onnx-diagnostic 0.6.3__py3-none-any.whl → 0.7.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- onnx_diagnostic/__init__.py +1 -1
- onnx_diagnostic/_command_lines_parser.py +281 -80
- onnx_diagnostic/doc.py +22 -0
- onnx_diagnostic/export/dynamic_shapes.py +48 -20
- onnx_diagnostic/export/shape_helper.py +126 -0
- onnx_diagnostic/ext_test_case.py +1 -1
- onnx_diagnostic/helpers/cache_helper.py +78 -8
- onnx_diagnostic/helpers/config_helper.py +8 -4
- onnx_diagnostic/helpers/helper.py +30 -3
- onnx_diagnostic/helpers/log_helper.py +1744 -0
- onnx_diagnostic/helpers/mini_onnx_builder.py +4 -1
- onnx_diagnostic/helpers/model_builder_helper.py +54 -73
- onnx_diagnostic/helpers/torch_helper.py +18 -2
- onnx_diagnostic/reference/__init__.py +1 -0
- onnx_diagnostic/reference/ort_evaluator.py +29 -4
- onnx_diagnostic/reference/report_results_comparison.py +95 -0
- onnx_diagnostic/reference/torch_evaluator.py +21 -0
- onnx_diagnostic/tasks/automatic_speech_recognition.py +3 -0
- onnx_diagnostic/tasks/feature_extraction.py +3 -0
- onnx_diagnostic/tasks/fill_mask.py +3 -0
- onnx_diagnostic/tasks/image_classification.py +7 -1
- onnx_diagnostic/tasks/image_text_to_text.py +72 -18
- onnx_diagnostic/tasks/mixture_of_expert.py +3 -0
- onnx_diagnostic/tasks/object_detection.py +3 -0
- onnx_diagnostic/tasks/sentence_similarity.py +3 -0
- onnx_diagnostic/tasks/summarization.py +3 -0
- onnx_diagnostic/tasks/text2text_generation.py +3 -0
- onnx_diagnostic/tasks/text_classification.py +3 -0
- onnx_diagnostic/tasks/text_generation.py +90 -43
- onnx_diagnostic/tasks/zero_shot_image_classification.py +3 -0
- onnx_diagnostic/torch_export_patches/onnx_export_errors.py +78 -25
- onnx_diagnostic/torch_export_patches/onnx_export_serialization.py +37 -0
- onnx_diagnostic/torch_export_patches/patches/patch_transformers.py +365 -17
- onnx_diagnostic/torch_models/hghub/hub_api.py +81 -8
- onnx_diagnostic/torch_models/hghub/hub_data.py +6 -2
- onnx_diagnostic/torch_models/hghub/hub_data_cached_configs.py +209 -0
- onnx_diagnostic/torch_models/hghub/model_inputs.py +58 -14
- onnx_diagnostic/torch_models/untrained/llm_tiny_llm.py +23 -50
- onnx_diagnostic/torch_models/{test_helper.py → validate.py} +166 -106
- {onnx_diagnostic-0.6.3.dist-info → onnx_diagnostic-0.7.1.dist-info}/METADATA +2 -2
- {onnx_diagnostic-0.6.3.dist-info → onnx_diagnostic-0.7.1.dist-info}/RECORD +44 -41
- {onnx_diagnostic-0.6.3.dist-info → onnx_diagnostic-0.7.1.dist-info}/WHEEL +0 -0
- {onnx_diagnostic-0.6.3.dist-info → onnx_diagnostic-0.7.1.dist-info}/licenses/LICENSE.txt +0 -0
- {onnx_diagnostic-0.6.3.dist-info → onnx_diagnostic-0.7.1.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,1744 @@
|
|
|
1
|
+
import datetime
|
|
2
|
+
import enum
|
|
3
|
+
import glob
|
|
4
|
+
import io
|
|
5
|
+
import os
|
|
6
|
+
import pprint
|
|
7
|
+
import re
|
|
8
|
+
import warnings
|
|
9
|
+
import zipfile
|
|
10
|
+
from typing import Any, Callable, Dict, Iterator, List, Optional, Sequence, Tuple, Union
|
|
11
|
+
import numpy as np
|
|
12
|
+
import pandas
|
|
13
|
+
from pandas.api.types import is_numeric_dtype, is_datetime64_any_dtype
|
|
14
|
+
from .helper import string_sig
|
|
15
|
+
|
|
16
|
+
BUCKET_SCALES_VALUES = np.array(
|
|
17
|
+
[-np.inf, -20, -10, -5, -2, 0, 2, 5, 10, 20, 100, 200, 300, 400, np.inf], dtype=float
|
|
18
|
+
)
|
|
19
|
+
|
|
20
|
+
|
|
21
|
+
BUCKET_SCALES = BUCKET_SCALES_VALUES / 100 + 1
|
|
22
|
+
|
|
23
|
+
|
|
24
|
+
def enumerate_csv_files(
|
|
25
|
+
data: Union[
|
|
26
|
+
pandas.DataFrame, List[Union[str, Tuple[str, str]]], str, Tuple[str, str, str, str]
|
|
27
|
+
],
|
|
28
|
+
verbose: int = 0,
|
|
29
|
+
filtering: Optional[Callable[[str], bool]] = None,
|
|
30
|
+
) -> Iterator[Union[pandas.DataFrame, str, Tuple[str, str, str, str]]]:
|
|
31
|
+
"""
|
|
32
|
+
Enumerates files considered for the aggregation.
|
|
33
|
+
Only csv files are considered.
|
|
34
|
+
If a zip file is given, the function digs into the zip files and
|
|
35
|
+
loops over csv candidates.
|
|
36
|
+
|
|
37
|
+
:param data: dataframe with the raw data or a file or list of files
|
|
38
|
+
:param vrbose: verbosity
|
|
39
|
+
:param filtering: function to filter in or out files in zip files,
|
|
40
|
+
must return true to keep the file, false to skip it.
