache,
20
+ make_static_cache,
21
+ CacheKeyValue,
22
+ )
13
23
  from . import make_serialization_function_for_dataclass
14
24
 
15
25
 
@@ -29,6 +39,12 @@ def flatten_mamba_cache(
29
39
  mamba_cache: MambaCache,
30
40
  ) -> Tuple[List[Any], torch.utils._pytree.Context]:
31
41
  """Serializes a :class:`transformers.cache_utils.MambaCache` with python objects."""
42
+ assert isinstance(mamba_cache.conv_states, list) and isinstance(
43
+ mamba_cache.ssm_states, list
44
+ ), (
45
+ f"Unexpected types for conv_states and ssm_states {type(mamba_cache.conv_states)}, "
46
+ f"{type(mamba_cache.ssm_states)}"
47
+ )
32
48
  flat = [
33
49
  ("conv_states", mamba_cache.conv_states),
34
50
  ("ssm_states", mamba_cache.ssm_states),
@@ -85,9 +101,8 @@ def flatten_dynamic_cache(
85
101
  dynamic_cache: DynamicCache,
86
102
  ) -> Tuple[List[Any], torch.utils._pytree.Context]:
87
103
  """Serializes a :class:`transformers.cache_utils.DynamicCache` with python objects."""
88
- if hasattr(transformers.cache_utils, "_flatten_dynamic_cache"):
89
- return transformers.cache_utils._flatten_dynamic_cache(dynamic_cache)
90
- flat = [("key_cache", dynamic_cache.key_cache), ("value_cache", dynamic_cache.value_cache)]
104
+ ca = CacheKeyValue(dynamic_cache)
105
+ flat = [("key_cache", ca.key_cache), ("value_cache", ca.value_cache)]
91
106
  return [f[1] for f in flat], [f[0] for f in flat]
92
107
 
93
108
 
@@ -95,8 +110,6 @@ def flatten_with_keys_dynamic_cache(
95
110
  dynamic_cache: DynamicCache,
96
111
  ) -> Tuple[List[Tuple[torch.utils._pytree.KeyEntry, Any]], torch.utils._pytree.Context]:
97
112
  """Serializes a :class:`transformers.cache_utils.DynamicCache` with python objects."""
98
- if hasattr(transformers.cache_utils, "_flatten_with_keys_dynamic_cache"):
99
- return transformers.cache_utils._flatten_with_keys_dynamic_cache(dynamic_cache)
100
113
  values, context = flatten_dynamic_cache(dynamic_cache)
101
114
  return [(torch.utils._pytree.MappingKey(k), v) for k, v in zip(context, values)], context
102
115
 
@@ -105,15 +118,36 @@ def unflatten_dynamic_cache(
105
118
  values: List[Any], context: torch.utils._pytree.Context, output_type=None
106
119
  ) -> DynamicCache:
107
120
  """Restores a :class:`transformers.cache_utils.DynamicCache` from python objects."""
108
- if hasattr(transformers.cache_utils, "_unflatten_dynamic_cache"):
109
- assert output_type is None, f"output_type={output_type} not supported"
110
- return transformers.cache_utils._unflatten_dynamic_cache(values, context)
121
+ return make_dynamic_cache(list(zip(values[0], values[1])))
111
122
 
112
- cache = transformers.cache_utils.DynamicCache()
113
- values = dict(zip(context, values))
114
- for k, v in values.items():
115
- setattr(cache, k, v)
116
- return cache
123
+
124
+ #############
125
+ # HybridCache
126
+ #############
127
+
128
+
129
+ def flatten_hybrid_cache(
130
+ cache: HybridCache,
131
+ ) -> Tuple[List[Any], torch.utils._pytree.Context]:
132
+ """Serializes a :class:`transformers.cache_utils.HybridCache` with python objects."""
133
+ ca = CacheKeyValue(cache)
134
+ flat = [("key_cache", ca.key_cache), ("value_cache", ca.value_cache)]
135
+ return [f[1] for f in flat], [f[0] for f in flat]
136
+
137
+
138
+ def flatten_with_keys_hybrid_cache(
139
+ cache: HybridCache,
140
+ ) -> Tuple[List[Tuple[torch.utils._pytree.KeyEntry, Any]], torch.utils._pytree.Context]:
141
+ """Serializes a :class:`transformers.cache_utils.HybridCache` with python objects."""
142
+ values, context = flatten_hybrid_cache(cache)
143
+ return [(torch.utils._pytree.MappingKey(k), v) for k, v in zip(context, values)], context
144
+
145
+
146
+ def unflatten_hybrid_cache(
147
+ values: List[Any], context: torch.utils._pytree.Context, output_type=None
148
+ ) -> HybridCache:
149
+ """Restores a :class:`transformers.cache_utils.HybridCache` from python objects."""
150
+ return make_hybrid_cache(list(zip(values[0], values[1])))
117
151
 
