onnx-diagnostic 0.7.0__py3-none-any.whl → 0.7.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- onnx_diagnostic/__init__.py +1 -1
- onnx_diagnostic/_command_lines_parser.py +213 -5
- onnx_diagnostic/export/dynamic_shapes.py +48 -20
- onnx_diagnostic/export/shape_helper.py +126 -0
- onnx_diagnostic/ext_test_case.py +31 -0
- onnx_diagnostic/helpers/cache_helper.py +42 -20
- onnx_diagnostic/helpers/config_helper.py +16 -1
- onnx_diagnostic/helpers/log_helper.py +1561 -177
- onnx_diagnostic/helpers/torch_helper.py +6 -2
- onnx_diagnostic/tasks/__init__.py +2 -0
- onnx_diagnostic/tasks/image_text_to_text.py +69 -18
- onnx_diagnostic/tasks/text_generation.py +17 -8
- onnx_diagnostic/tasks/text_to_image.py +91 -0
- onnx_diagnostic/torch_export_patches/onnx_export_errors.py +24 -7
- onnx_diagnostic/torch_export_patches/onnx_export_serialization.py +144 -349
- onnx_diagnostic/torch_export_patches/patches/patch_transformers.py +87 -7
- onnx_diagnostic/torch_export_patches/serialization/__init__.py +46 -0
- onnx_diagnostic/torch_export_patches/serialization/diffusers_impl.py +34 -0
- onnx_diagnostic/torch_export_patches/serialization/transformers_impl.py +259 -0
- onnx_diagnostic/torch_models/hghub/hub_api.py +73 -5
- onnx_diagnostic/torch_models/hghub/hub_data.py +7 -2
- onnx_diagnostic/torch_models/hghub/hub_data_cached_configs.py +28 -0
- onnx_diagnostic/torch_models/hghub/model_inputs.py +74 -14
- onnx_diagnostic/torch_models/validate.py +45 -16
- {onnx_diagnostic-0.7.0.dist-info → onnx_diagnostic-0.7.2.dist-info}/METADATA +1 -1
- {onnx_diagnostic-0.7.0.dist-info → onnx_diagnostic-0.7.2.dist-info}/RECORD +29 -24
- {onnx_diagnostic-0.7.0.dist-info → onnx_diagnostic-0.7.2.dist-info}/WHEEL +0 -0
- {onnx_diagnostic-0.7.0.dist-info → onnx_diagnostic-0.7.2.dist-info}/licenses/LICENSE.txt +0 -0
- {onnx_diagnostic-0.7.0.dist-info → onnx_diagnostic-0.7.2.dist-info}/top_level.txt +0 -0
|
@@ -1,11 +1,12 @@
|
|
|
1
1
|
import inspect
|
|
2
2
|
import os
|
|
3
|
+
import pprint
|
|
3
4
|
from typing import Any, Dict, Optional, Tuple
|
|
4
5
|
import torch
|
|
5
6
|
import transformers
|
|
6
7
|
from ...helpers.config_helper import update_config
|
|
7
8
|
from ...tasks import reduce_model_config, random_input_kwargs
|
|
8
|
-
from .hub_api import task_from_arch, task_from_id, get_pretrained_config
|
|
9
|
+
from .hub_api import task_from_arch, task_from_id, get_pretrained_config, download_code_modelid
|
|
9
10
|
|
|
10
11
|
|
|
11
12
|
def _code_needing_rewriting(model: Any) -> Any:
|
|
@@ -22,6 +23,7 @@ def get_untrained_model_with_inputs(
|
|
|
22
23
|
model_kwargs: Optional[Dict[str, Any]] = None,
|
|
23
24
|
verbose: int = 0,
|
|
24
25
|
dynamic_rope: Optional[bool] = None,
|
|
26
|
+
use_pretrained: bool = False,
|
|
25
27
|
same_as_pretrained: bool = False,
|
|
26
28
|
use_preinstalled: bool = True,
|
|
27
29
|
add_second_input: bool = False,
|
|
@@ -43,6 +45,7 @@ def get_untrained_model_with_inputs(
|
|
|
43
45
|
:param dynamic_rope: use dynamic rope (see :class:`transformers.LlamaConfig`)
|
|
44
46
|
:param same_as_pretrained: if True, do not change the default values
|
|
45
47
|
to get a smaller model
|
|
48
|
+
:param use_pretrained: download the pretrained weights as well
|
|
46
49
|
:param use_preinstalled: use preinstalled configurations
|
|
47
50
|
:param add_second_input: provides a second inputs to check a model
|
|
48
51
|
supports different shapes
|
|
@@ -68,6 +71,10 @@ def get_untrained_model_with_inputs(
|
|
|
68
71
|
print("-- dynamic shapes:", pprint.pformat(data['dynamic_shapes']))
|
|
69
72
|
print("-- configuration:", pprint.pformat(data['configuration']))
|
|
70
73
|
"""
|
|
74
|
+
assert not use_preinstalled or not use_only_preinstalled, (
|
|
75
|
+
f"model_id={model_id!r}, pretinstalled model is only available "
|
|
76
|
+
f"if use_only_preinstalled is False."