|
|
41
|
+
:return: a generator yielding tuples with the filename, date, full path and zip file
|
|
42
|
+
|
|
43
|
+
data can contains:
|
|
44
|
+
* a dataframe
|
|
45
|
+
* a string for a filename, zip or csv
|
|
46
|
+
* a list of string
|
|
47
|
+
* a tuple
|
|
48
|
+
"""
|
|
49
|
+
if not isinstance(data, list):
|
|
50
|
+
data = [data]
|
|
51
|
+
for itn, filename in enumerate(data):
|
|
52
|
+
if isinstance(filename, pandas.DataFrame):
|
|
53
|
+
if verbose:
|
|
54
|
+
print(f"[enumerate_csv_files] data[{itn}] is a dataframe")
|
|
55
|
+
yield filename
|
|
56
|
+
continue
|
|
57
|
+
|
|
58
|
+
if isinstance(filename, tuple):
|
|
59
|
+
# A file in a zipfile
|
|
60
|
+
if verbose:
|
|
61
|
+
print(f"[enumerate_csv_files] data[{itn}] is {filename!r}")
|
|
62
|
+
yield filename
|
|
63
|
+
continue
|
|
64
|
+
|
|
65
|
+
if os.path.exists(filename):
|
|
66
|
+
ext = os.path.splitext(filename)[-1]
|
|
67
|
+
if ext == ".csv":
|
|
68
|
+
# We check the first line is ok.
|
|
69
|
+
if verbose:
|
|
70
|
+
print(f"[enumerate_csv_files] data[{itn}] is a csv file: {filename!r}]")
|
|
71
|
+
dt = datetime.datetime.fromtimestamp(os.stat(filename).st_mtime)
|
|
72
|
+
du = dt.strftime("%Y-%m-%d %H:%M:%S")
|
|
73
|
+
yield (os.path.split(filename)[-1], du, filename, "")
|
|
74
|
+
continue
|
|
75
|
+
|
|
76
|
+
if ext == ".zip":
|
|
77
|
+
if verbose:
|
|
78
|
+
print(f"[enumerate_csv_files] data[{itn}] is a zip file: {filename!r}]")
|
|
79
|
+
zf = zipfile.ZipFile(filename, "r")
|
|
80
|
+
for ii, info in enumerate(zf.infolist()):
|
|
81
|
+
name = info.filename
|
|
82
|
+
if filtering is None:
|
|
83
|
+
ext = os.path.splitext(name)[-1]
|
|
84
|
+
if ext != ".csv":
|
|
85
|
+
continue
|
|
86
|
+
elif not filtering(name):
|
|
87
|
+
continue
|
|
88
|
+
if verbose:
|
|
89
|
+
print(
|
|
90
|
+
f"[enumerate_csv_files] data[{itn}][{ii}] is a csv file: {name!r}]"
|
|
91
|
+
)
|
|
92
|
+
with zf.open(name) as zzf:
|
|
93
|
+
first_line = zzf.readline()
|
|
94
|
+
if b"," not in first_line:
|
|
95
|
+
continue
|
|
96
|
+
yield (
|
|
97
|
+
os.path.split(name)[-1],
|
|
98
|
+
"%04d-%02d-%02d %02d:%02d:%02d" % info.date_time,
|
|
99
|
+
name,
|
|
100
|
+
filename,
|
|
101
|
+
)
|
|
102
|
+
zf.close()
|
|
103
|
+
continue
|
|
104
|
+
|
|
105
|
+
raise AssertionError(f"Unexpected format {filename!r}, cannot read it.")
|
|
106
|
+
|
|
107
|
+
# filename is a pattern.
|
|
108
|
+
found = glob.glob(filename)
|
|
109
|
+
if verbose and not found:
|
|
110
|
+
print(f"[enumerate_csv_files] unable to find file in {filename!r}")
|
|
111
|
+
for ii, f in enumerate(found):
|
|
112
|
+
if verbose:
|
|
113
|
+
print(f"[enumerate_csv_files] data[{itn}][{ii}] {f!r} from {filename!r}")
|
|
114
|
+
yield from enumerate_csv_files(f, verbose=verbose, filtering=filtering)
|
|
115
|
+
|
|
116
|
+
|
|
117
|
+
def open_dataframe(
|
|
118
|
+
data: Union[str, Tuple[str, str, str, str], pandas.DataFrame],
|
|
119
|
+
) -> pandas.DataFrame:
|
|
120
|
+
"""
|
|
121
|
+
Opens a filename.
|
|
122
|
+
|
|
123
|
+
:param data: a dataframe, a filename, a tuple indicating the file is coming
|
|
124
|
+
from a zip file
|
|
125
|
+
:return: a dataframe
|
|
126
|
+
"""
|
|
127
|
+
if isinstance(data, pandas.DataFrame):
|
|
128
|
+
return data
|
|
129
|
+
if isinstance(data, str):
|
|
130
|
+
df = pandas.read_csv(data)
|
|
131
|
+
df["RAWFILENAME"] = data
|
|
132
|
+
return df
|
|
133
|
+
if isinstance(data, tuple):
|
|
134
|
+
if not data[-1]:
|
|
135
|
+
df = pandas.read_csv(data[2])
|
|
136
|
+
df["RAWFILENAME"] = data[2]
|
|
137
|
+
return df
|
|
138
|
+
zf = zipfile.ZipFile(data[-1])
|
|
139
|
+
with zf.open(data[2]) as f:
|
|
140
|
+
df = pandas.read_csv(f)
|
|
141
|
+
df["RAWFILENAME"] = f"{data[-1]}/{data[2]}"
|
|
142
|
+
zf.close()
|
|
143
|
+
return df
|
|
144
|
+
|
|
145
|
+
raise ValueError(f"Unexpected value for data: {data!r}")
|
|
146
|
+
|
|
147
|
+
|
|
148
|
+
class CubeViewDef:
|
|
149
|
+
"""
|
|
150
|
+
Defines how to compute a view.