118
152
 
119
153
  #############
@@ -125,12 +159,13 @@ def flatten_static_cache(
125
159
  cache: StaticCache,
126
160
  ) -> Tuple[List[Any], torch.utils._pytree.Context]:
127
161
  """Serializes a :class:`transformers.cache_utils.StaticCache` with python objects."""
128
- assert not cache.key_cache or cache.max_cache_len == cache.key_cache[0].shape[2], (
162
+ ca = CacheKeyValue(cache)
163
+ assert not ca.key_cache or cache.max_cache_len == ca.key_cache[0].shape[2], (
129
164
  f"Serialization doet not work when "
130
165
  f"cache.max_cache_len={cache.max_cache_len} != "
131
- f"cache.key_cache[0].shape[2]={cache.key_cache[0].shape[2]}"
166
+ f"cache.key_cache[0].shape[2]={ca.keu_cache[0].shape[2]}"
132
167
  )
133
- flat = [("key_cache", cache.key_cache), ("value_cache", cache.value_cache)]
168
+ flat = [("key_cache", ca.key_cache), ("value_cache", ca.value_cache)]
134
169
  return [f[1] for f in flat], [f[0] for f in flat]
135
170
 
136
171
 
@@ -163,7 +198,8 @@ def flatten_sliding_window_cache(
163
198
  Serializes a :class:`transformers.cache_utils.SlidingWindowCache`
164
199
  with python objects.
165
200
  """
166
- flat = [("key_cache", cache.key_cache), ("value_cache", cache.value_cache)]
201
+ ca = CacheKeyValue(cache)
202
+ flat = [("key_cache", ca.key_cache), ("value_cache", ca.value_cache)]
167
203
  return [f[1] for f in flat], [f[0] for f in flat]
168
204
 
169
205
 
@@ -183,26 +219,7 @@ def unflatten_sliding_window_cache(
183
219
  ) -> SlidingWindowCache:
184
220
  """Restores a :class:`transformers.cache_utils.SlidingWindowCache` from python objects."""
185
221
  key_cache, value_cache = values
186
-
187
- class _config:
188
- def __init__(self):
189
- self.head_dim = key_cache[0].shape[-1]
190
- self.num_attention_heads = key_cache[0].shape[1]
191
- self.num_hidden_layers = len(key_cache)
192
- self.sliding_window = key_cache[0].shape[2]
193
-
194
- cache = SlidingWindowCache(
195
- _config(),
196
- max_batch_size=key_cache[0].shape[0],
197
- max_cache_len=key_cache[0].shape[2], # sligding window
198
- device=key_cache[0].device,
199
- dtype=key_cache[0].dtype,
200
- )
201
-
202
- values = dict(zip(context, values))
203
- for k, v in values.items():
204
- setattr(cache, k, v)
205
- return cache
222
+ return make_sliding_window_cache(list(zip(values[0], values[1])))
206
223
 
207
224
 
208
225
  #####################
@@ -1366,6 +1366,236 @@ def _ccached_fxmarty_tiny_random_gemmaforcausallm():
1366
1366
  )
1367
1367
 
