onnx-diagnostic 0.7.0__py3-none-any.whl → 0.7.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (29) hide show
  1. onnx_diagnostic/__init__.py +1 -1
  2. onnx_diagnostic/_command_lines_parser.py +213 -5
  3. onnx_diagnostic/export/dynamic_shapes.py +48 -20
  4. onnx_diagnostic/export/shape_helper.py +126 -0
  5. onnx_diagnostic/ext_test_case.py +31 -0
  6. onnx_diagnostic/helpers/cache_helper.py +42 -20
  7. onnx_diagnostic/helpers/config_helper.py +16 -1
  8. onnx_diagnostic/helpers/log_helper.py +1561 -177
  9. onnx_diagnostic/helpers/torch_helper.py +6 -2
  10. onnx_diagnostic/tasks/__init__.py +2 -0
  11. onnx_diagnostic/tasks/image_text_to_text.py +69 -18
  12. onnx_diagnostic/tasks/text_generation.py +17 -8
  13. onnx_diagnostic/tasks/text_to_image.py +91 -0
  14. onnx_diagnostic/torch_export_patches/onnx_export_errors.py +24 -7
  15. onnx_diagnostic/torch_export_patches/onnx_export_serialization.py +144 -349
  16. onnx_diagnostic/torch_export_patches/patches/patch_transformers.py +87 -7
  17. onnx_diagnostic/torch_export_patches/serialization/__init__.py +46 -0
  18. onnx_diagnostic/torch_export_patches/serialization/diffusers_impl.py +34 -0
  19. onnx_diagnostic/torch_export_patches/serialization/transformers_impl.py +259 -0
  20. onnx_diagnostic/torch_models/hghub/hub_api.py +73 -5
  21. onnx_diagnostic/torch_models/hghub/hub_data.py +7 -2
  22. onnx_diagnostic/torch_models/hghub/hub_data_cached_configs.py +28 -0
  23. onnx_diagnostic/torch_models/hghub/model_inputs.py +74 -14
  24. onnx_diagnostic/torch_models/validate.py +45 -16
  25. {onnx_diagnostic-0.7.0.dist-info → onnx_diagnostic-0.7.2.dist-info}/METADATA +1 -1
  26. {onnx_diagnostic-0.7.0.dist-info → onnx_diagnostic-0.7.2.dist-info}/RECORD +29 -24
  27. {onnx_diagnostic-0.7.0.dist-info → onnx_diagnostic-0.7.2.dist-info}/WHEEL +0 -0
  28. {onnx_diagnostic-0.7.0.dist-info → onnx_diagnostic-0.7.2.dist-info}/licenses/LICENSE.txt +0 -0
  29. {onnx_diagnostic-0.7.0.dist-info → onnx_diagnostic-0.7.2.dist-info}/top_level.txt +0 -0
@@ -1,11 +1,12 @@
1
1
  import inspect
2
2
  import os
3
+ import pprint
3
4
  from typing import Any, Dict, Optional, Tuple
4
5
  import torch
5
6
  import transformers
6
7
  from ...helpers.config_helper import update_config
7
8
  from ...tasks import reduce_model_config, random_input_kwargs
8
- from .hub_api import task_from_arch, task_from_id, get_pretrained_config
9
+ from .hub_api import task_from_arch, task_from_id, get_pretrained_config, download_code_modelid
9
10
 
10
11
 
11
12
  def _code_needing_rewriting(model: Any) -> Any:
@@ -22,6 +23,7 @@ def get_untrained_model_with_inputs(
22
23
  model_kwargs: Optional[Dict[str, Any]] = None,
23
24
  verbose: int = 0,
24
25
  dynamic_rope: Optional[bool] = None,
26
+ use_pretrained: bool = False,
25
27
  same_as_pretrained: bool = False,
26
28
  use_preinstalled: bool = True,
27
29
  add_second_input: bool = False,
@@ -43,6 +45,7 @@ def get_untrained_model_with_inputs(
43
45
  :param dynamic_rope: use dynamic rope (see :class:`transformers.LlamaConfig`)
44
46
  :param same_as_pretrained: if True, do not change the default values
45
47
  to get a smaller model
48
+ :param use_pretrained: download the pretrained weights as well
46
49
  :param use_preinstalled: use preinstalled configurations
47
50
  :param add_second_input: provides a second inputs to check a model
48
51
  supports different shapes
@@ -68,6 +71,10 @@ def get_untrained_model_with_inputs(
68
71
  print("-- dynamic shapes:", pprint.pformat(data['dynamic_shapes']))
69
72
  print("-- configuration:", pprint.pformat(data['configuration']))
70
73
  """
74
+ assert not use_preinstalled or not use_only_preinstalled, (
75
+ f"model_id={model_id!r}, pretinstalled model is only available "
76
+ f"if use_only_preinstalled is False."