|
|
151
|
+
|
|
152
|
+
:param key_index: keys to put in the row index
|
|
153
|
+
:param values: values to show
|
|
154
|
+
:param ignore_unique: ignore keys with a unique value
|
|
155
|
+
:param order: to reorder key in columns index
|
|
156
|
+
:param key_agg: aggregate according to these columns before
|
|
157
|
+
creating the view
|
|
158
|
+
:param agg_args: see :meth:`pandas.core.groupby.DataFrameGroupBy.agg`,
|
|
159
|
+
it can be also a callable to return a different aggregation
|
|
160
|
+
method depending on the column name
|
|
161
|
+
:param agg_kwargs: see :meth:`pandas.core.groupby.DataFrameGroupBy.agg`
|
|
162
|
+
:param agg_multi: aggregation over multiple columns
|
|
163
|
+
:param ignore_columns: ignore the following columns if known to overload the view
|
|
164
|
+
:param keep_columns_in_index: keeps the columns even if there is only one unique value
|
|
165
|
+
:param dropna: drops rows with nan if not relevant
|
|
166
|
+
:param transpose: transpose
|
|
167
|
+
:param f_highlight: to highlights some values
|
|
168
|
+
:param name: name of the view, used mostly to debug
|
|
169
|
+
:param plots: adds plot to the Excel sheet
|
|
170
|
+
:param no_index: remove the index (but keeps the columns)
|
|
171
|
+
"""
|
|
172
|
+
|
|
173
|
+
class HighLightKind(enum.IntEnum):
|
|
174
|
+
NONE = 0
|
|
175
|
+
RED = 1
|
|
176
|
+
GREEN = 2
|
|
177
|
+
|
|
178
|
+
def __init__(
|
|
179
|
+
self,
|
|
180
|
+
key_index: Sequence[str],
|
|
181
|
+
values: Sequence[str],
|
|
182
|
+
ignore_unique: bool = True,
|
|
183
|
+
order: Optional[Sequence[str]] = None,
|
|
184
|
+
key_agg: Optional[Sequence[str]] = None,
|
|
185
|
+
agg_args: Union[Sequence[Any], Callable[[str], Any]] = ("sum",),
|
|
186
|
+
agg_kwargs: Optional[Dict[str, Any]] = None,
|
|
187
|
+
agg_multi: Optional[
|
|
188
|
+
Dict[str, Callable[[pandas.core.groupby.DataFrameGroupBy], pandas.Series]]
|
|
189
|
+
] = None,
|
|
190
|
+
ignore_columns: Optional[Sequence[str]] = None,
|
|
191
|
+
keep_columns_in_index: Optional[Sequence[str]] = None,
|
|
192
|
+
dropna: bool = True,
|
|
193
|
+
transpose: bool = False,
|
|
194
|
+
f_highlight: Optional[Callable[[Any], "CubeViewDef.HighLightKind"]] = None,
|
|
195
|
+
name: Optional[str] = None,
|
|
196
|
+
no_index: bool = False,
|
|
197
|
+
plots: bool = False,
|
|
198
|
+
):
|
|
199
|
+
self.key_index = key_index
|
|
200
|
+
self.values = values
|
|
201
|
+
self.ignore_unique = ignore_unique
|
|
202
|
+
self.order = order
|
|
203
|
+
self.key_agg = key_agg
|
|
204
|
+
self.agg_args = agg_args
|
|
205
|
+
self.agg_kwargs = agg_kwargs
|
|
206
|
+
self.agg_multi = agg_multi
|
|
207
|
+
self.dropna = dropna
|
|
208
|
+
self.ignore_columns = ignore_columns
|
|
209
|
+
self.keep_columns_in_index = keep_columns_in_index
|
|
210
|
+
self.f_highlight = f_highlight
|
|
211
|
+
self.transpose = transpose
|
|
212
|
+
self.name = name
|
|
213
|
+
self.no_index = no_index
|
|
214
|
+
self.plots = plots
|
|
215
|
+
|
|
216
|
+
def __repr__(self) -> str:
|
|
217
|
+
"usual"
|
|
218
|
+
return string_sig(self) # type: ignore[arg-type]
|
|
219
|
+
|
|
220
|
+
|
|
221
|
+
def apply_excel_style(
|
|
222
|
+
filename_or_writer: Any,
|
|
223
|
+
f_highlights: Optional[Dict[str, Callable[[Any], CubeViewDef.HighLightKind]]] = None,
|
|
224
|
+
):
|
|
225
|
+
"""
|
|
226
|
+
Applies styles on all sheets in a file unless the sheet is too big.
|
|
227
|
+
|
|
228
|
+
:param filename_or_writer: filename, modified inplace
|
|
229
|
+
:param f_highlight: color function to apply, one per sheet
|
|
230
|
+
"""
|
|
231
|
+
from openpyxl import load_workbook
|
|
232
|
+
from openpyxl.styles import Alignment
|
|
233
|
+
from openpyxl.utils import get_column_letter
|
|
234
|
+
from openpyxl.styles import Font # , PatternFill, numbers
|
|
235
|
+
|
|
236
|
+
if isinstance(filename_or_writer, str):
|
|
237
|
+
workbook = load_workbook(filename_or_writer)
|
|
238
|
+
save = True
|
|
239
|
+
else:
|
|
240
|
+
workbook = filename_or_writer.book
|
|
241
|
+
save = False
|
|
242
|
+
|
|
243
|
+
left = Alignment(horizontal="left")
|
|
244
|
+
left_shrink = Alignment(horizontal="left", shrink_to_fit=True)
|
|
245
|
+
right = Alignment(horizontal="right")
|
|
246
|
+
font_colors = {
|
|
247
|
+
CubeViewDef.HighLightKind.GREEN: Font(color="00AA00"),
|
|
248
|
+
CubeViewDef.HighLightKind.RED: Font(color="FF0000"),
|
|
249
|
+
}
|
|
250
|
+
|
|
251
|
+
for name in workbook.sheetnames:
|
|
252
|
+
f_highlight = f_highlights.get(name, None) if f_highlights else None
|
|
253
|
+
sheet = workbook[name]
|
|
254
|
+
n_rows = sheet.max_row
|
|
255
|
+
n_cols = sheet.max_column
|
|
256
|
+
if n_rows * n_cols > 2**18:
|
|
257
|
+
# Too big.
|
|
258
|
+
continue
|
|
259
|
+
co: Dict[int, int] = {}
|
|
260
|
+
sizes: Dict[int, int] = {}
|
|
261
|
+
cols = set()
|
|
262
|
+
for i in range(1, n_rows):
|
|
263
|
+
for j, cell in enumerate(sheet[i]):
|
|
264
|
+
if j > n_cols:
|
|
265
|
+
break
|
|
266
|
+
cols.add(cell.column)
|
|
267
|
+
if isinstance(cell.value, float):
|
|
268
|
+
co[j] = co.get(j, 0) + 1
|
|
269
|
+
elif isinstance(cell.value, str):
|
|
270
|
+
sizes[cell.column] = max(sizes.get(cell.column, 0), len(cell.value))
|
|
271
|
+
|
|
272
|
+
for k, v in sizes.items():
|
|
273
|
+
c = get_column_letter(k)
|
|
274
|
+
sheet.column_dimensions[c].width = min(max(8, v), 30)
|
|
275
|
+
for k in cols:
|
|
276
|
+
if k not in sizes:
|
|
277
|
+
c = get_column_letter(k)
|
|
278
|
+
sheet.column_dimensions[c].width = 15
|
|
279
|
+
|
|
280
|
+
for i in range(1, n_rows):
|
|
281
|
+
for j, cell in enumerate(sheet[i]):
|
|
282
|
+
if j > n_cols:
|
|
283
|
+
break
|
|
284
|
+
if isinstance(cell.value, pandas.Timestamp):
|
|
285
|
+
cell.alignment = right
|
|
286
|
+
dt = cell.value.to_pydatetime()
|
|
287
|
+
cell.value = dt
|
|
288
|
+
cell.number_format = (
|
|
289
|
+
"YYYY-MM-DD"
|
|
290
|
+
if (
|
|
291
|
+
dt.hour == 0
|
|
292
|
+
and dt.minute == 0
|
|
293
|
+
and dt.second == 0
|
|
294
|
+
and dt.microsecond == 0
|
|
295
|
+
)
|
|
296
|
+
else "YYYY-MM-DD 00:00:00"
|
|
297
|
+
)
|
|
298
|
+
elif isinstance(cell.value, (float, int)):
|
|
299
|
+
cell.alignment = right
|
|
300
|
+
x = abs(cell.value)
|
|
301
|
+
if int(x) == x:
|
|
302
|
+
cell.number_format = "0"
|
|
303
|
+
elif x > 5000:
|
|
304
|
+
cell.number_format = "# ##0"
|
|
305
|
+
elif x >= 500:
|
|
306
|
+
cell.number_format = "0.0"
|
|
307
|
+
elif x >= 50:
|
|
308
|
+
cell.number_format = "0.00"
|
|
309
|
+
elif x >= 5:
|
|
310
|
+
cell.number_format = "0.000"
|
|
311
|
+
elif x > 0.5:
|
|
312
|
+
cell.number_format = "0.0000"
|
|
313
|
+
elif x > 0.005:
|
|
314
|
+
cell.number_format = "0.00000"
|
|
315
|
+
else:
|
|
316
|
+
cell.number_format = "0.000E+00"
|
|
317
|
+
if f_highlight:
|
|
318
|
+
h = f_highlight(cell.value)
|
|
319
|
+
if h in font_colors:
|
|
320
|
+
cell.font = font_colors[h]
|
|
321
|
+
elif isinstance(cell.value, str) and len(cell.value) > 70:
|
|
322
|
+
cell.alignment = left_shrink
|
|
323
|
+
else:
|
|
324
|
+
cell.alignment = left
|
|
325
|
+
if f_highlight:
|
|
326
|
+
h = f_highlight(cell.value)
|
|
327
|
+
if h in font_colors:
|
|
328
|
+
cell.font = font_colors[h]
|
|
329
|
+
if save:
|
|
330
|
+
workbook.save(filename_or_writer)
|
|
331
|
+
|
|
332
|
+
|
|
333
|
+
class CubePlot:
|
|
334
|
+
"""
|
|
335
|
+
Creates a plot.