|
|
77
|
+
)
|
|
71
78
|
if verbose:
|
|
72
79
|
print(f"[get_untrained_model_with_inputs] model_id={model_id!r}")
|
|
73
80
|
if use_preinstalled:
|
|
@@ -99,7 +106,7 @@ def get_untrained_model_with_inputs(
|
|
|
99
106
|
print(f"[get_untrained_model_with_inputs] architectures={archs!r}")
|
|
100
107
|
print(f"[get_untrained_model_with_inputs] cls={config.__class__.__name__!r}")
|
|
101
108
|
if task is None:
|
|
102
|
-
task = task_from_arch(archs[0])
|
|
109
|
+
task = task_from_arch(archs[0], model_id=model_id, subfolder=subfolder)
|
|
103
110
|
if verbose:
|
|
104
111
|
print(f"[get_untrained_model_with_inputs] task={task!r}")
|
|
105
112
|
|
|
@@ -114,7 +121,6 @@ def get_untrained_model_with_inputs(
|
|
|
114
121
|
)
|
|
115
122
|
|
|
116
123
|
# updating the configuration
|
|
117
|
-
|
|
118
124
|
mkwargs = reduce_model_config(config, task) if not same_as_pretrained else {}
|
|
119
125
|
if model_kwargs:
|
|
120
126
|
for k, v in model_kwargs.items():
|
|
@@ -139,27 +145,81 @@ def get_untrained_model_with_inputs(
|
|
|
139
145
|
f"{config._attn_implementation!r}" # type: ignore[union-attr]
|
|
140
146
|
)
|
|
141
147
|
|
|
148
|
+
if type(config) is dict and "_diffusers_version" in config:
|
|
149
|
+
import diffusers
|
|
150
|
+
|
|
151
|
+
package_source = diffusers
|
|
152
|
+
else:
|
|
153
|
+
package_source = transformers
|
|
154
|
+
|
|
155
|
+
if use_pretrained:
|
|
156
|
+
model = transformers.AutoModel.from_pretrained(model_id, **mkwargs)
|
|
157
|
+
else:
|
|
158
|
+
if archs is not None:
|
|
159
|
+
try:
|
|
160
|
+
cls_model = getattr(package_source, archs[0])
|
|
161
|
+
except AttributeError as e:
|
|
162
|
+
# The code of the models is not in transformers but in the
|
|
163
|
+
# repository of the model. We need to download it.
|
|
164
|
+
pyfiles = download_code_modelid(model_id, verbose=verbose)
|
|
165
|
+
if pyfiles:
|
|
166
|
+
if "." in archs[0]:
|
|
167
|
+
cls_name = archs[0]
|
|
168
|
+
else:
|
|
169
|
+
modeling = [_ for _ in pyfiles if "/modeling_" in _]
|
|
170
|
+
assert len(modeling) == 1, (
|
|
171
|
+
f"Unable to guess the main file implemented class {archs[0]!r} "
|
|
172
|
+
f"from {pyfiles}, found={modeling}."
|
|
173
|
+
)
|
|
174
|
+
last_name = os.path.splitext(os.path.split(modeling[0])[-1])[0]
|
|
175
|
+
cls_name = f"{last_name}.{archs[0]}"
|
|
176
|
+
if verbose:
|
|
177
|
+
print(
|
|
178
|
+
f"[get_untrained_model_with_inputs] custom code for {cls_name!r}"
|
|
179
|
+
)
|
|
180
|
+
print(
|
|
181
|
+
f"[get_untrained_model_with_inputs] from folder "
|
|
182
|
+
f"{os.path.split(pyfiles[0])[0]!r}"
|
|
183
|
+
)
|
|
184
|
+
cls_model = (
|
|
185
|
+
transformers.dynamic_module_utils.get_class_from_dynamic_module(
|
|
186
|
+
cls_name,
|
|
187
|
+
pretrained_model_name_or_path=os.path.split(pyfiles[0])[0],
|
|
188
|
+
)
|
|
189
|
+
)
|
|
190
|
+
else:
|
|
191
|
+
raise AttributeError(
|
|
192
|
+
f"Unable to find class 'tranformers.{archs[0]}'. "
|
|
193
|
+
f"The code needs to be downloaded, config="
|
|
194
|
+
f"\n{pprint.pformat(config)}."
|
|
195
|
+
) from e
|
|
196
|
+
else:
|
|
197
|
+
assert same_as_pretrained and use_pretrained, (
|
|
198
|
+
f"Model {model_id!r} cannot be built, the model cannot be built. "
|
|
199
|
+
f"It must be downloaded. Use same_as_pretrained=True "
|
|
200
|
+
f"and use_pretrained=True."