77
+ )
71
78
  if verbose:
72
79
  print(f"[get_untrained_model_with_inputs] model_id={model_id!r}")
73
80
  if use_preinstalled:
@@ -99,7 +106,7 @@ def get_untrained_model_with_inputs(
99
106
  print(f"[get_untrained_model_with_inputs] architectures={archs!r}")
100
107
  print(f"[get_untrained_model_with_inputs] cls={config.__class__.__name__!r}")
101
108
  if task is None:
102
- task = task_from_arch(archs[0])
109
+ task = task_from_arch(archs[0], model_id=model_id, subfolder=subfolder)
103
110
  if verbose:
104
111
  print(f"[get_untrained_model_with_inputs] task={task!r}")
105
112
 
@@ -114,7 +121,6 @@ def get_untrained_model_with_inputs(
114
121
  )
115
122
 
116
123
  # updating the configuration
117
-
118
124
  mkwargs = reduce_model_config(config, task) if not same_as_pretrained else {}
119
125
  if model_kwargs:
120
126
  for k, v in model_kwargs.items():
@@ -139,27 +145,81 @@ def get_untrained_model_with_inputs(
139
145
  f"{config._attn_implementation!r}" # type: ignore[union-attr]
140
146
  )
141
147
 
148
+ if type(config) is dict and "_diffusers_version" in config:
149
+ import diffusers
150
+
151
+ package_source = diffusers
152
+ else:
153
+ package_source = transformers
154
+
155
+ if use_pretrained:
156
+ model = transformers.AutoModel.from_pretrained(model_id, **mkwargs)
157
+ else:
158
+ if archs is not None:
159
+ try:
160
+ cls_model = getattr(package_source, archs[0])
161
+ except AttributeError as e:
162
+ # The code of the models is not in transformers but in the
163
+ # repository of the model. We need to download it.
164
+ pyfiles = download_code_modelid(model_id, verbose=verbose)
165
+ if pyfiles:
166
+ if "." in archs[0]:
167
+ cls_name = archs[0]
168
+ else:
169
+ modeling = [_ for _ in pyfiles if "/modeling_" in _]
170
+ assert len(modeling) == 1, (
171
+ f"Unable to guess the main file implemented class {archs[0]!r} "
172
+ f"from {pyfiles}, found={modeling}."
173
+ )
174
+ last_name = os.path.splitext(os.path.split(modeling[0])[-1])[0]
175
+ cls_name = f"{last_name}.{archs[0]}"
176
+ if verbose:
177
+ print(
178
+ f"[get_untrained_model_with_inputs] custom code for {cls_name!r}"
179
+ )
180
+ print(
181
+ f"[get_untrained_model_with_inputs] from folder "
182
+ f"{os.path.split(pyfiles[0])[0]!r}"
183
+ )
184
+ cls_model = (
185
+ transformers.dynamic_module_utils.get_class_from_dynamic_module(
186
+ cls_name,
187
+ pretrained_model_name_or_path=os.path.split(pyfiles[0])[0],
188
+ )
189
+ )
190
+ else:
191
+ raise AttributeError(
192
+ f"Unable to find class 'tranformers.{archs[0]}'. "
193
+ f"The code needs to be downloaded, config="
194
+ f"\n{pprint.pformat(config)}."
195
+ ) from e
196
+ else:
197
+ assert same_as_pretrained and use_pretrained, (
198
+ f"Model {model_id!r} cannot be built, the model cannot be built. "
199
+ f"It must be downloaded. Use same_as_pretrained=True "
200
+ f"and use_pretrained=True."
201
+ )
202
+
203
+ try:
204
+ if type(config) is dict:
205
+ model = cls_model(**config)
206
+ else:
207
+ model = cls_model(config)
208
+ except RuntimeError as e:
209
+ raise RuntimeError(
210
+ f"Unable to instantiate class {cls_model.__name__} with\n{config}"
211
+ ) from e
212
+
142
213
  # input kwargs
143
214
  kwargs, fct = random_input_kwargs(config, task)
144
215
  if verbose:
145
216
  print(f"[get_untrained_model_with_inputs] use fct={fct}")
146
217
  if os.environ.get("PRINT_CONFIG") in (1, "1"):
147
- import pprint
148
-
149
218
  print(f"-- input kwargs for task {task!r}")
150
219
  pprint.pprint(kwargs)
151
220
  if inputs_kwargs:
152
221
  kwargs.update(inputs_kwargs)
153
222
 
154
- if archs is not None:
155
- model = getattr(transformers, archs[0])(config)
156
- else:
157
- assert same_as_pretrained, (
158
- f"Model {model_id!r} cannot be built, the model cannot be built. "
159
- f"It must be downloaded. Use same_as_pretrained=True."
