onnx-diagnostic 0.7.16__py3-none-any.whl → 0.8.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- onnx_diagnostic/__init__.py +1 -1
- onnx_diagnostic/_command_lines_parser.py +78 -22
- onnx_diagnostic/export/api.py +124 -0
- onnx_diagnostic/export/dynamic_shapes.py +2 -1
- onnx_diagnostic/export/shape_helper.py +47 -70
- onnx_diagnostic/ext_test_case.py +11 -0
- onnx_diagnostic/helpers/cache_helper.py +38 -7
- onnx_diagnostic/helpers/fake_tensor_helper.py +224 -104
- onnx_diagnostic/helpers/helper.py +27 -33
- onnx_diagnostic/helpers/log_helper.py +109 -5
- onnx_diagnostic/helpers/memory_peak.py +2 -0
- onnx_diagnostic/helpers/mini_onnx_builder.py +1 -1
- onnx_diagnostic/helpers/model_builder_helper.py +132 -2
- onnx_diagnostic/helpers/onnx_helper.py +1 -1
- onnx_diagnostic/helpers/ort_session.py +4 -0
- onnx_diagnostic/helpers/rt_helper.py +393 -43
- onnx_diagnostic/helpers/torch_helper.py +20 -1
- onnx_diagnostic/tasks/__init__.py +7 -0
- onnx_diagnostic/tasks/automatic_speech_recognition.py +2 -8
- onnx_diagnostic/tasks/feature_extraction.py +2 -8
- onnx_diagnostic/tasks/image_text_to_text.py +10 -8
- onnx_diagnostic/tasks/summarization.py +2 -8
- onnx_diagnostic/tasks/text2text_generation.py +3 -8
- onnx_diagnostic/tasks/text_generation.py +86 -65
- onnx_diagnostic/torch_export_patches/onnx_export_errors.py +718 -438
- onnx_diagnostic/torch_export_patches/patch_details.py +340 -0
- onnx_diagnostic/torch_export_patches/patch_inputs.py +1 -1
- onnx_diagnostic/torch_export_patches/patch_module.py +9 -36
- onnx_diagnostic/torch_export_patches/patches/patch_torch.py +12 -6
- onnx_diagnostic/torch_export_patches/patches/patch_transformers.py +162 -24
- onnx_diagnostic/torch_export_patches/serialization/transformers_impl.py +140 -104
- onnx_diagnostic/torch_models/untrained/llm_phi2.py +1 -4
- onnx_diagnostic/torch_models/validate.py +626 -228
- {onnx_diagnostic-0.7.16.dist-info → onnx_diagnostic-0.8.1.dist-info}/METADATA +1 -1
- {onnx_diagnostic-0.7.16.dist-info → onnx_diagnostic-0.8.1.dist-info}/RECORD +38 -36
- {onnx_diagnostic-0.7.16.dist-info → onnx_diagnostic-0.8.1.dist-info}/WHEEL +0 -0
- {onnx_diagnostic-0.7.16.dist-info → onnx_diagnostic-0.8.1.dist-info}/licenses/LICENSE.txt +0 -0
- {onnx_diagnostic-0.7.16.dist-info → onnx_diagnostic-0.8.1.dist-info}/top_level.txt +0 -0
|
@@ -56,6 +56,74 @@ def reduce_model_config(config: Any) -> Dict[str, Any]:
|
|
|
56
56
|
return kwargs
|
|
57
57
|
|
|
58
58
|
|
|
59
|
+
def _get_input_falcon_mamba(
|
|
60
|
+
model: torch.nn.Module,
|
|
61
|
+
config: Optional[Any],
|
|
62
|
+
dummy_max_token_id: int,
|
|
63
|
+
num_hidden_layers: int,
|
|
64
|
+
batch_size: int = 2,
|
|
65
|
+
sequence_length: int = 30,
|
|
66
|
+
sequence_length2: int = 3,
|
|
67
|
+
dynamic_rope: bool = False,
|
|
68
|
+
num_key_value_heads: Optional[int] = None,
|
|
69
|
+
head_dim: Optional[int] = None,
|
|
70
|
+
cls_cache: Optional[Union[type, str]] = None,
|
|
71
|
+
**kwargs, # unused
|
|
72
|
+
):
|
|
73
|
+
try:
|
|
74
|
+
from transformers.models.mamba.modeling_mamba import MambaCache
|
|
75
|
+
except ImportError:
|
|
76
|
+
from transformers.cache_utils import MambaCache
|
|
77
|
+
|
|
78
|
+
assert cls_cache in (
|
|
79
|
+
"MambaCache",
|
|
80
|
+
MambaCache,
|
|
81
|
+