1368
1368
 
1369
+ def _ccached_fxmarty_sam_vit_tiny_random():
1370
+ "fxmarty/sam-vit-tiny-random"
1371
+ return transformers.SamConfig(
1372
+ **{
1373
+ "_commit_hash": "a7c34ea5d2b33a3bc34d34dc9a7b2417c0eaa809",
1374
+ "_name_or_path": "facebook/sam-vit-base",
1375
+ "architectures": ["SamModel"],
1376
+ "initializer_range": 0.02,
1377
+ "mask_decoder_config": {
1378
+ "_name_or_path": "",
1379
+ "add_cross_attention": false,
1380
+ "architectures": null,
1381
+ "attention_downsample_rate": 2,
1382
+ "bad_words_ids": null,
1383
+ "begin_suppress_tokens": null,
1384
+ "bos_token_id": null,
1385
+ "chunk_size_feed_forward": 0,
1386
+ "cross_attention_hidden_size": null,
1387
+ "decoder_start_token_id": null,
1388
+ "diversity_penalty": 0.0,
1389
+ "do_sample": false,
1390
+ "early_stopping": false,
1391
+ "encoder_no_repeat_ngram_size": 0,
1392
+ "eos_token_id": null,
1393
+ "exponential_decay_length_penalty": null,
1394
+ "finetuning_task": null,
1395
+ "forced_bos_token_id": null,
1396
+ "forced_eos_token_id": null,
1397
+ "hidden_act": "relu",
1398
+ "hidden_size": 32,
1399
+ "id2label": {"0": "LABEL_0", "1": "LABEL_1"},
1400
+ "iou_head_depth": 3,
1401
+ "iou_head_hidden_dim": 256,
1402
+ "is_decoder": false,
1403
+ "is_encoder_decoder": false,
1404
+ "label2id": {"LABEL_0": 0, "LABEL_1": 1},
1405
+ "layer_norm_eps": 1e-06,
1406
+ "length_penalty": 1.0,
1407
+ "max_length": 20,
1408
+ "min_length": 0,
1409
+ "mlp_dim": 2048,
1410
+ "model_type": "",
1411
+ "no_repeat_ngram_size": 0,
1412
+ "num_attention_heads": 8,
1413
+ "num_beam_groups": 1,
1414
+ "num_beams": 1,
1415
+ "num_hidden_layers": 2,
1416
+ "num_multimask_outputs": 3,
1417
+ "num_return_sequences": 1,
1418
+ "output_attentions": false,
1419
+ "output_hidden_states": false,
1420
+ "output_scores": false,
1421
+ "pad_token_id": null,
1422
+ "prefix": null,
1423
+ "problem_type": null,
1424
+ "pruned_heads": {},
1425
+ "remove_invalid_values": false,
1426
+ "repetition_penalty": 1.0,
1427
+ "return_dict": true,
1428
+ "return_dict_in_generate": false,
1429
+ "sep_token_id": null,
1430
+ "suppress_tokens": null,
1431
+ "task_specific_params": null,
1432
+ "temperature": 1.0,
1433
+ "tf_legacy_loss": false,
1434
+ "tie_encoder_decoder": false,
1435
+ "tie_word_embeddings": true,
1436
+ "tokenizer_class": null,
1437
+ "top_k": 50,
1438
+ "top_p": 1.0,
1439
+ "torch_dtype": null,
1440
+ "torchscript": false,
1441
+ "transformers_version": "4.29.0.dev0",
1442
+ "typical_p": 1.0,
1443
+ "use_bfloat16": false,
1444
+ },
1445
+ "model_type": "sam",
1446
+ "prompt_encoder_config": {
1447
+ "_name_or_path": "",
1448
+ "add_cross_attention": false,
1449
+ "architectures": null,
1450
+ "bad_words_ids": null,
1451
+ "begin_suppress_tokens": null,
1452
+ "bos_token_id": null,
1453
+ "chunk_size_feed_forward": 0,
1454
+ "cross_attention_hidden_size": null,
1455
+ "decoder_start_token_id": null,
1456
+ "diversity_penalty": 0.0,
1457
+ "do_sample": false,
1458
+ "early_stopping": false,
1459
+ "encoder_no_repeat_ngram_size": 0,
1460
+ "eos_token_id": null,
1461
+ "exponential_decay_length_penalty": null,
1462
+ "finetuning_task": null,
1463
+ "forced_bos_token_id": null,
1464
+ "forced_eos_token_id": null,
1465
+ "hidden_act": "gelu",
1466
+ "hidden_size": 32,
1467
+ "id2label": {"0": "LABEL_0", "1": "LABEL_1"},
1468
+ "image_embedding_size": 64,
1469
+ "image_size": 1024,
1470
+ "is_decoder": false,
1471
+ "is_encoder_decoder": false,
1472
+ "label2id": {"LABEL_0": 0, "LABEL_1": 1},