160
- )
161
- model = None
162
-
163
223
  # This line is important. Some models may produce different
164
224
  # outputs even with the same inputs in training mode.
165
225
  model.eval()
@@ -259,10 +259,11 @@ def validate_model(
259
259
  verbose: int = 0,
260
260
  dtype: Optional[Union[str, torch.dtype]] = None,
261
261
  device: Optional[Union[str, torch.device]] = None,
262
- trained: bool = False,
262
+ same_as_pretrained: bool = False,
263
+ use_pretrained: bool = False,
263
264
  optimization: Optional[str] = None,
264
265
  quiet: bool = False,
265
- patch: bool = False,
266
+ patch: Union[bool, str, Dict[str, bool]] = False,
266
267
  rewrite: bool = False,
267
268
  stop_if_static: int = 1,
268
269
  dump_folder: Optional[str] = None,
@@ -294,12 +295,16 @@ def validate_model(
294
295
  :param verbose: verbosity level
295
296
  :param dtype: uses this dtype to check the model
296
297
  :param device: do the verification on this device
297
- :param trained: use the trained model, not the untrained one
298
+ :param same_as_pretrained: use a model equivalent to the trained,
299
+ this is not always possible
300
+ :param use_pretrained: use the trained model, not the untrained one
298
301
  :param optimization: optimization to apply to the exported model,
299
302
  depend on the the exporter
300
303
  :param quiet: if quiet, catches exception if any issue
301
- :param patch: applies patches (``patch_transformers=True``) before exporting,
302
- see :func:`onnx_diagnostic.torch_export_patches.torch_export_patches`
304
+ :param patch: applies patches (``patch_transformers=True, path_diffusers=True``)
305
+ if True before exporting
306
+ see :func:`onnx_diagnostic.torch_export_patches.torch_export_patches`,
307
+ a string can be used to specify only one of them
303
308
  :param rewrite: applies known rewriting (``patch_transformers=True``) before exporting,
304
309
  see :func:`onnx_diagnostic.torch_export_patches.torch_export_patches`
305
310
  :param stop_if_static: stops if a dynamic dimension becomes static,
@@ -343,9 +348,26 @@ def validate_model(
343
348
  exported model returns the same outputs as the original one, otherwise,
344
349
  :class:`onnx_diagnostic.reference.TorchOnnxEvaluator` is used.
345
350
  """
346
- assert (
347
- not rewrite or patch
348
- ), f"rewrite={rewrite}, patch={patch}, patch must be True to enable rewriting"
351
+ if isinstance(patch, bool):
352
+ patch_kwargs = (
353
+ dict(patch_transformers=True, patch_diffusers=True, patch=True)
354
+ if patch
355
+ else dict(patch=False)
356
+ )
357
+ elif isinstance(patch, str):
358
+ patch_kwargs = {"patch": True, **{p: True for p in patch.split(",")}} # noqa: C420
359
+ else:
360
+ assert isinstance(patch, dict), f"Unable to interpret patch={patch!r}"
361
+ patch_kwargs = patch.copy()
362
+ if "patch" not in patch_kwargs:
363
+ if any(patch_kwargs.values()):
364
+ patch_kwargs["patch"] = True
365
+
366
+ assert not rewrite or patch_kwargs.get("patch", False), (
367
+ f"rewrite={rewrite}, patch={patch}, patch_kwargs={patch_kwargs} "
368
+ f"patch must be True to enable rewriting, "
369
+ f"if --no-patch was specified on the command line, --no-rewrite must be added."
370
+ )
349
371
  summary = version_summary()
350
372
  summary.update(
351
373
  dict(
@@ -353,10 +375,12 @@ def validate_model(
353
375
  version_do_run=str(do_run),
354
376
  version_dtype=str(dtype or ""),
355
377
  version_device=str(device or ""),
356
- version_trained=str(trained),
378
+ version_same_as_pretrained=str(same_as_pretrained),
379
+ version_use_pretrained=str(use_pretrained),
357
380
  version_optimization=optimization or "",
358
381
  version_quiet=str(quiet),
359
382
  version_patch=str(patch),
383
+ version_patch_kwargs=str(patch_kwargs).replace(" ", ""),
360
384
  version_rewrite=str(rewrite),
361
385
  version_dump_folder=dump_folder or "",
362
386
  version_drop_inputs=str(list(drop_inputs or "")),
@@ -392,7 +416,7 @@ def validate_model(
392
416
  print(f"[validate_model] model_options={model_options!r}")
393
417
  print(f"[validate_model] get dummy inputs with input_options={input_options}...")