|
|
336
|
+
"""
|
|
337
|
+
|
|
338
|
+
def __init__(
|
|
339
|
+
self, df: pandas.DataFrame, kind: str = "bar", orientation="col", split: bool = True
|
|
340
|
+
):
|
|
341
|
+
self.df = df.copy()
|
|
342
|
+
self.kind = kind
|
|
343
|
+
self.orientation = orientation
|
|
344
|
+
self.split = split
|
|
345
|
+
|
|
346
|
+
if isinstance(self.df.columns, pandas.MultiIndex):
|
|
347
|
+
self.df.columns = ["/".join(map(str, i)) for i in self.df.columns]
|
|
348
|
+
if isinstance(self.df.index, pandas.MultiIndex):
|
|
349
|
+
self.df.index = ["/".join(map(str, i)) for i in self.df.index]
|
|
350
|
+
|
|
351
|
+
def __repr__(self) -> str:
|
|
352
|
+
"usual"
|
|
353
|
+
return string_sig(self) # type: ignore[arg-type]
|
|
354
|
+
|
|
355
|
+
def to_images(
|
|
356
|
+
self, verbose: int = 0, merge: bool = True, title_suffix: Optional[str] = None
|
|
357
|
+
):
|
|
358
|
+
"""
|
|
359
|
+
Converts data into plots and images.
|
|
360
|
+
"""
|
|
361
|
+
import matplotlib.pyplot as plt
|
|
362
|
+
|
|
363
|
+
df = self.df.T if self.orientation == "row" else self.df
|
|
364
|
+
imgs = []
|
|
365
|
+
if verbose:
|
|
366
|
+
from tqdm import tqdm
|
|
367
|
+
|
|
368
|
+
loop = tqdm(df.columns)
|
|
369
|
+
else:
|
|
370
|
+
loop = df.columns
|
|
371
|
+
title_suffix = f"\n{title_suffix}" if title_suffix else ""
|
|
372
|
+
if merge:
|
|
373
|
+
nn = len(df.columns) // 2
|
|
374
|
+
nn += nn % 2
|
|
375
|
+
fig, axs = plt.subplots(nn, 2, figsize=(12, 3 * nn * df.shape[0] / 12))
|
|
376
|
+
pos = 0
|
|
377
|
+
for c in loop:
|
|
378
|
+
ax = axs[pos // 2, pos % 2]
|
|
379
|
+
df[c].plot.barh(title=f"{c}{title_suffix}", ax=ax)
|
|
380
|
+
ax.tick_params(axis="both", which="major", labelsize=8)
|
|
381
|
+
ax.grid(True)
|
|
382
|
+
pos += 1 # noqa: SIM113
|
|
383
|
+
fig.tight_layout()
|
|
384
|
+
imgdata = io.BytesIO()
|
|
385
|
+
fig.savefig(imgdata, format="png")
|
|
386
|
+
imgs.append(imgdata.getvalue())
|
|
387
|
+
plt.close()
|
|
388
|
+
else:
|
|
389
|
+
for c in loop:
|
|
390
|
+
fig, ax = plt.subplots(1, 1, figsize=(3, 3))
|
|
391
|
+
df[c].plot.barh(title=c, ax=ax)
|
|
392
|
+
ax.tick_params(axis="both", which="major", labelsize=8)
|
|
393
|
+
ax.grid(True)
|
|
394
|
+
fig.tight_layout()
|
|
395
|
+
imgdata = io.BytesIO()
|
|
396
|
+
fig.savefig(imgdata, format="png")
|
|
397
|
+
imgs.append(imgdata.getvalue())
|
|
398
|
+
plt.close()
|
|
399
|
+
return imgs
|
|
400
|
+
|
|
401
|
+
def to_charts(self, writer: pandas.ExcelWriter, sheet, empty_row: int = 1):
|
|
402
|
+
"""
|
|
403
|
+
Draws plots on a page.
|
|
404
|
+
The data is copied on this page.
|
|
405
|
+
|
|
406
|
+
:param name: sheet name
|
|
407
|
+
:param writer: writer (from pandas)
|
|
408
|
+
:param sheet_name: sheet
|
|
409
|
+
:param graph_index: graph index
|
|
410
|
+
:return: list of graph
|
|
411
|
+
"""
|
|
412
|
+
assert self.split, f"Not implemented if split={self.split}"
|
|
413
|
+
assert self.orientation == "row", f"Not implemented if orientation={self.orientation}"
|
|
414
|
+
workbook = writer.book
|
|
415
|
+
labels = list(self.df.columns)
|
|
416
|
+
sheet.write_row(empty_row, 0, labels)
|
|
417
|
+
|
|
418
|
+
charts = []
|
|
419
|
+
pos = empty_row + 1
|
|
420
|
+
for i in self.df.index:
|
|
421
|
+
values = self.df.loc[i, :].tolist()
|
|
422
|
+
values = [("" if isinstance(v, float) and np.isnan(v) else v) for v in values]
|
|
423
|
+
sheet.write_row(pos, 0, values)
|
|
424
|
+
chart = workbook.add_chart({"type": "bar"})
|
|
425
|
+
chart.add_series(
|
|
426
|
+
{
|
|
427
|
+
"name": i,
|
|
428
|
+
"categories": [i, 1, empty_row, len(labels), empty_row],
|
|
429
|
+
"values": [i, 1, pos, len(labels), pos],
|
|
430
|
+
}
|
|
431
|
+
)
|
|
432
|
+
chart.set_title({"name": i})
|
|
433
|
+
charts.append(chart)
|
|
434
|
+
pos += 1
|
|
435
|
+
return charts
|
|
436
|
+
|
|
437
|
+
|
|
438
|
+
class CubeLogs:
|
|
439
|
+
"""
|
|
440
|
+
Processes logs coming from experiments.