1473
+ "layer_norm_eps": 1e-06,
1474
+ "length_penalty": 1.0,
1475
+ "mask_input_channels": 16,
1476
+ "max_length": 20,
1477
+ "min_length": 0,
1478
+ "model_type": "",
1479
+ "no_repeat_ngram_size": 0,
1480
+ "num_beam_groups": 1,
1481
+ "num_beams": 1,
1482
+ "num_point_embeddings": 4,
1483
+ "num_return_sequences": 1,
1484
+ "output_attentions": false,
1485
+ "output_hidden_states": false,
1486
+ "output_scores": false,
1487
+ "pad_token_id": null,
1488
+ "patch_size": 16,
1489
+ "prefix": null,
1490
+ "problem_type": null,
1491
+ "pruned_heads": {},
1492
+ "remove_invalid_values": false,
1493
+ "repetition_penalty": 1.0,
1494
+ "return_dict": true,
1495
+ "return_dict_in_generate": false,
1496
+ "sep_token_id": null,
1497
+ "suppress_tokens": null,
1498
+ "task_specific_params": null,
1499
+ "temperature": 1.0,
1500
+ "tf_legacy_loss": false,
1501
+ "tie_encoder_decoder": false,
1502
+ "tie_word_embeddings": true,
1503
+ "tokenizer_class": null,
1504
+ "top_k": 50,
1505
+ "top_p": 1.0,
1506
+ "torch_dtype": null,
1507
+ "torchscript": false,
1508
+ "transformers_version": "4.29.0.dev0",
1509
+ "typical_p": 1.0,
1510
+ "use_bfloat16": false,
1511
+ },
1512
+ "torch_dtype": "float32",
1513
+ "transformers_version": null,
1514
+ "vision_config": {
1515
+ "_name_or_path": "",
1516
+ "add_cross_attention": false,
1517
+ "architectures": null,
1518
+ "attention_dropout": 0.0,
1519
+ "bad_words_ids": null,
1520
+ "begin_suppress_tokens": null,
1521
+ "bos_token_id": null,
1522
+ "chunk_size_feed_forward": 0,
1523
+ "cross_attention_hidden_size": null,
1524
+ "decoder_start_token_id": null,
1525
+ "diversity_penalty": 0.0,
1526
+ "do_sample": false,
1527
+ "dropout": 0.0,
1528
+ "early_stopping": false,
1529
+ "encoder_no_repeat_ngram_size": 0,
1530
+ "eos_token_id": null,
1531
+ "exponential_decay_length_penalty": null,
1532
+ "finetuning_task": null,
1533
+ "forced_bos_token_id": null,
1534
+ "forced_eos_token_id": null,
1535
+ "global_attn_indexes": [2, 5, 8, 11],
1536
+ "hidden_act": "gelu",
1537
+ "hidden_size": 96,
1538
+ "id2label": {"0": "LABEL_0", "1": "LABEL_1"},
1539
+ "image_size": 1024,
1540
+ "initializer_factor": 1.0,
1541
+ "initializer_range": 1e-10,
1542
+ "intermediate_size": 768,
1543
+ "is_decoder": false,
1544
+ "is_encoder_decoder": false,
1545
+ "label2id": {"LABEL_0": 0, "LABEL_1": 1},
1546
+ "layer_norm_eps": 1e-06,
1547
+ "length_penalty": 1.0,
1548
+ "max_length": 20,
1549
+ "min_length": 0,
1550
+ "mlp_dim": 384,
1551
+ "mlp_ratio": 4.0,
1552
+ "model_type": "",
1553
+ "no_repeat_ngram_size": 0,
1554
+ "num_attention_heads": 1,
1555
+ "num_beam_groups": 1,
1556
+ "num_beams": 1,
1557
+ "num_channels": 3,
1558
+ "num_hidden_layers": 12,
1559
+ "num_pos_feats": 16,
1560
+ "num_return_sequences": 1,
1561
+ "output_attentions": false,
1562
+ "output_channels": 32,
1563
+ "output_hidden_states": false,
1564
+ "output_scores": false,
1565
+ "pad_token_id": null,
1566
+ "patch_size": 16,
1567
+ "prefix": null,
1568
+ "problem_type": null,
1569
+ "projection_dim": 64,
1570
+ "pruned_heads": {},
1571
+ "qkv_bias": true,
1572
+ "remove_invalid_values": false,
1573
+ "repetition_penalty": 1.0,
1574
+ "return_dict": true,
1575
+ "return_dict_in_generate": false,
1576
+ "sep_token_id": null,
1577
+ "suppress_tokens": null,
1578
+ "task_specific_params": null,
1579
+ "temperature": 1.0,
1580
+ "tf_legacy_loss": false,
1581
+ "tie_encoder_decoder": false,
1582
+ "tie_word_embeddings": true,
1583