394
418
  print(
395
- f"[validate_model] rewrite={rewrite}, patch={patch}, "
419
+ f"[validate_model] rewrite={rewrite}, patch_kwargs={patch_kwargs}, "
396
420
  f"stop_if_static={stop_if_static}"
397
421
  )
398
422
  print(f"[validate_model] exporter={exporter!r}, optimization={optimization!r}")
@@ -408,11 +432,12 @@ def validate_model(
408
432
  summary,
409
433
  None,
410
434
  (
411
- lambda mid=model_id, v=verbose, task=task, tr=trained, iop=iop, sub=subfolder, i2=inputs2: ( # noqa: E501
435
+ lambda mid=model_id, v=verbose, task=task, uptr=use_pretrained, tr=same_as_pretrained, iop=iop, sub=subfolder, i2=inputs2: ( # noqa: E501
412
436
  get_untrained_model_with_inputs(
413
437
  mid,
414
438
  verbose=v,
415
439
  task=task,
440
+ use_pretrained=uptr,
416
441
  same_as_pretrained=tr,
417
442
  inputs_kwargs=iop,
418
443
  model_kwargs=mop,
@@ -533,9 +558,13 @@ def validate_model(
533
558
  if summary["model_module"] in sys.modules:
534
559
  summary["model_file"] = str(sys.modules[summary["model_module"]].__file__) # type: ignore[index]
535
560
  summary["model_config_class"] = data["configuration"].__class__.__name__
536
- summary["model_config"] = str(shrink_config(data["configuration"].to_dict())).replace(
537
- " ", ""
538
- )
561
+ summary["model_config"] = str(
562
+ shrink_config(
563
+ data["configuration"]
564
+ if type(data["configuration"]) is dict
565
+ else data["configuration"].to_dict()
566
+ )
567
+ ).replace(" ", "")
539
568
  summary["model_id"] = model_id
540
569
 
541
570
  if verbose:
@@ -563,18 +592,18 @@ def validate_model(
563
592
  f"[validate_model] -- export the model with {exporter!r}, "
564
593
  f"optimization={optimization!r}"
565
594
  )
566
- if patch:
595
+ if patch_kwargs:
567
596
  if verbose:
568
597
  print(
569
598
  f"[validate_model] applies patches before exporting "
570
599
  f"stop_if_static={stop_if_static}"
571
600
  )
572
601
  with torch_export_patches( # type: ignore
573
- patch_transformers=True,
574
602
  stop_if_static=stop_if_static,
575
603
  verbose=max(0, verbose - 1),
576
604
  rewrite=data.get("rewrite", None),
577
605
  dump_rewriting=(os.path.join(dump_folder, "rewrite") if dump_folder else None),
606
+ **patch_kwargs, # type: ignore[arg-type]
578
607
  ) as modificator:
579
608
  data["inputs_export"] = modificator(data["inputs"]) # type: ignore
580
609
 
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: onnx-diagnostic
3
- Version: 0.7.0
3
+ Version: 0.7.2
4
4
  Summary: Investigate ONNX models
5
5
  Home-page: https://github.com/sdpython/onnx-diagnostic
6
6
  Author: Xavier Dupré
@@ -1,28 +1,29 @@
1
- onnx_diagnostic/__init__.py,sha256=6RCqK3fOs5Ba2WSRikalaPL72CKIWq7XGzxBULaBSQU,173
1