|
|
201
|
+
)
|
|
202
|
+
|
|
203
|
+
try:
|
|
204
|
+
if type(config) is dict:
|
|
205
|
+
model = cls_model(**config)
|
|
206
|
+
else:
|
|
207
|
+
model = cls_model(config)
|
|
208
|
+
except RuntimeError as e:
|
|
209
|
+
raise RuntimeError(
|
|
210
|
+
f"Unable to instantiate class {cls_model.__name__} with\n{config}"
|
|
211
|
+
) from e
|
|
212
|
+
|
|
142
213
|
# input kwargs
|
|
143
214
|
kwargs, fct = random_input_kwargs(config, task)
|
|
144
215
|
if verbose:
|
|
145
216
|
print(f"[get_untrained_model_with_inputs] use fct={fct}")
|
|
146
217
|
if os.environ.get("PRINT_CONFIG") in (1, "1"):
|
|
147
|
-
import pprint
|
|
148
|
-
|
|
149
218
|
print(f"-- input kwargs for task {task!r}")
|
|
150
219
|
pprint.pprint(kwargs)
|
|
151
220
|
if inputs_kwargs:
|
|
152
221
|
kwargs.update(inputs_kwargs)
|
|
153
222
|
|
|
154
|
-
if archs is not None:
|
|
155
|
-
model = getattr(transformers, archs[0])(config)
|
|
156
|
-
else:
|
|
157
|
-
assert same_as_pretrained, (
|
|
158
|
-
f"Model {model_id!r} cannot be built, the model cannot be built. "
|
|
159
|
-
f"It must be downloaded. Use same_as_pretrained=True."
|
|
160
|
-
)
|
|
161
|
-
model = None
|
|
162
|
-
|
|
163
223
|
# This line is important. Some models may produce different
|
|
164
224
|
# outputs even with the same inputs in training mode.
|
|
165
225
|
model.eval()
|
|
@@ -259,10 +259,11 @@ def validate_model(
|
|
|
259
259
|
verbose: int = 0,
|
|
260
260
|
dtype: Optional[Union[str, torch.dtype]] = None,
|
|
261
261
|
device: Optional[Union[str, torch.device]] = None,
|
|
262
|
-
|
|
262
|
+
same_as_pretrained: bool = False,
|
|
263
|
+
use_pretrained: bool = False,
|
|
263
264
|
optimization: Optional[str] = None,
|
|
264
265
|
quiet: bool = False,
|
|
265
|
-
patch: bool = False,
|
|
266
|
+
patch: Union[bool, str, Dict[str, bool]] = False,
|
|
266
267
|
rewrite: bool = False,
|
|
267
268
|
stop_if_static: int = 1,
|
|
268
269
|
dump_folder: Optional[str] = None,
|
|
@@ -294,12 +295,16 @@ def validate_model(
|
|
|
294
295
|
:param verbose: verbosity level
|
|
295
296
|
:param dtype: uses this dtype to check the model
|
|
296
297
|
:param device: do the verification on this device
|
|
297
|
-
:param
|
|
298
|
+
:param same_as_pretrained: use a model equivalent to the trained,
|
|
299
|
+
this is not always possible
|
|
300
|
+
:param use_pretrained: use the trained model, not the untrained one
|
|
298
301
|
:param optimization: optimization to apply to the exported model,
|
|
299
302
|
depend on the the exporter
|
|
300
303
|
:param quiet: if quiet, catches exception if any issue
|
|
301
|
-
:param patch: applies patches (``patch_transformers=True``)
|
|
302
|
-
|
|
304
|
+
:param patch: applies patches (``patch_transformers=True, path_diffusers=True``)
|
|
305
|
+
if True before exporting
|
|
306
|
+
see :func:`onnx_diagnostic.torch_export_patches.torch_export_patches`,
|
|
307
|
+
a string can be used to specify only one of them
|
|
303
308
|
:param rewrite: applies known rewriting (``patch_transformers=True``) before exporting,
|
|
304
309
|
see :func:`onnx_diagnostic.torch_export_patches.torch_export_patches`
|
|
305
310
|
:param stop_if_static: stops if a dynamic dimension becomes static,
|
|
@@ -343,9 +348,26 @@ def validate_model(
|
|
|
343
348
|
exported model returns the same outputs as the original one, otherwise,
|
|
344
349
|
:class:`onnx_diagnostic.reference.TorchOnnxEvaluator` is used.