), f"Unexpected value for cls_cache={cls_cache} and config={config}"
|
|
82
|
+
|
|
83
|
+
batch = "batch"
|
|
84
|
+
seq_length_multiple = 8
|
|
85
|
+
sequence_length = (
|
|
86
|
+
(sequence_length + seq_length_multiple) // seq_length_multiple * seq_length_multiple
|
|
87
|
+
)
|
|
88
|
+
# sequence_inc = seq_length_multiple
|
|
89
|
+
sequence_length2 = seq_length_multiple
|
|
90
|
+
|
|
91
|
+
shapes = {
|
|
92
|
+
"input_ids": {0: batch, 1: "sequence_length"},
|
|
93
|
+
"attention_mask": {
|
|
94
|
+
0: batch,
|
|
95
|
+
1: "cache+seq", # cache_length + seq_length
|
|
96
|
+
},
|
|
97
|
+
"cache_position": {
|
|
98
|
+
0: batch,
|
|
99
|
+
1: "cache+seq", # cache_length + seq_length
|
|
100
|
+
},
|
|
101
|
+
"cache_params": [{0: batch} for _ in range(num_hidden_layers * 2)],
|
|
102
|
+
}
|
|
103
|
+
inputs = dict(
|
|
104
|
+
input_ids=torch.randint(
|
|
105
|
+
0, dummy_max_token_id, (batch_size, sequence_length + sequence_length2)
|
|
106
|
+
).to(torch.int64),
|
|
107
|
+
attention_mask=torch.ones((batch_size, sequence_length + sequence_length2)).to(
|
|
108
|
+
torch.int64
|
|
109
|
+
),
|
|
110
|
+
cache_position=torch.arange(0, kwargs["conv_kernel"]).to(torch.int64),
|
|
111
|
+
# .expand((batch_size, -1))
|
|
112
|
+
cache_params=make_mamba_cache(
|
|
113
|
+
[
|
|
114
|
+
(
|
|
115
|
+
torch.randn(
|
|
116
|
+
batch_size, kwargs["intermediate_size"], kwargs["conv_kernel"]
|
|
117
|
+
),
|
|
118
|
+
torch.randn(batch_size, kwargs["intermediate_size"], kwargs["state_size"]),
|
|
119
|
+
)
|
|
120
|
+
for i in range(num_hidden_layers)
|
|
121
|
+
]
|
|
122
|
+
),
|
|
123
|
+
)
|
|
124
|
+
return dict(inputs=inputs, dynamic_shapes=shapes)
|
|
125
|
+
|
|
126
|
+
|
|
59
127
|
def get_inputs(
|
|
60
128
|
model: torch.nn.Module,
|
|
61
129
|
config: Optional[Any],
|
|
@@ -68,7 +136,7 @@ def get_inputs(
|
|
|
68
136
|
num_key_value_heads: Optional[int] = None,
|
|
69
137
|
head_dim: Optional[int] = None,
|
|
70
138
|
cls_cache: Optional[Union[type, str]] = None,
|
|
71
|
-
add_second_input: int =
|
|
139
|
+
add_second_input: Optional[int] = None,
|
|
72
140
|
**kwargs, # unused
|
|
73
141
|
):
|
|
74
142
|
"""
|
|
@@ -84,6 +152,7 @@ def get_inputs(
|
|
|
84
152
|
:param dynamic_rope: use dynamic rope (see :class:`transformers.LlamaConfig`)
|
|
85
153
|
:param cls_cache: cache class, by default it is
|
|
86
154
|
:class:`transformers.cache_utils.DynamicCache`
|
|
155
|
+
:param add_second_input: adds other kinds of inputs
|
|
87
156
|
:return: dictionary
|
|
88
157
|
"""
|
|
89
158
|
batch = "batch"
|
|
@@ -91,63 +160,20 @@ def get_inputs(
|
|
|
91
160
|
cache_length = "cache_length" # torch.export.Dim("cache_length", min=1, max=4096)
|
|
92
161
|
|
|
93
162
|
if config is not None and config.__class__.__name__ == "FalconMambaConfig":
|
|
94
|
-
|
|
95
|
-
|
|
96
|
-
|
|
97
|
-
|
|
98
|
-
|
|
99
|
-
|
|
100
|
-
|
|
101
|
-
|
|
102
|
-
|
|
103
|
-
|
|
104
|
-
|
|
105
|
-
|
|
106
|
-
|
|
107
|
-
* seq_length_multiple
|
|
108
|
-
)
|
|
109
|
-
# sequence_inc = seq_length_multiple
|
|
110
|
-
sequence_length2 = seq_length_multiple
|
|
111
|
-
|
|
112
|
-
shapes = {
|
|
113
|
-
"input_ids": {0: batch, 1: "sequence_length"},
|
|
114
|
-
"attention_mask": {
|
|
115
|
-
0: batch,
|
|
116
|
-
1: "cache+seq", # cache_length + seq_length