+ onnx_diagnostic/__init__.py,sha256=Lt-QBr--poshkZCAn2mvNtBcQfTKfBUI7__zuZCXklo,173
2
2
  onnx_diagnostic/__main__.py,sha256=YmyV_Aq_ianDlHyKLHMa6h8YK3ZmFPpLVHLKjM91aCk,79
3
- onnx_diagnostic/_command_lines_parser.py,sha256=FCeOpwZ-tRn3-JjOLs0K2X0ziTjDKJFzIb425vNYH7U,20876
3
+ onnx_diagnostic/_command_lines_parser.py,sha256=TliHXedXFerv-zO6cBigxKbuKHE0-6TUhhsk1pdkz9M,28072
4
4
  onnx_diagnostic/api.py,sha256=BhCl_yCd78N7TlVtPOHjeYv1QBEy39TjZ647rcHqLh0,345
5
5
  onnx_diagnostic/doc.py,sha256=t3RELgfooYnVMAi0JSpggWkQEgUsREz8NmRvn0TnLI8,2829
6
- onnx_diagnostic/ext_test_case.py,sha256=IX-DNabvsPw8UkUeXC1amw3nnzdmJ3DeERn4E1Y_omo,42416
6
+ onnx_diagnostic/ext_test_case.py,sha256=Bq4vdlM0P72H1orlKJTeOBqm1YGHTK-ylAlNsBe4LeA,43438
7
7
  onnx_diagnostic/export/__init__.py,sha256=yEIoWiOeTwBsDhyYt2fTKuhtA0Ya1J9u9ZzMTOTWaWs,101
8
- onnx_diagnostic/export/dynamic_shapes.py,sha256=EHB7VoWNx8sVetvOgE1vgC7wHtIjWDLjanhbEJNpK88,39892
8
+ onnx_diagnostic/export/dynamic_shapes.py,sha256=HYf2OEi7PmRSj8uxMD-wbdVxxejkWXTPBAkxoFeM27A,40811
9
+ onnx_diagnostic/export/shape_helper.py,sha256=C9cEq_x8I40RKuD89qWIholN1XZoWhaKPfbZQhiPD3g,4725
9
10
  onnx_diagnostic/export/validate.py,sha256=_PGUql2DJhIgGKo0WjTGUc5AgsZUx8fEs00MePy-w98,6043
10
11
  onnx_diagnostic/helpers/__init__.py,sha256=GJ2GT7cgnlIveVUwMZhuvUwidbTJaKv8CsSIOpZDsJg,83
11
12
  onnx_diagnostic/helpers/args_helper.py,sha256=SRWnqC7EENg09RZlA50B_PcdiIhdbgA4C3ACfzl5nMs,4419
12
13
  onnx_diagnostic/helpers/bench_run.py,sha256=CGA6VMJZMH2gDhVueT9ypNm4PMcjGrrGFYp08nhWj9k,16539
13
- onnx_diagnostic/helpers/cache_helper.py,sha256=SFw-wNKXvrNo53VmvRVPdI4nBDMIlaGKv4bNx9g_h_o,10406
14
- onnx_diagnostic/helpers/config_helper.py,sha256=CdMeUhmDe0LfKcdPv9-Lzt73RRs29NmUHg9uVrdFwTQ,3479
14
+ onnx_diagnostic/helpers/cache_helper.py,sha256=1slql7FdL89wzRWGoehLI7G1BY0cOsqGQmaZvLBvCIA,11229
15
+ onnx_diagnostic/helpers/config_helper.py,sha256=9h1NWC9RLmu43Yf5Cz9usjMdLiyLWXMhwgE4Lg-eOU8,3889
15
16
  onnx_diagnostic/helpers/doc_helper.py,sha256=pl5MZd3_FaE8BqQnqoBuSBxoNCFcd2OJd3eITUSku5c,5897
16
17
  onnx_diagnostic/helpers/graph_helper.py,sha256=hevQT5a7_QuriVPQcbT5qe18n99Doyl5h3-qshx1-uk,14093
17
18
  onnx_diagnostic/helpers/helper.py,sha256=_6K0IvfK7ymBE8uWFAOA1ksU_fMvl2BRtlxj5SA9R2I,58203
18
- onnx_diagnostic/helpers/log_helper.py,sha256=5XsNfnaFaxiLJpkm5tIe4P_Cq0ZdeoZw2hNZXzKX4Ko,22868
19
+ onnx_diagnostic/helpers/log_helper.py,sha256=e89MI_i6PFBshm1cOOX5yCowEPIKzneMyCrpc34vpU0,77613
19
20
  onnx_diagnostic/helpers/memory_peak.py,sha256=OT6mz0muBbBZY0pjgW2_eCk_lOtFRo-5w4jFo2Z6Kok,6380
20
21
  onnx_diagnostic/helpers/mini_onnx_builder.py,sha256=p0Xh2Br38xAqUjB2214GiNOIbCgiVZKeyVEnjdyqyFI,21091
21
22
  onnx_diagnostic/helpers/model_builder_helper.py,sha256=RvDyPFqRboEU3HsQV_xi9oy-o3_4KuGFVzs5MhksduY,12552