|
|
345
350
|
"""
|
|
346
|
-
|
|
347
|
-
|
|
348
|
-
|
|
351
|
+
if isinstance(patch, bool):
|
|
352
|
+
patch_kwargs = (
|
|
353
|
+
dict(patch_transformers=True, patch_diffusers=True, patch=True)
|
|
354
|
+
if patch
|
|
355
|
+
else dict(patch=False)
|
|
356
|
+
)
|
|
357
|
+
elif isinstance(patch, str):
|
|
358
|
+
patch_kwargs = {"patch": True, **{p: True for p in patch.split(",")}} # noqa: C420
|
|
359
|
+
else:
|
|
360
|
+
assert isinstance(patch, dict), f"Unable to interpret patch={patch!r}"
|
|
361
|
+
patch_kwargs = patch.copy()
|
|
362
|
+
if "patch" not in patch_kwargs:
|
|
363
|
+
if any(patch_kwargs.values()):
|
|
364
|
+
patch_kwargs["patch"] = True
|
|
365
|
+
|
|
366
|
+
assert not rewrite or patch_kwargs.get("patch", False), (
|
|
367
|
+
f"rewrite={rewrite}, patch={patch}, patch_kwargs={patch_kwargs} "
|
|
368
|
+
f"patch must be True to enable rewriting, "
|
|
369
|
+
f"if --no-patch was specified on the command line, --no-rewrite must be added."
|
|
370
|
+
)
|
|
349
371
|
summary = version_summary()
|
|
350
372
|
summary.update(
|
|
351
373
|
dict(
|
|
@@ -353,10 +375,12 @@ def validate_model(
|
|
|
353
375
|
version_do_run=str(do_run),
|
|
354
376
|
version_dtype=str(dtype or ""),
|
|
355
377
|
version_device=str(device or ""),
|
|
356
|
-
|
|
378
|
+
version_same_as_pretrained=str(same_as_pretrained),
|
|
379
|
+
version_use_pretrained=str(use_pretrained),
|
|
357
380
|
version_optimization=optimization or "",
|
|
358
381
|
version_quiet=str(quiet),
|
|
359
382
|
version_patch=str(patch),
|
|
383
|
+
version_patch_kwargs=str(patch_kwargs).replace(" ", ""),
|
|
360
384
|
version_rewrite=str(rewrite),
|
|
361
385
|
version_dump_folder=dump_folder or "",
|
|
362
386
|
version_drop_inputs=str(list(drop_inputs or "")),
|
|
@@ -392,7 +416,7 @@ def validate_model(
|
|
|
392
416
|
print(f"[validate_model] model_options={model_options!r}")
|
|
393
417
|
print(f"[validate_model] get dummy inputs with input_options={input_options}...")
|
|
394
418
|
print(
|
|
395
|
-
f"[validate_model] rewrite={rewrite},
|
|
419
|
+
f"[validate_model] rewrite={rewrite}, patch_kwargs={patch_kwargs}, "
|
|
396
420
|
f"stop_if_static={stop_if_static}"
|
|
397
421
|
)
|
|
398
422
|
print(f"[validate_model] exporter={exporter!r}, optimization={optimization!r}")
|
|
@@ -408,11 +432,12 @@ def validate_model(
|
|
|
408
432
|
summary,
|
|
409
433
|
None,
|
|
410
434
|
(
|
|
411
|
-
lambda mid=model_id, v=verbose, task=task, tr=
|
|
435
|
+
lambda mid=model_id, v=verbose, task=task, uptr=use_pretrained, tr=same_as_pretrained, iop=iop, sub=subfolder, i2=inputs2: ( # noqa: E501
|
|
412
436
|
get_untrained_model_with_inputs(
|
|
413
437
|
mid,
|
|
414
438
|
verbose=v,
|
|
415
439
|
task=task,
|
|
440
|
+
use_pretrained=uptr,
|
|
416
441
|
same_as_pretrained=tr,
|
|
417
442
|
inputs_kwargs=iop,
|
|
418
443
|
model_kwargs=mop,
|
|
@@ -533,9 +558,13 @@ def validate_model(
|
|
|
533
558
|
if summary["model_module"] in sys.modules:
|
|
534
559
|