|
|
117
|
-
},
|
|
118
|
-
"cache_position": {
|
|
119
|
-
0: batch,
|
|
120
|
-
1: "cache+seq", # cache_length + seq_length
|
|
121
|
-
},
|
|
122
|
-
"cache_params": [
|
|
123
|
-
[{0: batch} for _ in range(num_hidden_layers)],
|
|
124
|
-
[{0: batch} for _ in range(num_hidden_layers)],
|
|
125
|
-
],
|
|
126
|
-
}
|
|
127
|
-
inputs = dict(
|
|
128
|
-
input_ids=torch.randint(
|
|
129
|
-
0, dummy_max_token_id, (batch_size, sequence_length + sequence_length2)
|
|
130
|
-
).to(torch.int64),
|
|
131
|
-
attention_mask=torch.ones((batch_size, sequence_length + sequence_length2)).to(
|
|
132
|
-
torch.int64
|
|
133
|
-
),
|
|
134
|
-
cache_position=torch.arange(0, kwargs["conv_kernel"]).to(torch.int64),
|
|
135
|
-
# .expand((batch_size, -1))
|
|
136
|
-
cache_params=make_mamba_cache(
|
|
137
|
-
[
|
|
138
|
-
(
|
|
139
|
-
torch.randn(
|
|
140
|
-
batch_size, kwargs["intermediate_size"], kwargs["conv_kernel"]
|
|
141
|
-
),
|
|
142
|
-
torch.randn(
|
|
143
|
-
batch_size, kwargs["intermediate_size"], kwargs["state_size"]
|
|
144
|
-
),
|
|
145
|
-
)
|
|
146
|
-
for i in range(num_hidden_layers)
|
|
147
|
-
]
|
|
148
|
-
),
|
|
163
|
+
res = _get_input_falcon_mamba(
|
|
164
|
+
model=model,
|
|
165
|
+
config=config,
|
|
166
|
+
dummy_max_token_id=dummy_max_token_id,
|
|
167
|
+
num_hidden_layers=num_hidden_layers,
|
|
168
|
+
batch_size=batch_size,
|
|
169
|
+
sequence_length=sequence_length,
|
|
170
|
+
sequence_length2=sequence_length2,
|
|
171
|
+
dynamic_rope=dynamic_rope,
|
|
172
|
+
num_key_value_heads=num_key_value_heads,
|
|
173
|
+
head_dim=head_dim,
|
|
174
|
+
cls_cache=cls_cache,
|
|
175
|
+
**kwargs, # unused
|
|
149
176
|
)
|
|
150
|
-
res = dict(inputs=inputs, dynamic_shapes=shapes)
|
|
151
177
|
else:
|
|
152
178
|
if head_dim is None:
|
|
153
179
|
assert config, "head_dim is None, the value cannot be set without a configuration"
|
|
@@ -176,12 +202,7 @@ def get_inputs(
|
|
|
176
202
|
"input_ids": {0: batch, 1: seq_length},
|
|
177
203
|
"attention_mask": {0: batch, 2: "seq"},
|
|
178
204
|
"cache_position": {0: "seq"},
|
|
179
|
-
"past_key_values": [
|
|
180
|
-
# [{0: batch, 2: cache_length} for _ in range(num_hidden_layers)],
|
|
181
|
-
# [{0: batch, 2: cache_length} for _ in range(num_hidden_layers)],
|
|
182
|
-
[{0: batch} for _ in range(num_hidden_layers)],
|
|
183
|
-
[{0: batch} for _ in range(num_hidden_layers)],
|
|
184
|
-
],
|
|
205
|
+
"past_key_values": [{0: batch} for _ in range(num_hidden_layers * 2)],
|
|
185
206
|
}
|
|
186
207
|
inputs = dict(
|
|
187
208
|
input_ids=torch.randint(
|
|
@@ -222,8 +243,7 @@ def get_inputs(
|
|
|
222
243
|
},
|
|
223
244
|
"position_ids": {0: batch, 1: seq_length},
|
|
224
245
|
"past_key_values": [
|
|
225
|
-
|
|
226
|
-
[{0: batch, 2: cache_length} for _ in range(num_hidden_layers)],
|
|
246
|
+
{0: batch, 2: cache_length} for _ in range(num_hidden_layers * 2)
|
|
227
247
|
],
|
|
228
248
|
}
|
|
229
249
|
|
|
@@ -253,6 +273,7 @@ def get_inputs(
|
|
|
253
273
|
)
|
|
254
274
|
res = dict(inputs=inputs, dynamic_shapes=shapes)
|
|
255
275
|
if add_second_input:
|
|
276
|
+
res["inputs_prompt"] = dict(input_ids=torch.randint(1000, 30000, (1, 11)))
|
|
256
277
|
res["inputs2"] = get_inputs(
|
|
257
278
|
model=model,
|
|
258
279
|
config=config,
|