22
23
  onnx_diagnostic/helpers/onnx_helper.py,sha256=pXXQjfyNTSUF-Kt72U4fnBDkYAnWYMxdSw8m0qk3xmE,39670
23
24
  onnx_diagnostic/helpers/ort_session.py,sha256=UgUUeUslDxEFBc6w6f3HMq_a7bn4TBlItmojqWquSj4,29281
24
25
  onnx_diagnostic/helpers/rt_helper.py,sha256=BXU_u1syk2RyM0HTFHKEiO6rHHhZW2UFPyUTVdeq8BU,4251
25
- onnx_diagnostic/helpers/torch_helper.py,sha256=L7qv14q4r1LcDKpEVobhySK6VE_X3h88Acvr6Kt4qEk,32244
26
+ onnx_diagnostic/helpers/torch_helper.py,sha256=MJpoiKZoKzp_ed5LK_2ssIMPo0eohn9WrVAcgPvT2Gk,32362
26
27
  onnx_diagnostic/reference/__init__.py,sha256=rLZsxOlnb7-81F2CzepGnZLejaROg4JvgFaGR9FwVQA,208
27
28
  onnx_diagnostic/reference/evaluator.py,sha256=RzNzjFDeMe-4X51Tb22N6aagazY5ktNq-mRmPcfY5EU,8848
28
29
  onnx_diagnostic/reference/ort_evaluator.py,sha256=1O7dHj8Aspolidg6rB2Nm7hT3HaGb4TxAgjCCD0XVcQ,26159
@@ -70,23 +71,24 @@ onnx_diagnostic/reference/torch_ops/reduce_ops.py,sha256=9gFfraPTQbe_ZEUNCUis1JS
70
71
  onnx_diagnostic/reference/torch_ops/sequence_ops.py,sha256=3EiVKpGfN4d1Iry4hgnr3MIJyEEKUrAIDgmRGsUXXa0,2297
71
72
  onnx_diagnostic/reference/torch_ops/shape_ops.py,sha256=pJrNR2UB4PlWl6cv4EDl1uGl8YTBUUMQkhJcsh5K4sA,4291
72
73
  onnx_diagnostic/reference/torch_ops/unary_ops.py,sha256=E8Ys1eZsOTsucBKoXb1_Kl5LbBDygniDvW2BvN4IPMo,1708
73
- onnx_diagnostic/tasks/__init__.py,sha256=5XXM-rv-Hk2gSHvqsww9DzVd9mcRifacgcPgvPCjnDM,2412
74
+ onnx_diagnostic/tasks/__init__.py,sha256=0BYtrAnr0zKN3om71oi-OVz5wFYDp9WWIk51qWjjyCw,2450
74
75
  onnx_diagnostic/tasks/automatic_speech_recognition.py,sha256=7OspFypNHLSL6huvP9ms_euhHqYXyTZjAJ8Z7EXGimk,6967
75
76
  onnx_diagnostic/tasks/feature_extraction.py,sha256=CbxbGsv3JvEQ2J9tO2DOpMHcJj5ZlCwY81ZB3hPB4D4,2339
76
77
  onnx_diagnostic/tasks/fill_mask.py,sha256=ZWz8swzEeRbkmbY9oZ4CM1LYCWWUxnS5CqrKmUVw-u0,2457
77
78
  onnx_diagnostic/tasks/image_classification.py,sha256=UjUAFYnwXIdPMXJdHR5MDzpsfMeIvyuKR4RqJVpGV_Q,4449
78
- onnx_diagnostic/tasks/image_text_to_text.py,sha256=WE9o3DAxY9AndsFAp-g952gHFnzwqucSl8d70eD-X8Q,6153
79
+ onnx_diagnostic/tasks/image_text_to_text.py,sha256=LmpMdH6oF_EN3WIACzSip4fPZOjZWFOoXg4k8qAio6Q,7639
79
80
  onnx_diagnostic/tasks/mixture_of_expert.py,sha256=C0ugEc8OWmVyEZpsh8MJq_te1zgOHhpITtnSmGC16Ls,2801
80
81
  onnx_diagnostic/tasks/object_detection.py,sha256=1lF5e2f2Coz1urSptEKgvUGCOSFBf0Anuq_QYOC00dA,4046
81
82
  onnx_diagnostic/tasks/sentence_similarity.py,sha256=3MvNxjC1iEMtQL_jH1c8bmrVc5IG1lfUygrCZ0SORJk,2472
82
83
  onnx_diagnostic/tasks/summarization.py,sha256=NLwqhpiQrU8UWd3u30VsNA3FsL315S3nlQ7ycUzJueo,8105
83
84
  onnx_diagnostic/tasks/text2text_generation.py,sha256=mYvsq-O69fr5pitX0mWugT76QuK4xUs40Vsz9ru_XK8,8522
84
85
  onnx_diagnostic/tasks/text_classification.py,sha256=NCCKobBQyCc7dSVj7_5N6S_RuvBlRMAdWkS2rVvrzck,2528