+ "tokenizer_class": null,
1584
+ "top_k": 50,
1585
+ "top_p": 1.0,
1586
+ "torch_dtype": null,
1587
+ "torchscript": false,
1588
+ "transformers_version": "4.29.0.dev0",
1589
+ "typical_p": 1.0,
1590
+ "use_abs_pos": true,
1591
+ "use_bfloat16": false,
1592
+ "use_rel_pos": true,
1593
+ "window_size": 14,
1594
+ },
1595
+ }
1596
+ )
1597
+
1598
+
1369
1599
  def _ccached_hf_internal_testing_tiny_random_gptneoxforcausallm():
1370
1600
  "hf-internal-testing/tiny-random-GPTNeoXForCausalLM"
1371
1601
  return transformers.GPTNeoXConfig(
@@ -4330,3 +4560,61 @@ def _ccached_diffusers_tiny_torch_full_checker_unet():
4330
4560
  "up_block_types": ["CrossAttnUpBlock2D", "UpBlock2D"],
4331
4561
  "use_linear_projection": false,
4332
4562
  }
4563
+
4564
+
4565
+ def _ccached_riny_random_gemma_3():
4566
+ "tiny-random/gemma-3"
4567
+ return transformers.Gemma3Config(
4568
+ **{
4569
+ "architectures": ["Gemma3ForConditionalGeneration"],
4570
+ "boi_token_index": 255999,
4571
+ "eoi_token_index": 256000,
4572
+ "eos_token_id": [1, 106],
4573
+ "image_token_index": 262144,
4574
+ "initializer_range": 0.02,
4575
+ "mm_tokens_per_image": 256,
4576
+ "model_type": "gemma3",
4577
+ "text_config": {
4578
+ "attention_bias": false,
4579
+ "attention_dropout": 0.0,
4580
+ "attn_logit_softcapping": null,
4581
+ "cache_implementation": "hybrid",
4582
+ "final_logit_softcapping": null,
4583
+ "head_dim": 32,
4584
+ "hidden_activation": "gelu_pytorch_tanh",
4585
+ "hidden_size": 32,
4586
+ "initializer_range": 0.02,
4587
+ "intermediate_size": 128,
4588
+ "max_position_embeddings": 131072,
4589
+ "model_type": "gemma3_text",
4590
+ "num_attention_heads": 1,
4591
+ "num_hidden_layers": 2,
4592
+ "num_key_value_heads": 1,
4593
+ "query_pre_attn_scalar": 168,
4594
+ "rms_norm_eps": 1e-06,
4595
+ "rope_local_base_freq": 10000.0,
4596
+ "rope_scaling": {"factor": 8.0, "rope_type": "linear"},
4597
+ "rope_theta": 1000000.0,
4598
+ "sliding_window": 1024,
4599
+ "sliding_window_pattern": 2,
4600
+ "use_cache": true,
4601
+ "vocab_size": 262208,
4602
+ },
4603
+ "torch_dtype": "bfloat16",
4604
+ "transformers_version": "4.50.0.dev0",
4605
+ "vision_config": {
4606
+ "attention_dropout": 0.0,
4607
+ "hidden_act": "gelu_pytorch_tanh",
4608
+ "hidden_size": 32,
4609
+ "image_size": 896,
4610
+ "intermediate_size": 128,
4611
+ "layer_norm_eps": 1e-06,
4612
+ "model_type": "siglip_vision_model",
4613
+ "num_attention_heads": 1,
4614
+ "num_channels": 3,
4615
+ "num_hidden_layers": 2,
4616
+ "patch_size": 14,
4617
+ "vision_use_head": false,
4618
+ },
4619
+ }
4620
+ )
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: onnx-diagnostic
3
- Version: 0.7.5
3
+ Version: 0.7.6
4
4
  Summary: Investigate ONNX models
5
5
  Home-page: https://github.com/sdpython/onnx-diagnostic
6
6
  Author: Xavier Dupré
@@ -1,30 +1,30 @@
1
- onnx_diagnostic/__init__.py,sha256=759u8m5f7RZRqqatZb98hD3h2h5IG0CCVPhEq4f80aA,173
1
+ onnx_diagnostic/__init__.py,sha256=p8ROK5tw0ZrpyWOL_GKb_10U5K4JDHEGIZP4h9WHz_w,173
2
2
  onnx_diagnostic/__main__.py,sha256=YmyV_Aq_ianDlHyKLHMa6h8YK3ZmFPpLVHLKjM91aCk,79
3
3
  onnx_diagnostic/_command_lines_parser.py,sha256=wU8L2C6f4BOrZMYM4WbHF6PDndeL7XKa__bx6BrKQs0,31227
4
4
  onnx_diagnostic/api.py,sha256=BhCl_yCd78N7TlVtPOHjeYv1QBEy39TjZ647rcHqLh0,345
5
5
  onnx_diagnostic/doc.py,sha256=t3RELgfooYnVMAi0JSpggWkQEgUsREz8NmRvn0TnLI8,2829
6
- onnx_diagnostic/ext_test_case.py,sha256=Bq4vdlM0P72H1orlKJTeOBqm1YGHTK-ylAlNsBe4LeA,43438
6