|
|
441
|
+
"""
|
|
442
|
+
|
|
443
|
+
def __init__(
|
|
444
|
+
self,
|
|
445
|
+
data: Any,
|
|
446
|
+
time: str = "date",
|
|
447
|
+
keys: Sequence[str] = ("version_.*", "model_.*"),
|
|
448
|
+
values: Sequence[str] = ("time_.*", "disc_.*"),
|
|
449
|
+
ignored: Sequence[str] = (),
|
|
450
|
+
recent: bool = False,
|
|
451
|
+
formulas: Optional[
|
|
452
|
+
Union[
|
|
453
|
+
Sequence[str],
|
|
454
|
+
Dict[str, Union[str, Callable[[pandas.DataFrame], pandas.Series]]],
|
|
455
|
+
]
|
|
456
|
+
] = None,
|
|
457
|
+
fill_missing: Optional[Sequence[Tuple[str, Any]]] = None,
|
|
458
|
+
keep_last_date: bool = False,
|
|
459
|
+
):
|
|
460
|
+
self._data = data
|
|
461
|
+
self._time = time
|
|
462
|
+
self._keys = keys
|
|
463
|
+
self._values = values
|
|
464
|
+
self._ignored = ignored
|
|
465
|
+
self.recent = recent
|
|
466
|
+
self._formulas = formulas
|
|
467
|
+
self.fill_missing = fill_missing
|
|
468
|
+
self.keep_last_date = keep_last_date
|
|
469
|
+
|
|
470
|
+
def post_load_process_piece(
|
|
471
|
+
self, df: pandas.DataFrame, unique: bool = False
|
|
472
|
+
) -> pandas.DataFrame:
|
|
473
|
+
"""
|
|
474
|
+
Postprocesses a piece when a cube is made of multiple pieces
|
|
475
|
+
before it gets merged.
|
|
476
|
+
"""
|
|
477
|
+
if not self.fill_missing:
|
|
478
|
+
return df
|
|
479
|
+
missing = dict(self.fill_missing)
|
|
480
|
+
for k, v in missing.items():
|
|
481
|
+
if k not in df.columns:
|
|
482
|
+
df[k] = v
|
|
483
|
+
return df
|
|
484
|
+
|
|
485
|
+
def load(self, verbose: int = 0):
|
|
486
|
+
"""Loads and preprocesses the data. Returns self."""
|
|
487
|
+
if isinstance(self._data, pandas.DataFrame):
|
|
488
|
+
if verbose:
|
|
489
|
+
print(f"[CubeLogs.load] load from dataframe, shape={self._data.shape}")
|
|
490
|
+
self.data = self.post_load_process_piece(self._data, unique=True)
|
|
491
|
+
if verbose:
|
|
492
|
+
print(f"[CubeLogs.load] after postprocessing shape={self.data.shape}")
|
|
493
|
+
elif isinstance(self._data, list) and all(isinstance(r, dict) for r in self._data):
|
|
494
|
+
if verbose:
|
|
495
|
+
print(f"[CubeLogs.load] load from list of dicts, n={len(self._data)}")
|
|
496
|
+
self.data = pandas.DataFrame(self.post_load_process_piece(self._data, unique=True))
|
|
497
|
+
if verbose:
|
|
498
|
+
print(f"[CubeLogs.load] after postprocessing shape={self.data.shape}")
|
|
499
|
+
elif isinstance(self._data, list) and all(
|
|
500
|
+
isinstance(r, pandas.DataFrame) for r in self._data
|
|
501
|
+
):
|
|
502
|
+
if verbose:
|
|
503
|
+
print(f"[CubeLogs.load] load from list of DataFrame, n={len(self._data)}")
|
|
504
|
+
self.data = pandas.concat(
|
|
505
|
+
[self.post_load_process_piece(c) for c in self._data], axis=0
|
|
506
|
+
)
|
|
507
|
+
if verbose:
|
|
508
|
+
print(f"[CubeLogs.load] after postprocessing shape={self.data.shape}")
|
|
509
|
+
elif isinstance(self._data, list):
|
|
510
|
+
if verbose:
|
|
511
|
+
print("[CubeLogs.load] load from list of Cubes")
|
|
512
|
+
cubes = []
|
|
513
|
+
for item in enumerate_csv_files(self._data, verbose=verbose):
|
|
514
|
+
df = open_dataframe(item)
|
|
515
|
+
cube = CubeLogs(
|
|
516
|
+
df,
|
|
517
|
+
time=self._time,
|
|
518
|
+
keys=self._keys,
|
|
519
|
+
values=self._values,
|
|
520
|
+
ignored=self._ignored,
|
|
521
|
+
recent=self.recent,
|
|
522
|
+
)
|
|
523
|
+
cube.load()
|
|
524
|
+
cubes.append(self.post_load_process_piece(cube.data))
|
|
525
|
+
self.data = pandas.concat(cubes, axis=0)
|
|
526
|
+
if verbose:
|
|
527
|
+
print(f"[CubeLogs.load] after postprocessing shape={self.data.shape}")
|
|
528
|
+
else:
|
|
529
|
+
raise NotImplementedError(
|
|
530
|
+
f"Not implemented with the provided data (type={type(self._data)})"
|
|
531
|
+
)
|
|
532
|
+
|
|
533
|
+
assert all(isinstance(c, str) for c in self.data.columns), (
|
|
534
|
+
f"The class only supports string as column names "
|
|
535
|
+
f"but found {[c for c in self.data.columns if not isinstance(c, str)]}"
|
|
536
|
+
)
|
|
537
|
+
if verbose:
|
|
538
|
+
print(f"[CubeLogs.load] loaded with shape={self.data.shape}")
|
|
539
|
+
|
|
540
|
+
self._initialize_columns()
|
|
541
|
+
if verbose:
|
|
542
|
+
print(f"[CubeLogs.load] time={self.time}")
|
|
543
|
+
print(f"[CubeLogs.load] keys={self.keys_no_time}")
|
|
544
|
+
print(f"[CubeLogs.load] values={self.values}")
|
|
545
|
+
print(f"[CubeLogs.load] ignored={self.ignored}")
|
|
546
|
+
print(f"[CubeLogs.load] ignored_values={self.ignored_values}")
|
|
547
|
+
print(f"[CubeLogs.load] ignored_keys={self.ignored_keys}")
|
|
548
|
+
assert self.keys_no_time, f"No keys found with {self._keys} from {self.data.columns}"
|
|
549
|
+
assert self.values, f"No values found with {self._values} from {self.data.columns}"
|
|
550
|
+
assert not (
|
|
551
|
+
set(self.keys_no_time) & set(self.values)
|
|
552
|
+
), f"Columns {set(self.keys_no_time) & set(self.values)} cannot be keys and values"
|
|
553
|
+
assert not (
|
|
554
|
+
set(self.keys_no_time) & set(self.ignored)
|
|
555
|
+
), f"Columns {set(self.keys_no_time) & set(self.ignored)} cannot be keys and ignored"
|
|
556
|
+
assert not (
|
|
557
|
+
set(self.values) & set(self.ignored)