summary["model_file"] = str(sys.modules[summary["model_module"]].__file__) # type: ignore[index]
|
|
535
560
|
summary["model_config_class"] = data["configuration"].__class__.__name__
|
|
536
|
-
summary["model_config"] = str(
|
|
537
|
-
|
|
538
|
-
|
|
561
|
+
summary["model_config"] = str(
|
|
562
|
+
shrink_config(
|
|
563
|
+
data["configuration"]
|
|
564
|
+
if type(data["configuration"]) is dict
|
|
565
|
+
else data["configuration"].to_dict()
|
|
566
|
+
)
|
|
567
|
+
).replace(" ", "")
|
|
539
568
|
summary["model_id"] = model_id
|
|
540
569
|
|
|
541
570
|
if verbose:
|
|
@@ -563,18 +592,18 @@ def validate_model(
|
|
|
563
592
|
f"[validate_model] -- export the model with {exporter!r}, "
|
|
564
593
|
f"optimization={optimization!r}"
|
|
565
594
|
)
|
|
566
|
-
if
|
|
595
|
+
if patch_kwargs:
|
|
567
596
|
if verbose:
|
|
568
597
|
print(
|
|
569
598
|
f"[validate_model] applies patches before exporting "
|
|
570
599
|
f"stop_if_static={stop_if_static}"
|
|
571
600
|
)
|
|
572
601
|
with torch_export_patches( # type: ignore
|
|
573
|
-
patch_transformers=True,
|
|
574
602
|
stop_if_static=stop_if_static,
|
|
575
603
|
verbose=max(0, verbose - 1),
|
|
576
604
|
rewrite=data.get("rewrite", None),
|
|
577
605
|
dump_rewriting=(os.path.join(dump_folder, "rewrite") if dump_folder else None),
|
|
606
|
+
**patch_kwargs, # type: ignore[arg-type]
|
|
578
607
|
) as modificator:
|
|
579
608
|
data["inputs_export"] = modificator(data["inputs"]) # type: ignore
|
|
580
609
|
|
|
@@ -1,28 +1,29 @@
|
|
|
1
|
-
onnx_diagnostic/__init__.py,sha256=
|
|
1
|
+
onnx_diagnostic/__init__.py,sha256=Lt-QBr--poshkZCAn2mvNtBcQfTKfBUI7__zuZCXklo,173
|
|
2
2
|
onnx_diagnostic/__main__.py,sha256=YmyV_Aq_ianDlHyKLHMa6h8YK3ZmFPpLVHLKjM91aCk,79
|
|
3
|
-
onnx_diagnostic/_command_lines_parser.py,sha256=
|
|
3
|
+
onnx_diagnostic/_command_lines_parser.py,sha256=TliHXedXFerv-zO6cBigxKbuKHE0-6TUhhsk1pdkz9M,28072
|
|
4
4
|
onnx_diagnostic/api.py,sha256=BhCl_yCd78N7TlVtPOHjeYv1QBEy39TjZ647rcHqLh0,345
|
|
5
5
|
onnx_diagnostic/doc.py,sha256=t3RELgfooYnVMAi0JSpggWkQEgUsREz8NmRvn0TnLI8,2829
|
|
6
|
-
onnx_diagnostic/ext_test_case.py,sha256=
|
|
6
|
+
onnx_diagnostic/ext_test_case.py,sha256=Bq4vdlM0P72H1orlKJTeOBqm1YGHTK-ylAlNsBe4LeA,43438
|
|
7
7
|
onnx_diagnostic/export/__init__.py,sha256=yEIoWiOeTwBsDhyYt2fTKuhtA0Ya1J9u9ZzMTOTWaWs,101
|
|
8
|
-
onnx_diagnostic/export/dynamic_shapes.py,sha256=
|
|
8
|
+
onnx_diagnostic/export/dynamic_shapes.py,sha256=HYf2OEi7PmRSj8uxMD-wbdVxxejkWXTPBAkxoFeM27A,40811
|
|
9
|
+
onnx_diagnostic/export/shape_helper.py,sha256=C9cEq_x8I40RKuD89qWIholN1XZoWhaKPfbZQhiPD3g,4725
|
|
9
10
|
onnx_diagnostic/export/validate.py,sha256=_PGUql2DJhIgGKo0WjTGUc5AgsZUx8fEs00MePy-w98,6043
|
|
10
11
|
onnx_diagnostic/helpers/__init__.py,sha256=GJ2GT7cgnlIveVUwMZhuvUwidbTJaKv8CsSIOpZDsJg,83
|
|
11
12
|
onnx_diagnostic/helpers/args_helper.py,sha256=SRWnqC7EENg09RZlA50B_PcdiIhdbgA4C3ACfzl5nMs,4419
|
|
12
13
|
onnx_diagnostic/helpers/bench_run.py,sha256=CGA6VMJZMH2gDhVueT9ypNm4PMcjGrrGFYp08nhWj9k,16539