+ onnx_diagnostic/ext_test_case.py,sha256=emfQGiQSz5FVDhyJ1Acsv_Tast7tWl426TjtpNqxDBU,43558
7
7
  onnx_diagnostic/export/__init__.py,sha256=yEIoWiOeTwBsDhyYt2fTKuhtA0Ya1J9u9ZzMTOTWaWs,101
8
8
  onnx_diagnostic/export/dynamic_shapes.py,sha256=HYf2OEi7PmRSj8uxMD-wbdVxxejkWXTPBAkxoFeM27A,40811
9
9
  onnx_diagnostic/export/shape_helper.py,sha256=EQXHRVxwGpHRYhx8Y44Crqs640pmaIuKSwW1KJOW0IU,7501
10
10
  onnx_diagnostic/export/validate.py,sha256=_PGUql2DJhIgGKo0WjTGUc5AgsZUx8fEs00MePy-w98,6043
11
11
  onnx_diagnostic/helpers/__init__.py,sha256=GJ2GT7cgnlIveVUwMZhuvUwidbTJaKv8CsSIOpZDsJg,83
12
- onnx_diagnostic/helpers/_log_helper.py,sha256=OCxmJKBN3T4joxlptvfe18xNlyClQH6mrJ2OOQvxZtI,16686
12
+ onnx_diagnostic/helpers/_log_helper.py,sha256=zZ7AqGpiF3O2-9N8fLuPeB5VfJpbg3tQ20ccDRdQPVE,16753
13
13
  onnx_diagnostic/helpers/args_helper.py,sha256=SRWnqC7EENg09RZlA50B_PcdiIhdbgA4C3ACfzl5nMs,4419
14
14
  onnx_diagnostic/helpers/bench_run.py,sha256=CGA6VMJZMH2gDhVueT9ypNm4PMcjGrrGFYp08nhWj9k,16539
15
- onnx_diagnostic/helpers/cache_helper.py,sha256=TeBUuGvqIMO-dsLDy7keaVt3ImZeifldwTgx6TEjBo8,11595
15
+ onnx_diagnostic/helpers/cache_helper.py,sha256=0DBawuOi9dYXmKmgAyT7dcZxbEINQWVaAcD4mkK_0N8,21912
16
16
  onnx_diagnostic/helpers/config_helper.py,sha256=9h1NWC9RLmu43Yf5Cz9usjMdLiyLWXMhwgE4Lg-eOU8,3889
17
17
  onnx_diagnostic/helpers/doc_helper.py,sha256=pl5MZd3_FaE8BqQnqoBuSBxoNCFcd2OJd3eITUSku5c,5897
18
18
  onnx_diagnostic/helpers/graph_helper.py,sha256=hevQT5a7_QuriVPQcbT5qe18n99Doyl5h3-qshx1-uk,14093
19
- onnx_diagnostic/helpers/helper.py,sha256=_6K0IvfK7ymBE8uWFAOA1ksU_fMvl2BRtlxj5SA9R2I,58203
19
+ onnx_diagnostic/helpers/helper.py,sha256=Vz06pWFvkkTUHgHJQv2VXrAja1a6jqCT9Cz-_EKx6Ec,62757
20
20
  onnx_diagnostic/helpers/log_helper.py,sha256=rBYtZo85n61uQRIpxKpxkKTtKv-bDZvAc1J1uHRDosc,82567
21
21
  onnx_diagnostic/helpers/memory_peak.py,sha256=OT6mz0muBbBZY0pjgW2_eCk_lOtFRo-5w4jFo2Z6Kok,6380
22
- onnx_diagnostic/helpers/mini_onnx_builder.py,sha256=p0Xh2Br38xAqUjB2214GiNOIbCgiVZKeyVEnjdyqyFI,21091
22
+ onnx_diagnostic/helpers/mini_onnx_builder.py,sha256=FgK-Kws1WpSYdYJCPyONwQYY3AjbgUHimZlaYyiNUfE,21286
23
23
  onnx_diagnostic/helpers/model_builder_helper.py,sha256=RvDyPFqRboEU3HsQV_xi9oy-o3_4KuGFVzs5MhksduY,12552
24
- onnx_diagnostic/helpers/onnx_helper.py,sha256=pXXQjfyNTSUF-Kt72U4fnBDkYAnWYMxdSw8m0qk3xmE,39670
24
+ onnx_diagnostic/helpers/onnx_helper.py,sha256=GApd3fmweLZ85GjEqo49ZCiOUSJ7vtXCBs-Tp3WlydI,39825
25
25
  onnx_diagnostic/helpers/ort_session.py,sha256=UgUUeUslDxEFBc6w6f3HMq_a7bn4TBlItmojqWquSj4,29281
26
26
  onnx_diagnostic/helpers/rt_helper.py,sha256=qbV6zyMs-iH6H65WHC2tu4h0psnHg0TX5fwfO_k-glg,4623
27
- onnx_diagnostic/helpers/torch_helper.py,sha256=QfUXUPx0lZEqJBgyA97daPRDlT9duTM5Jq5Yjq1jJd8,32358
27
+ onnx_diagnostic/helpers/torch_helper.py,sha256=r7uvT5Pmf4lvVf1LfzdoIFJeFVvnwXLayipgHmOK9SY,33081
28
28
  onnx_diagnostic/reference/__init__.py,sha256=rLZsxOlnb7-81F2CzepGnZLejaROg4JvgFaGR9FwVQA,208
29
29
  onnx_diagnostic/reference/evaluator.py,sha256=RzNzjFDeMe-4X51Tb22N6aagazY5ktNq-mRmPcfY5EU,8848
30
30
  onnx_diagnostic/reference/ort_evaluator.py,sha256=1O7dHj8Aspolidg6rB2Nm7hT3HaGb4TxAgjCCD0XVcQ,26159
@@ -72,43 +72,44 @@ onnx_diagnostic/reference/torch_ops/reduce_ops.py,sha256=9gFfraPTQbe_ZEUNCUis1JS
72
72
  onnx_diagnostic/reference/torch_ops/sequence_ops.py,sha256=3EiVKpGfN4d1Iry4hgnr3MIJyEEKUrAIDgmRGsUXXa0,2297
73
73
  onnx_diagnostic/reference/torch_ops/shape_ops.py,sha256=pJrNR2UB4PlWl6cv4EDl1uGl8YTBUUMQkhJcsh5K4sA,4291
74
74