85
- onnx_diagnostic/tasks/text_generation.py,sha256=PDh870BB-llzlu8h_aZX4Z-9QLzcGmDwX5aKJPy_K90,12504
86
+ onnx_diagnostic/tasks/text_generation.py,sha256=fraa5w2_eexXLAcDAR1e4g9zWKdvWybMYi1zu7XU7J4,12988
87
+ onnx_diagnostic/tasks/text_to_image.py,sha256=6z-rFG6MX9aBi8YoYtYI_8OV3M3Tfoi45V8S9csQ7k4,2799
86
88
  onnx_diagnostic/tasks/zero_shot_image_classification.py,sha256=GKaXm8g7cK23h3wJEUc6Q-6mpmLAzQ4YkJbd-eGP7Y4,4496
87
89
  onnx_diagnostic/torch_export_patches/__init__.py,sha256=0SaZedwznm1hQUCvXZsGZORV5vby954wEExr5faepGg,720
88
- onnx_diagnostic/torch_export_patches/onnx_export_errors.py,sha256=op8jgnTa_1T_bGN172A6YFTtkQv_ALMNu1oukrsFt9U,20634
89
- onnx_diagnostic/torch_export_patches/onnx_export_serialization.py,sha256=qoLp8ywtIg4AXqd9zdLPtc0WlBNep-n0oGMVmyBub4U,17098
90
+ onnx_diagnostic/torch_export_patches/onnx_export_errors.py,sha256=h_txSp30QmF1R_Q2wL4qpPqY59Dund2P9nAAsvucS8A,21245
91
+ onnx_diagnostic/torch_export_patches/onnx_export_serialization.py,sha256=4fXsuQjJq_Ko_EehiVZYypdWTBgFgaaK8ryhAFaR0yo,10561
90
92
  onnx_diagnostic/torch_export_patches/patch_expressions.py,sha256=vr4tt61cbDnaaaduzMj4UBZ8OUtr6GfDpIWwOYqjWzs,3213
91
93
  onnx_diagnostic/torch_export_patches/patch_inputs.py,sha256=9b4pmyT00BwLqi7WG-gliep1RUy3gXEgW6BDnlSSA-M,7689
92
94
  onnx_diagnostic/torch_export_patches/patch_module.py,sha256=R2d9IHM-RwsBKDsxuBIJnEqMoxbS9gd4YWFGG2wwV5A,39881
@@ -95,23 +97,26 @@ onnx_diagnostic/torch_export_patches/eval/__init__.py,sha256=VtkQB1o3Q2Fh99OOF6v
95
97
  onnx_diagnostic/torch_export_patches/eval/model_cases.py,sha256=DTvdHPtNQh25Akv5o3D4Jxf1L1-SJ7w14tgvj8AAns8,26577
96
98
  onnx_diagnostic/torch_export_patches/patches/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
97
99
  onnx_diagnostic/torch_export_patches/patches/patch_torch.py,sha256=KaZ8TjDa9ATgT4HllYzzoNf_51q_yOj_GuF5NYjPCrU,18913
98
- onnx_diagnostic/torch_export_patches/patches/patch_transformers.py,sha256=GwcPUaSm-Zys2pWHac8Wcvpmy2h4oiFQDmx_D3GZNBA,41007
100
+ onnx_diagnostic/torch_export_patches/patches/patch_transformers.py,sha256=XyLqG4w4ALCVF8Dc8_Meu903saFYGBEBG0utziw9i3Q,44014
101
+ onnx_diagnostic/torch_export_patches/serialization/__init__.py,sha256=BHLdRPtNAtNPAS-bPKEj3-foGSPvwAbZXrHzGGPDLEw,1876
102
+ onnx_diagnostic/torch_export_patches/serialization/diffusers_impl.py,sha256=drq3EH_yjcSuIWYsVeUWm8Cx6YCZFU6bP_1PLtPfY5I,945
103
+ onnx_diagnostic/torch_export_patches/serialization/transformers_impl.py,sha256=9u2jkqnuyBkIF3R2sDEO0Jlkedl-cQhBNXxXXDLSEwE,8885
99
104
  onnx_diagnostic/torch_models/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
100
105
  onnx_diagnostic/torch_models/llms.py,sha256=soyg4yC87ptGoeulJhKqw5opGmuLvH1pn_ZDXZ4Jr8E,90
101