|
|
13
|
-
onnx_diagnostic/helpers/cache_helper.py,sha256=
|
|
14
|
-
onnx_diagnostic/helpers/config_helper.py,sha256=
|
|
14
|
+
onnx_diagnostic/helpers/cache_helper.py,sha256=1slql7FdL89wzRWGoehLI7G1BY0cOsqGQmaZvLBvCIA,11229
|
|
15
|
+
onnx_diagnostic/helpers/config_helper.py,sha256=9h1NWC9RLmu43Yf5Cz9usjMdLiyLWXMhwgE4Lg-eOU8,3889
|
|
15
16
|
onnx_diagnostic/helpers/doc_helper.py,sha256=pl5MZd3_FaE8BqQnqoBuSBxoNCFcd2OJd3eITUSku5c,5897
|
|
16
17
|
onnx_diagnostic/helpers/graph_helper.py,sha256=hevQT5a7_QuriVPQcbT5qe18n99Doyl5h3-qshx1-uk,14093
|
|
17
18
|
onnx_diagnostic/helpers/helper.py,sha256=_6K0IvfK7ymBE8uWFAOA1ksU_fMvl2BRtlxj5SA9R2I,58203
|
|
18
|
-
onnx_diagnostic/helpers/log_helper.py,sha256=
|
|
19
|
+
onnx_diagnostic/helpers/log_helper.py,sha256=e89MI_i6PFBshm1cOOX5yCowEPIKzneMyCrpc34vpU0,77613
|
|
19
20
|
onnx_diagnostic/helpers/memory_peak.py,sha256=OT6mz0muBbBZY0pjgW2_eCk_lOtFRo-5w4jFo2Z6Kok,6380
|
|
20
21
|
onnx_diagnostic/helpers/mini_onnx_builder.py,sha256=p0Xh2Br38xAqUjB2214GiNOIbCgiVZKeyVEnjdyqyFI,21091
|
|
21
22
|
onnx_diagnostic/helpers/model_builder_helper.py,sha256=RvDyPFqRboEU3HsQV_xi9oy-o3_4KuGFVzs5MhksduY,12552
|
|
22
23
|
onnx_diagnostic/helpers/onnx_helper.py,sha256=pXXQjfyNTSUF-Kt72U4fnBDkYAnWYMxdSw8m0qk3xmE,39670
|
|
23
24
|
onnx_diagnostic/helpers/ort_session.py,sha256=UgUUeUslDxEFBc6w6f3HMq_a7bn4TBlItmojqWquSj4,29281
|
|
24
25
|
onnx_diagnostic/helpers/rt_helper.py,sha256=BXU_u1syk2RyM0HTFHKEiO6rHHhZW2UFPyUTVdeq8BU,4251
|
|
25
|
-
onnx_diagnostic/helpers/torch_helper.py,sha256=
|
|
26
|
+
onnx_diagnostic/helpers/torch_helper.py,sha256=MJpoiKZoKzp_ed5LK_2ssIMPo0eohn9WrVAcgPvT2Gk,32362
|
|
26
27
|
onnx_diagnostic/reference/__init__.py,sha256=rLZsxOlnb7-81F2CzepGnZLejaROg4JvgFaGR9FwVQA,208
|
|
27
28
|
onnx_diagnostic/reference/evaluator.py,sha256=RzNzjFDeMe-4X51Tb22N6aagazY5ktNq-mRmPcfY5EU,8848
|
|
28
29
|
onnx_diagnostic/reference/ort_evaluator.py,sha256=1O7dHj8Aspolidg6rB2Nm7hT3HaGb4TxAgjCCD0XVcQ,26159
|
|
@@ -70,23 +71,24 @@ onnx_diagnostic/reference/torch_ops/reduce_ops.py,sha256=9gFfraPTQbe_ZEUNCUis1JS
|
|
|
70
71
|
onnx_diagnostic/reference/torch_ops/sequence_ops.py,sha256=3EiVKpGfN4d1Iry4hgnr3MIJyEEKUrAIDgmRGsUXXa0,2297
|
|
71
72
|
onnx_diagnostic/reference/torch_ops/shape_ops.py,sha256=pJrNR2UB4PlWl6cv4EDl1uGl8YTBUUMQkhJcsh5K4sA,4291
|
|
72
73
|
onnx_diagnostic/reference/torch_ops/unary_ops.py,sha256=E8Ys1eZsOTsucBKoXb1_Kl5LbBDygniDvW2BvN4IPMo,1708
|
|
73
|
-
onnx_diagnostic/tasks/__init__.py,sha256=
|
|
74
|
+
onnx_diagnostic/tasks/__init__.py,sha256=0BYtrAnr0zKN3om71oi-OVz5wFYDp9WWIk51qWjjyCw,2450
|
|
74
75
|
onnx_diagnostic/tasks/automatic_speech_recognition.py,sha256=7OspFypNHLSL6huvP9ms_euhHqYXyTZjAJ8Z7EXGimk,6967
|
|
75
76
|
onnx_diagnostic/tasks/feature_extraction.py,sha256=CbxbGsv3JvEQ2J9tO2DOpMHcJj5ZlCwY81ZB3hPB4D4,2339
|
|
76
77
|
onnx_diagnostic/tasks/fill_mask.py,sha256=ZWz8swzEeRbkmbY9oZ4CM1LYCWWUxnS5CqrKmUVw-u0,2457
|
|
77
78
|