  onnx_diagnostic/reference/torch_ops/unary_ops.py,sha256=E8Ys1eZsOTsucBKoXb1_Kl5LbBDygniDvW2BvN4IPMo,1708
75
- onnx_diagnostic/tasks/__init__.py,sha256=0BYtrAnr0zKN3om71oi-OVz5wFYDp9WWIk51qWjjyCw,2450
75
+ onnx_diagnostic/tasks/__init__.py,sha256=uWFP7HIr-VnxmXD5i_QAfXnLXc1HwUq2e8v9cKLqraQ,2492
76
76
  onnx_diagnostic/tasks/automatic_speech_recognition.py,sha256=H94rxeiAjcJdECA1g95G_U9fZfpXk6dfjNKKYuvc4Qc,7130
77
77
  onnx_diagnostic/tasks/feature_extraction.py,sha256=4M5bE6lGf7KG9qnlim9EzVmqptL17jsSnWgT-gYtcYg,5534
78
78
  onnx_diagnostic/tasks/fill_mask.py,sha256=Rvrz0j_DQu-vf4CSSAZMBMXb2EuHvOCzRZwj8Cy8yfg,2620
79
79
  onnx_diagnostic/tasks/image_classification.py,sha256=x1XfeWAOe0r_s9kU6WENoYxjfoRTp1pkwKgIveoLbUw,4627
80
- onnx_diagnostic/tasks/image_text_to_text.py,sha256=-vbZMA_ruo0WR_96YMYRvoNfq1plpElBJWXC2klAf7Q,7802
80
+ onnx_diagnostic/tasks/image_text_to_text.py,sha256=xAp3RcFGwVYdByDqAlTvO82mPZiwiFhVQMWL1yV7ZZU,16224
81
+ onnx_diagnostic/tasks/mask_generation.py,sha256=UQExMner3As8KznK-y4MjycYeUz5POcVR-oLEiAXmK4,5002
81
82
  onnx_diagnostic/tasks/mixture_of_expert.py,sha256=DgIsbwzV4smysOK83wny91k3ix1Qt2tSFXLGLoz4WOo,2796
82
83
  onnx_diagnostic/tasks/object_detection.py,sha256=xRBH9JZxBQf0SVSTJP6d-VVCKqrw7JAeif1joHfiYng,4224
83
84
  onnx_diagnostic/tasks/sentence_similarity.py,sha256=soL6QxLvyjtQ-3tQ3nCFxrcrk_4a8tuAjil8zYQ_pXk,2635
84
85
  onnx_diagnostic/tasks/summarization.py,sha256=LZ8A8wl6cd8kWSc6k5vLHa_XZkm35rYkTRv8iUYtr6I,8268
85
86
  onnx_diagnostic/tasks/text2text_generation.py,sha256=SzmgECK05H_fieIa2rlY-MQUmvNRotOo05J2eiMwjIM,8578
86
87
  onnx_diagnostic/tasks/text_classification.py,sha256=dO_LLbwwv0OJfIa9DqxQqAGUDuz3iIF1XkafzaYJdJw,2691
87
- onnx_diagnostic/tasks/text_generation.py,sha256=tW9Gnum_eck3czNyctuUISA-Ek7pO37v5-11GC8QBW8,13124
88
+ onnx_diagnostic/tasks/text_generation.py,sha256=xudXQlCC-chd3p_T1k5qmvLE698wIWoVLAUgAsJ8GaQ,13257
88
89
  onnx_diagnostic/tasks/text_to_image.py,sha256=mOS3Ruosi3hzRMxXLDN7ZkAbi7NnQb7MWwQP_okGVHs,2962
89
90
  onnx_diagnostic/tasks/zero_shot_image_classification.py,sha256=1iqYamkq5kZNXEXsySw748ernc0O94GkwpYAIEl6Kj4,4659
90
91
  onnx_diagnostic/torch_export_patches/__init__.py,sha256=0SaZedwznm1hQUCvXZsGZORV5vby954wEExr5faepGg,720
91
92
  onnx_diagnostic/torch_export_patches/onnx_export_errors.py,sha256=NVJNhwr5LVwKzU9RsR2b8fOounmQ1W3nx_k-6XirASc,23701
92
- onnx_diagnostic/torch_export_patches/onnx_export_serialization.py,sha256=wFE2fNxihAA3iua79AEB97_RBVv4wvGxwS9g4RJaSIc,10715
93
+ onnx_diagnostic/torch_export_patches/onnx_export_serialization.py,sha256=klvqiMjccwGhiRnLRVbwTi5WWkMfvtnOV5ycirPcAdA,11354
93
94
  onnx_diagnostic/torch_export_patches/patch_expressions.py,sha256=vr4tt61cbDnaaaduzMj4UBZ8OUtr6GfDpIWwOYqjWzs,3213
94
- onnx_diagnostic/torch_export_patches/patch_inputs.py,sha256=9b4pmyT00BwLqi7WG-gliep1RUy3gXEgW6BDnlSSA-M,7689
95
+ onnx_diagnostic/torch_export_patches/patch_inputs.py,sha256=_z6hcabYRGJ6VYiHuMzxYyFF8pYW-Xwcm60Wst3O8zA,7779
95
96
  onnx_diagnostic/torch_export_patches/patch_module.py,sha256=R2d9IHM-RwsBKDsxuBIJnEqMoxbS9gd4YWFGG2wwV5A,39881
96
97
  onnx_diagnostic/torch_export_patches/patch_module_helper.py,sha256=2U0AdyZuU0W54QTdE7tY7imVzMnpQ5091ADNtTCkT8Y,6967
97
98
  onnx_diagnostic/torch_export_patches/eval/__init__.py,sha256=57x62uZNA80XiWgkG8Fe0_8YJcIVrvKLPqvwLDPJwgc,24008
98
99
  onnx_diagnostic/torch_export_patches/eval/model_cases.py,sha256=DTvdHPtNQh25Akv5o3D4Jxf1L1-SJ7w14tgvj8AAns8,26577
99
100
  onnx_diagnostic/torch_export_patches/patches/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