- onnx_diagnostic/torch_models/validate.py,sha256=9UyhUSVvTsxWMaq1jZUVF-giw9tG49Op4Mi63T7ViyM,61868
106
+ onnx_diagnostic/torch_models/validate.py,sha256=uUWkrCNE766c6BYKe-g5jQW3w89cvb7F-xnIkKsZKSw,63254
102
107
  onnx_diagnostic/torch_models/hghub/__init__.py,sha256=vi1Q7YHdddj1soiBN42MSvJdFqe2_KUoWafHISjwOu8,58
103
- onnx_diagnostic/torch_models/hghub/hub_api.py,sha256=WvrnDPA80kxyG9fizK-ood3DtxQwD-GZOPqGBTmd1fM,10604
104
- onnx_diagnostic/torch_models/hghub/hub_data.py,sha256=885wKyZkdM-Qp5Sg6C9Ol1dxigmA8FYAko-Ys08sppo,8096
105
- onnx_diagnostic/torch_models/hghub/hub_data_cached_configs.py,sha256=dE8tHksGOsTk77jpa7mldLYzaQ5joKxDxDB0ZnwQBV4,267246
106
- onnx_diagnostic/torch_models/hghub/model_inputs.py,sha256=D4iThSb3Pj89qQFXLCldhDilHAt1F1e8OS5IIfdygYQ,7966
108
+ onnx_diagnostic/torch_models/hghub/hub_api.py,sha256=Bvr-sTAhS6s6UCkt-KsY_7Mdai08-AQzvHrzbYCSuvk,13186
109
+ onnx_diagnostic/torch_models/hghub/hub_data.py,sha256=NTTDsCtIVvYnr5J3rlcq0GSGDOzOPzq9Tsnb3oVf4q8,8309
110
+ onnx_diagnostic/torch_models/hghub/hub_data_cached_configs.py,sha256=zZvIxTbmL55x44kCj3-T5Kg3Qzm9KB_Xj-MCcU9-LuQ,268245
111
+ onnx_diagnostic/torch_models/hghub/model_inputs.py,sha256=tuTGfcFKK3ugA9Fh909THHWkrNyXkU5IhV6RumlNUiQ,10830
107
112
  onnx_diagnostic/torch_models/untrained/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
108
113
  onnx_diagnostic/torch_models/untrained/llm_phi2.py,sha256=ynBTDHJHCk44NjLT_t6OiFDBdPP0rFGPteiONDxvztw,3708
109
114
  onnx_diagnostic/torch_models/untrained/llm_tiny_llm.py,sha256=QXw_Bs2SzfeiQMf-tmtVl83SmVOL4-Um7Qy-f0E48QI,2507
110
115
  onnx_diagnostic/torch_onnx/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
111
116
  onnx_diagnostic/torch_onnx/runtime_info.py,sha256=1g9F_Jf9AAgYQU4stbsrFXwQl-30mWlQrFbQ7val8Ps,9268
112
117
  onnx_diagnostic/torch_onnx/sbs.py,sha256=1EL25DeYFzlBSiFG_XjePBLvsiItRXbdDrr5-QZW2mA,16878
113
- onnx_diagnostic-0.7.0.dist-info/licenses/LICENSE.txt,sha256=Vv6TXglX6Rc0d-f8aREhayhT-6PMQXEyOmI2NKlUCMc,1045
114
- onnx_diagnostic-0.7.0.dist-info/METADATA,sha256=6UcN7eUU5naeV1gEkhd6SmfC9JJ7ehNE8ugoAYaqmA4,6631
115
- onnx_diagnostic-0.7.0.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
116
- onnx_diagnostic-0.7.0.dist-info/top_level.txt,sha256=KwNkXewmcobM3ZT1DJLVWH6ebJzA5qKg7cWqKfpGNT4,16
117
- onnx_diagnostic-0.7.0.dist-info/RECORD,,
118
+ onnx_diagnostic-0.7.2.dist-info/licenses/LICENSE.txt,sha256=Vv6TXglX6Rc0d-f8aREhayhT-6PMQXEyOmI2NKlUCMc,1045
119
+ onnx_diagnostic-0.7.2.dist-info/METADATA,sha256=2jkNpfMIypu51qway6NIH1olWbeF_soM-e8rbwc3jVc,6631
120
+ onnx_diagnostic-0.7.2.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
121
+ onnx_diagnostic-0.7.2.dist-info/top_level.txt,sha256=KwNkXewmcobM3ZT1DJLVWH6ebJzA5qKg7cWqKfpGNT4,16
122
+ onnx_diagnostic-0.7.2.dist-info/RECORD,,