onnx_diagnostic/tasks/image_classification.py,sha256=UjUAFYnwXIdPMXJdHR5MDzpsfMeIvyuKR4RqJVpGV_Q,4449
|
|
78
|
-
onnx_diagnostic/tasks/image_text_to_text.py,sha256=
|
|
79
|
+
onnx_diagnostic/tasks/image_text_to_text.py,sha256=LmpMdH6oF_EN3WIACzSip4fPZOjZWFOoXg4k8qAio6Q,7639
|
|
79
80
|
onnx_diagnostic/tasks/mixture_of_expert.py,sha256=C0ugEc8OWmVyEZpsh8MJq_te1zgOHhpITtnSmGC16Ls,2801
|
|
80
81
|
onnx_diagnostic/tasks/object_detection.py,sha256=1lF5e2f2Coz1urSptEKgvUGCOSFBf0Anuq_QYOC00dA,4046
|
|
81
82
|
onnx_diagnostic/tasks/sentence_similarity.py,sha256=3MvNxjC1iEMtQL_jH1c8bmrVc5IG1lfUygrCZ0SORJk,2472
|
|
82
83
|
onnx_diagnostic/tasks/summarization.py,sha256=NLwqhpiQrU8UWd3u30VsNA3FsL315S3nlQ7ycUzJueo,8105
|
|
83
84
|
onnx_diagnostic/tasks/text2text_generation.py,sha256=mYvsq-O69fr5pitX0mWugT76QuK4xUs40Vsz9ru_XK8,8522
|
|
84
85
|
onnx_diagnostic/tasks/text_classification.py,sha256=NCCKobBQyCc7dSVj7_5N6S_RuvBlRMAdWkS2rVvrzck,2528
|
|
85
|
-
onnx_diagnostic/tasks/text_generation.py,sha256=
|
|
86
|
+
onnx_diagnostic/tasks/text_generation.py,sha256=fraa5w2_eexXLAcDAR1e4g9zWKdvWybMYi1zu7XU7J4,12988
|
|
87
|
+
onnx_diagnostic/tasks/text_to_image.py,sha256=6z-rFG6MX9aBi8YoYtYI_8OV3M3Tfoi45V8S9csQ7k4,2799
|
|
86
88
|
onnx_diagnostic/tasks/zero_shot_image_classification.py,sha256=GKaXm8g7cK23h3wJEUc6Q-6mpmLAzQ4YkJbd-eGP7Y4,4496
|
|
87
89
|
onnx_diagnostic/torch_export_patches/__init__.py,sha256=0SaZedwznm1hQUCvXZsGZORV5vby954wEExr5faepGg,720
|
|
88
|
-
onnx_diagnostic/torch_export_patches/onnx_export_errors.py,sha256=
|
|
89
|
-
onnx_diagnostic/torch_export_patches/onnx_export_serialization.py,sha256=
|
|
90
|
+
onnx_diagnostic/torch_export_patches/onnx_export_errors.py,sha256=h_txSp30QmF1R_Q2wL4qpPqY59Dund2P9nAAsvucS8A,21245
|
|
91
|
+
onnx_diagnostic/torch_export_patches/onnx_export_serialization.py,sha256=4fXsuQjJq_Ko_EehiVZYypdWTBgFgaaK8ryhAFaR0yo,10561
|
|
90
92
|
onnx_diagnostic/torch_export_patches/patch_expressions.py,sha256=vr4tt61cbDnaaaduzMj4UBZ8OUtr6GfDpIWwOYqjWzs,3213
|
|
91
93
|
onnx_diagnostic/torch_export_patches/patch_inputs.py,sha256=9b4pmyT00BwLqi7WG-gliep1RUy3gXEgW6BDnlSSA-M,7689
|
|
92
94
|
onnx_diagnostic/torch_export_patches/patch_module.py,sha256=R2d9IHM-RwsBKDsxuBIJnEqMoxbS9gd4YWFGG2wwV5A,39881
|
|
@@ -95,23 +97,26 @@ onnx_diagnostic/torch_export_patches/eval/__init__.py,sha256=VtkQB1o3Q2Fh99OOF6v
|
|
|
95
97
|
onnx_diagnostic/torch_export_patches/eval/model_cases.py,sha256=DTvdHPtNQh25Akv5o3D4Jxf1L1-SJ7w14tgvj8AAns8,26577
|
|
96
98
|
onnx_diagnostic/torch_export_patches/patches/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
97
99
|
onnx_diagnostic/torch_export_patches/patches/patch_torch.py,sha256=KaZ8TjDa9ATgT4HllYzzoNf_51q_yOj_GuF5NYjPCrU,18913
|
|
98
|
-
onnx_diagnostic/torch_export_patches/patches/patch_transformers.py,sha256=
|
|
100
|
+
onnx_diagnostic/torch_export_patches/patches/patch_transformers.py,sha256=XyLqG4w4ALCVF8Dc8_Meu903saFYGBEBG0utziw9i3Q,44014
|
|
101
|
+