100
101
  onnx_diagnostic/torch_export_patches/patches/patch_torch.py,sha256=KaZ8TjDa9ATgT4HllYzzoNf_51q_yOj_GuF5NYjPCrU,18913
101
- onnx_diagnostic/torch_export_patches/patches/patch_transformers.py,sha256=ZRUHF_wamXDq6rn6V1ja5MqtZW_sJzgxdE5P900GHbI,48511
102
+ onnx_diagnostic/torch_export_patches/patches/patch_transformers.py,sha256=ZmBCpkHx7FV8eIQDXavxjK4PZLSOn5ApT4bVQbJIqMg,56770
102
103
  onnx_diagnostic/torch_export_patches/serialization/__init__.py,sha256=BHLdRPtNAtNPAS-bPKEj3-foGSPvwAbZXrHzGGPDLEw,1876
103
104
  onnx_diagnostic/torch_export_patches/serialization/diffusers_impl.py,sha256=drq3EH_yjcSuIWYsVeUWm8Cx6YCZFU6bP_1PLtPfY5I,945
104
- onnx_diagnostic/torch_export_patches/serialization/transformers_impl.py,sha256=9u2jkqnuyBkIF3R2sDEO0Jlkedl-cQhBNXxXXDLSEwE,8885
105
+ onnx_diagnostic/torch_export_patches/serialization/transformers_impl.py,sha256=jcSO2pvzbLA3JXVl3uDfoak7gM3J1SnmxshdSFxzE9w,9280
105
106
  onnx_diagnostic/torch_models/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
106
107
  onnx_diagnostic/torch_models/llms.py,sha256=soyg4yC87ptGoeulJhKqw5opGmuLvH1pn_ZDXZ4Jr8E,90
107
108
  onnx_diagnostic/torch_models/validate.py,sha256=FNqi-Dg7-S_dSQDdcUjc5ERgTquiXclwGv0UZxVHYbY,64866
108
109
  onnx_diagnostic/torch_models/hghub/__init__.py,sha256=vi1Q7YHdddj1soiBN42MSvJdFqe2_KUoWafHISjwOu8,58
109
110
  onnx_diagnostic/torch_models/hghub/hub_api.py,sha256=Bvr-sTAhS6s6UCkt-KsY_7Mdai08-AQzvHrzbYCSuvk,13186
110
111
  onnx_diagnostic/torch_models/hghub/hub_data.py,sha256=NTTDsCtIVvYnr5J3rlcq0GSGDOzOPzq9Tsnb3oVf4q8,8309
111
- onnx_diagnostic/torch_models/hghub/hub_data_cached_configs.py,sha256=zZvIxTbmL55x44kCj3-T5Kg3Qzm9KB_Xj-MCcU9-LuQ,268245
112
+ onnx_diagnostic/torch_models/hghub/hub_data_cached_configs.py,sha256=XZ_PsMUmMooJw5pBqEtDMOWbbLYxDcJdRWf-FNz2cYg,279674
112
113
  onnx_diagnostic/torch_models/hghub/model_inputs.py,sha256=SDRLCA2zivEHIKr2RRRP-dZNiNUcpYS3EgP0unLExxY,11046
113
114
  onnx_diagnostic/torch_models/untrained/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
114
115
  onnx_diagnostic/torch_models/untrained/llm_phi2.py,sha256=ynBTDHJHCk44NjLT_t6OiFDBdPP0rFGPteiONDxvztw,3708
@@ -116,8 +117,8 @@ onnx_diagnostic/torch_models/untrained/llm_tiny_llm.py,sha256=QXw_Bs2SzfeiQMf-tm
116
117
  onnx_diagnostic/torch_onnx/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
117
118
  onnx_diagnostic/torch_onnx/runtime_info.py,sha256=1g9F_Jf9AAgYQU4stbsrFXwQl-30mWlQrFbQ7val8Ps,9268
118
119
  onnx_diagnostic/torch_onnx/sbs.py,sha256=1EL25DeYFzlBSiFG_XjePBLvsiItRXbdDrr5-QZW2mA,16878
119
- onnx_diagnostic-0.7.5.dist-info/licenses/LICENSE.txt,sha256=Vv6TXglX6Rc0d-f8aREhayhT-6PMQXEyOmI2NKlUCMc,1045
120
- onnx_diagnostic-0.7.5.dist-info/METADATA,sha256=sTLrt4adKj6mufYnekwgSwSXxhgJzrV_TZTL-lHA0EU,7431
121
- onnx_diagnostic-0.7.5.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
122
- onnx_diagnostic-0.7.5.dist-info/top_level.txt,sha256=KwNkXewmcobM3ZT1DJLVWH6ebJzA5qKg7cWqKfpGNT4,16
123
- onnx_diagnostic-0.7.5.dist-info/RECORD,,
120
+ onnx_diagnostic-0.7.6.dist-info/licenses/LICENSE.txt,sha256=Vv6TXglX6Rc0d-f8aREhayhT-6PMQXEyOmI2NKlUCMc,1045
121
+ onnx_diagnostic-0.7.6.dist-info/METADATA,sha256=dPByK3aJs_ydnyy_Vfzlavdm00um0Ad3V6pu-78dWw0,7431
122
+ onnx_diagnostic-0.7.6.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
123
+ onnx_diagnostic-0.7.6.dist-info/top_level.txt,sha256=KwNkXewmcobM3ZT1DJLVWH6ebJzA5qKg7cWqKfpGNT4,16
124
+ onnx_diagnostic-0.7.6.dist-info/RECORD,,