|
|
558
|
+
), f"Columns {set(self.keys_no_time) & set(self.ignored)} cannot be values and ignored"
|
|
559
|
+
assert (
|
|
560
|
+
self.time not in self.keys_no_time
|
|
561
|
+
and self.time not in self.values
|
|
562
|
+
and self.time not in self.ignored
|
|
563
|
+
), (
|
|
564
|
+
f"Column {self.time!r} is also a key, a value or ignored, "
|
|
565
|
+
f"keys={sorted(self.keys_no_time)}, values={sorted(self.values)}, "
|
|
566
|
+
f"ignored={sorted(self.ignored)}"
|
|
567
|
+
)
|
|
568
|
+
self._columns = [self.time, *self.keys_no_time, *self.values, *self.ignored]
|
|
569
|
+
self.dropped = [c for c in self.data.columns if c not in set(self.columns)]
|
|
570
|
+
self.data = self.data[self.columns]
|
|
571
|
+
if verbose:
|
|
572
|
+
print(f"[CubeLogs.load] dropped={self.dropped}")
|
|
573
|
+
print(f"[CubeLogs.load] data.shape={self.data.shape}")
|
|
574
|
+
|
|
575
|
+
shape = self.data.shape
|
|
576
|
+
if verbose:
|
|
577
|
+
print(f"[CubeLogs.load] removed columns, shape={self.data.shape}")
|
|
578
|
+
self._preprocess()
|
|
579
|
+
if verbose:
|
|
580
|
+
print(f"[CubeLogs.load] preprocess, shape={self.data.shape}")
|
|
581
|
+
assert (
|
|
582
|
+
self.data.shape[0] > 0
|
|
583
|
+
), f"The preprocessing reduced shape {shape} to {self.data.shape}."
|
|
584
|
+
if self.recent and verbose:
|
|
585
|
+
print(f"[CubeLogs.load] keep most recent data.shape={self.data.shape}")
|
|
586
|
+
|
|
587
|
+
# Let's apply the formulas
|
|
588
|
+
if self._formulas:
|
|
589
|
+
forms = (
|
|
590
|
+
{k: k for k in self._formulas}
|
|
591
|
+
if not isinstance(self._formulas, dict)
|
|
592
|
+
else self._formulas
|
|
593
|
+
)
|
|
594
|
+
cols = set(self.values)
|
|
595
|
+
for k, ff in forms.items():
|
|
596
|
+
f = self._process_formula(ff)
|
|
597
|
+
if k in cols or f is None:
|
|
598
|
+
if verbose:
|
|
599
|
+
print(f"[CubeLogs.load] skip formula {k!r}")
|
|
600
|
+
else:
|
|
601
|
+
if verbose:
|
|
602
|
+
print(f"[CubeLogs.load] apply formula {k!r}")
|
|
603
|
+
self.data[k] = f(self.data)
|
|
604
|
+
self.values.append(k)
|
|
605
|
+
cols.add(k)
|
|
606
|
+
self.values_for_key = {k: set(self.data[k].dropna()) for k in self.keys_time}
|
|
607
|
+
for k in self.keys_no_time:
|
|
608
|
+
if self.data[k].isna().max():
|
|
609
|
+
self.values_for_key[k].add(np.nan)
|
|
610
|
+
self.keys_with_nans = [
|
|
611
|
+
c for c in self.keys_time if self.data[c].isna().astype(int).sum() > 0
|
|
612
|
+
]
|
|
613
|
+
if verbose:
|
|
614
|
+
print(f"[CubeLogs.load] convert column {self.time!r} into date")
|
|
615
|
+
if self.keys_with_nans:
|
|
616
|
+
print(f"[CubeLogs.load] keys_with_nans={self.keys_with_nans}")
|
|
617
|
+
self.data[self.time] = pandas.to_datetime(self.data[self.time])
|
|
618
|
+
|
|
619
|
+
if self.keep_last_date:
|
|
620
|
+
times = self.data[self.time].dropna()
|
|
621
|
+
mi, mx = times.min(), times.max()
|
|
622
|
+
if mi != mx:
|
|
623
|
+
print(f"[CubeLogs.load] setting all dates in column {self.time} to {mx!r}")
|
|
624
|
+
self.data.loc[~self.data[self.time].isna(), self.time] = mx
|
|
625
|
+
self.values_for_key[self.time] = {mx}
|
|
626
|
+
if self.data[self.time].isna().max():
|
|
627
|
+
self.values_for_key[self.time].add(np.nan)
|
|
628
|
+
if verbose:
|
|
629
|
+
print(f"[CubeLogs.load] done, shape={self.shape}")
|
|
630
|
+
return self
|
|
631
|
+
|
|
632
|
+
def _process_formula(
|
|
633
|
+
self, formula: Union[str, Callable[[pandas.DataFrame], pandas.Series]]
|
|
634
|
+
) -> Callable[[pandas.DataFrame], pandas.Series]:
|
|
635
|
+
assert callable(formula), f"formula={formula!r} is not supported."
|
|
636
|
+
return formula
|
|
637
|
+
|
|
638
|
+
@property
|
|
639
|
+
def shape(self) -> Tuple[int, int]:
|
|
640
|
+
"Returns the shape."
|
|
641
|
+
assert hasattr(self, "data"), "Method load was not called"
|
|
642
|
+
return self.data.shape
|
|
643
|
+
|
|
644
|
+
@property
|
|
645
|
+
def columns(self) -> Sequence[str]:
|
|
646
|
+
"Returns the columns."
|
|
647
|
+
assert hasattr(self, "data"), "Method load was not called"
|
|
648
|
+
return self.data.columns
|
|
649
|
+
|
|
650
|
+
def _preprocess(self):
|
|
651
|
+
last = self.values[0]
|
|
652
|
+
gr = self.data[[*self.keys_time, last]].groupby(self.keys_time, dropna=False).count()
|
|
653
|
+
gr = gr[gr[last] > 1]
|
|
654
|
+
if self.recent:
|
|
655
|
+
cp = self.data.copy()
|
|
656
|
+
assert (
|
|
657
|
+
"__index__" not in cp.columns
|
|
658
|
+
), f"'__index__' should not be a column in {cp.columns}"
|
|
659
|
+
cp["__index__"] = np.arange(cp.shape[0])
|
|
660
|
+
gr = (
|
|
661
|
+
cp[[*self.keys_time, "__index__"]]
|
|
662
|
+
.groupby(self.keys_no_time, as_index=False, dropna=False)
|
|
663
|
+
.max()
|
|
664
|
+
)
|
|
665
|
+
assert gr.shape[0] > 0, (
|
|
666
|
+
f"Something went wrong after the groupby.\n"
|
|
667
|
+
f"{cp[[*self.keys, self.time, '__index__']].head().T}"
|
|
668
|
+
)
|
|
669
|
+
filtered = pandas.merge(cp, gr, on=["__index__", *self.keys_time])
|
|
670
|
+
assert filtered.shape[0] <= self.data.shape[0], (
|
|
671
|
+
f"Keeping the latest row brings more row {filtered.shape} "
|
|
672
|
+
f"(initial is {self.data.shape})."