onnx_diagnostic/torch_export_patches/serialization/__init__.py,sha256=BHLdRPtNAtNPAS-bPKEj3-foGSPvwAbZXrHzGGPDLEw,1876
|
|
102
|
+
onnx_diagnostic/torch_export_patches/serialization/diffusers_impl.py,sha256=drq3EH_yjcSuIWYsVeUWm8Cx6YCZFU6bP_1PLtPfY5I,945
|
|
103
|
+
onnx_diagnostic/torch_export_patches/serialization/transformers_impl.py,sha256=9u2jkqnuyBkIF3R2sDEO0Jlkedl-cQhBNXxXXDLSEwE,8885
|
|
99
104
|
onnx_diagnostic/torch_models/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
100
105
|
onnx_diagnostic/torch_models/llms.py,sha256=soyg4yC87ptGoeulJhKqw5opGmuLvH1pn_ZDXZ4Jr8E,90
|
|
101
|
-
onnx_diagnostic/torch_models/validate.py,sha256=
|
|
106
|
+
onnx_diagnostic/torch_models/validate.py,sha256=uUWkrCNE766c6BYKe-g5jQW3w89cvb7F-xnIkKsZKSw,63254
|
|
102
107
|
onnx_diagnostic/torch_models/hghub/__init__.py,sha256=vi1Q7YHdddj1soiBN42MSvJdFqe2_KUoWafHISjwOu8,58
|
|
103
|
-
onnx_diagnostic/torch_models/hghub/hub_api.py,sha256=
|
|
104
|
-
onnx_diagnostic/torch_models/hghub/hub_data.py,sha256=
|
|
105
|
-
onnx_diagnostic/torch_models/hghub/hub_data_cached_configs.py,sha256=
|
|
106
|
-
onnx_diagnostic/torch_models/hghub/model_inputs.py,sha256=
|
|
108
|
+
onnx_diagnostic/torch_models/hghub/hub_api.py,sha256=Bvr-sTAhS6s6UCkt-KsY_7Mdai08-AQzvHrzbYCSuvk,13186
|
|
109
|
+
onnx_diagnostic/torch_models/hghub/hub_data.py,sha256=NTTDsCtIVvYnr5J3rlcq0GSGDOzOPzq9Tsnb3oVf4q8,8309
|
|
110
|
+
onnx_diagnostic/torch_models/hghub/hub_data_cached_configs.py,sha256=zZvIxTbmL55x44kCj3-T5Kg3Qzm9KB_Xj-MCcU9-LuQ,268245
|
|
111
|
+
onnx_diagnostic/torch_models/hghub/model_inputs.py,sha256=tuTGfcFKK3ugA9Fh909THHWkrNyXkU5IhV6RumlNUiQ,10830
|
|
107
112
|
onnx_diagnostic/torch_models/untrained/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
108
113
|
onnx_diagnostic/torch_models/untrained/llm_phi2.py,sha256=ynBTDHJHCk44NjLT_t6OiFDBdPP0rFGPteiONDxvztw,3708
|
|
109
114
|
onnx_diagnostic/torch_models/untrained/llm_tiny_llm.py,sha256=QXw_Bs2SzfeiQMf-tmtVl83SmVOL4-Um7Qy-f0E48QI,2507
|
|
110
115
|
onnx_diagnostic/torch_onnx/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
111
116
|
onnx_diagnostic/torch_onnx/runtime_info.py,sha256=1g9F_Jf9AAgYQU4stbsrFXwQl-30mWlQrFbQ7val8Ps,9268
|
|
112
117
|
onnx_diagnostic/torch_onnx/sbs.py,sha256=1EL25DeYFzlBSiFG_XjePBLvsiItRXbdDrr5-QZW2mA,16878
|
|
113
|
-
onnx_diagnostic-0.7.
|
|
114
|
-
onnx_diagnostic-0.7.
|
|
115
|
-
onnx_diagnostic-0.7.
|
|
116
|
-
onnx_diagnostic-0.7.
|
|
117
|
-
onnx_diagnostic-0.7.
|
|
118
|
+
onnx_diagnostic-0.7.2.dist-info/licenses/LICENSE.txt,sha256=Vv6TXglX6Rc0d-f8aREhayhT-6PMQXEyOmI2NKlUCMc,1045
|
|
119
|
+
onnx_diagnostic-0.7.2.dist-info/METADATA,sha256=2jkNpfMIypu51qway6NIH1olWbeF_soM-e8rbwc3jVc,6631
|
|
120
|
+
onnx_diagnostic-0.7.2.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
|
|
121
|
+
onnx_diagnostic-0.7.2.dist-info/top_level.txt,sha256=KwNkXewmcobM3ZT1DJLVWH6ebJzA5qKg7cWqKfpGNT4,16
|
|
122
|
+
onnx_diagnostic-0.7.2.dist-info/RECORD,,
|
|
File without changes
|
|
File without changes
|
|
File without changes
|