|
|
673
|
+
)
|
|
674
|
+
self.data = filtered.drop("__index__", axis=1)
|
|
675
|
+
else:
|
|
676
|
+
assert gr.shape[0] == 0, f"There are duplicated rows:\n{gr}"
|
|
677
|
+
|
|
678
|
+
@classmethod
|
|
679
|
+
def _filter_column(cls, filters, columns, can_be_empty=False):
|
|
680
|
+
assert list(columns), "columns is empty"
|
|
681
|
+
set_cols = set()
|
|
682
|
+
for f in filters:
|
|
683
|
+
if set(f) & {'"', "^", ".", "*", "+", "{", "}"}:
|
|
684
|
+
reg = re.compile(f)
|
|
685
|
+
cols = [c for c in columns if reg.search(c)]
|
|
686
|
+
elif f in columns:
|
|
687
|
+
# No regular expression.
|
|
688
|
+
cols = [f]
|
|
689
|
+
else:
|
|
690
|
+
continue
|
|
691
|
+
set_cols |= set(cols)
|
|
692
|
+
assert (
|
|
693
|
+
can_be_empty or set_cols
|
|
694
|
+
), f"Filters {filters} returns an empty set from {columns}"
|
|
695
|
+
return sorted(set_cols)
|
|
696
|
+
|
|
697
|
+
def _initialize_columns(self):
|
|
698
|
+
keys = self._filter_column(self._keys, self.data.columns)
|
|
699
|
+
self.values = self._filter_column(self._values, self.data.columns)
|
|
700
|
+
self.ignored = self._filter_column(self._ignored, self.data.columns, True)
|
|
701
|
+
assert (
|
|
702
|
+
self._time in self.data.columns
|
|
703
|
+
), f"Column {self._time} not found in {pprint.pformat(sorted(self.data.columns))}"
|
|
704
|
+
ignored_keys = set(self.ignored) & set(keys)
|
|
705
|
+
ignored_values = set(self.ignored) & set(self.values)
|
|
706
|
+
self.keys_no_time = [c for c in keys if c not in ignored_keys]
|
|
707
|
+
self.values = [c for c in self.values if c not in ignored_values]
|
|
708
|
+
self.ignored_keys = sorted(ignored_keys)
|
|
709
|
+
self.ignored_values = sorted(ignored_values)
|
|
710
|
+
self.time = self._time
|
|
711
|
+
self.keys_time = [self.time, *[c for c in keys if c not in ignored_keys]]
|
|
712
|
+
|
|
713
|
+
def __str__(self) -> str:
|
|
714
|
+
"usual"
|
|
715
|
+
return str(self.data) if hasattr(self, "data") else str(self._data)
|
|
716
|
+
|
|
717
|
+
def view(
|
|
718
|
+
self,
|
|
719
|
+
view_def: Union[str, CubeViewDef],
|
|
720
|
+
return_view_def: bool = False,
|
|
721
|
+
verbose: int = 0,
|
|
722
|
+
) -> Union[pandas.DataFrame, Tuple[pandas.DataFrame, CubeViewDef]]:
|
|
723
|
+
"""
|
|
724
|
+
Returns a dataframe, a pivot view.
|
|
725
|
+
`key_index` determines the index, the other key columns determines
|
|
726
|
+
the columns. If `ignore_unique` is True, every columns with a unique value
|
|
727
|
+
is removed.
|
|
728
|
+
|
|
729
|
+
:param view_def: view definition
|
|
730
|
+
:param return_view_def: returns the view as well
|
|
731
|
+
:param verbose: verbosity level
|
|
732
|
+
:return: dataframe
|
|
733
|
+
"""
|
|
734
|
+
assert isinstance(
|
|
735
|
+
view_def, CubeViewDef
|
|
736
|
+
), f"view_def should be a CubeViewDef, got {type(view_def)}: {view_def!r} instead"
|
|
737
|
+
if verbose:
|
|
738
|
+
print(f"[CubeLogs.view] -- start view {view_def.name!r}: {view_def}")
|
|
739
|
+
key_agg = (
|
|
740
|
+
self._filter_column(view_def.key_agg, self.keys_time) if view_def.key_agg else []
|
|
741
|
+
)
|
|
742
|
+
set_key_agg = set(key_agg)
|
|
743
|
+
assert set_key_agg <= set(self.keys_time), (
|
|
744
|
+
f"view_def.name={view_def.name!r}, "
|
|
745
|
+
f"non existing keys in key_agg {set_key_agg - set(self.keys_time)}",
|
|
746
|
+
f"keys={sorted(self.keys_time)}",
|
|
747
|
+
)
|
|
748
|
+
|
|
749
|
+
values = self._filter_column(view_def.values, self.values)
|
|
750
|
+
assert set(values) <= set(self.values), (
|
|
751
|
+
f"view_def.name={view_def.name!r}, "
|
|
752
|
+
f"non existing columns in values {set(values) - set(self.values)}, "
|
|
753
|
+
f"values={sorted(self.values)}"
|
|
754
|
+
)
|
|
755
|
+
|
|
756
|
+
# aggregation
|
|
757
|
+
if key_agg:
|
|
758
|
+
final_stack = True
|
|
759
|
+
key_index = [
|
|
760
|
+
c
|
|
761
|
+
for c in self._filter_column(view_def.key_index, self.keys_time)
|
|
762
|
+
if c not in set_key_agg
|
|
763
|
+
]
|
|
764
|
+
keys_no_agg = [c for c in self.keys_time if c not in set_key_agg]
|
|
765
|
+
if verbose:
|
|
766
|
+
print(f"[CubeLogs.view] aggregation of {set_key_agg}")
|
|
767
|
+
print(f"[CubeLogs.view] groupby {keys_no_agg}")
|
|
768
|
+
|
|
769
|
+
data_red = self.data[[*keys_no_agg, *values]]
|
|
770
|
+
assert set(key_index) <= set(data_red.columns), (
|
|
771
|
+
f"view_def.name={view_def.name!r}, "
|
|
772
|
+
f"nnable to find {set(key_index) - set(data_red.columns)}, "
|
|
773
|
+
f"key_agg={key_agg}, keys_no_agg={keys_no_agg},\n--\n"
|
|
774
|
+
f"selected={pprint.pformat(sorted(data_red.columns))},\n--\n"
|
|
775
|
+
f"keys={pprint.pformat(sorted(self.keys_time))}"
|
|
776
|
+
)
|
|
777
|
+
grouped_data = data_red.groupby(keys_no_agg, as_index=True, dropna=False)
|
|
778
|
+
if callable(view_def.agg_args):
|
|
779
|
+
agg_kwargs = view_def.agg_kwargs or {}
|
|
780
|
+
agg_args = ({c: view_def.agg_args(c) for c in values},)
|
|
781
|
+
else:
|
|
782
|
+
agg_args = view_def.agg_args # type: ignore[assignment]
|
|
783
|
+
agg_kwargs = view_def.agg_kwargs or {}
|
|
784
|
+
data = grouped_data.agg(*agg_args, **agg_kwargs)
|
|
785
|
+
if view_def.agg_multi:
|
|
786
|
+
append = []
|
|
787
|
+
for k, f in view_def.agg_multi.items():
|
|
788
|
+
cv = grouped_data.apply(f, include_groups=False)
|
|
789
|
+
append.append(cv.to_frame(k))
|
|
790
|
+
data = pandas.concat([data, *append], axis=1)
|
|
791
|
+
set_all_keys = set(keys_no_agg)
|
|
792
|
+
values = list(data.columns)
|
|
793
|
+
data = data.reset_index(drop=False)
|
|
794
|
+
else:
|
|
795
|
+
key_index = self._filter_column(view_def.key_index, self.keys_time)
|
|
796
|
+
if verbose:
|
|
797
|
+
print(f"[CubeLogs.view] no aggregation, index={key_index}")
|
|
798
|
+
data = self.data[[*self.keys_time, *values]]
|
|
799
|
+
set_all_keys = set(self.keys_time)
|
|
800
|
+
final_stack = False
|
|
801
|
+
|
|
802
|
+
assert set(key_index) <= set_all_keys, (
|
|
803
|
+
f"view_def.name={view_def.name!r}, "
|
|
804
|
+
f"Non existing keys in key_index {set(key_index) - set_all_keys}"
|
|
805
|
+
)
|
|
806
|
+
|
|
807
|
+
# remove unnecessary column
|
|
808
|
+
set_key_columns = {
|
|
809
|
+
c for c in self.keys_time if c not in key_index and c not in set(key_agg)
|
|
810
|
+
}
|
|
811
|
+
key_index0 = key_index
|
|
812
|
+
if view_def.ignore_unique:
|
|
813
|
+
unique = {
|
|
814
|
+
k for k, v in self.values_for_key.items() if k in set_all_keys and len(v) <= 1
|
|
815
|
+
}
|
|
816
|
+
keep_anyway = (
|
|
817
|
+
set(view_def.keep_columns_in_index)
|
|
818
|
+
if view_def.keep_columns_in_index
|
|
819
|
+
else set()
|
|
820
|
+
)
|
|
821
|
+
key_index = [k for k in key_index if k not in unique or k in keep_anyway]
|
|
822
|
+
key_columns = [k for k in set_key_columns if k not in unique or k in keep_anyway]
|
|
823
|
+
if verbose:
|
|
824
|
+
print(f"[CubeLogs.view] unique={unique}, keep_anyway={keep_anyway}")
|
|
825
|
+
print(
|
|
826
|
+
f"[CubeLogs.view] columns with unique values "
|
|
827
|
+
f"{set(key_index0) - set(key_index)}"
|
|
828
|
+
)
|
|
829
|
+
else:
|
|
830
|
+
if verbose:
|
|
831
|
+
print("[CubeLogs.view] keep all columns")
|
|
832
|
+
key_columns = sorted(set_key_columns)
|
|
833
|
+
unique = set()
|
|
834
|
+
|
|
835
|
+
_md = lambda s: {k: v for k, v in self.values_for_key.items() if k in s} # noqa: E731
|
|
836
|
+
all_cols = set(key_columns) | set(key_index) | set(key_agg) | unique
|
|
837
|
+
assert all_cols == set(self.keys_time), (
|
|
838
|
+
f"view_def.name={view_def.name!r}, "
|
|
839
|
+
f"key_columns + key_index + key_agg + unique != keys, left="
|
|
840
|
+
f"{set(self.keys_time) - all_cols}, "
|
|
841
|
+
f"unique={unique}, index={set(key_index)}, columns={set(key_columns)}, "
|
|
842
|
+
f"agg={set(key_agg)}, keys={set(self.keys_time)}, values={values}"
|
|
843
|
+
)
|
|
844
|
+
|
|
845
|
+
# reorder
|
|
846
|
+
if view_def.order:
|
|
847
|
+
subset = self._filter_column(view_def.order, all_cols | {self.time})
|
|
848
|
+
corder = [o for o in view_def.order if o in subset]
|
|
849
|
+
assert set(corder) <= set_key_columns, (
|
|
850
|
+
f"view_def.name={view_def.name!r}, "
|
|
851
|
+
f"non existing columns from order in key_columns "
|
|
852
|
+
f"{set(corder) - set_key_columns}"
|
|
853
|
+
)
|
|
854
|
+
key_columns = [
|
|
855
|
+
*[o for o in corder if o in key_columns],
|
|
856
|
+
*[c for c in key_columns if c not in view_def.order],
|
|
857
|
+
]
|
|
858
|
+
else:
|
|
859
|
+
corder = None
|
|
860
|
+
|
|
861
|
+
if view_def.dropna:
|
|
862
|
+
data, key_index, key_columns, values = self._dropna( # type: ignore[assignment]
|
|
863
|
+
data,
|
|
864
|
+
key_index,
|
|
865
|
+
key_columns,
|
|
866
|
+
values,
|
|
867
|
+
keep_columns_in_index=view_def.keep_columns_in_index,
|
|
868
|
+
)
|
|
869
|
+
if view_def.ignore_columns:
|
|
870
|
+
if verbose:
|
|
871
|
+
print(f"[CubeLogs.view] ignore_columns {view_def.ignore_columns}")
|
|
872
|
+
data = data.drop(view_def.ignore_columns, axis=1)
|
|
873
|
+
seti = set(view_def.ignore_columns)
|
|
874
|
+
if view_def.keep_columns_in_index:
|
|
875
|
+
seti -= set(view_def.keep_columns_in_index)
|
|
876
|
+
key_index = [c for c in key_index if c not in seti]
|
|
877
|
+
key_columns = [c for c in key_columns if c not in seti]
|
|
878
|
+
values = [c for c in values if c not in seti]
|
|
879
|
+
|
|
880
|
+
# final verification
|
|
881
|
+
if verbose:
|
|
882
|
+
print(f"[CubeLogs.view] key_index={key_index}")
|
|
883
|
+
print(f"[CubeLogs.view] key_columns={key_columns}")
|
|
884
|
+
g = data[[*key_index, *key_columns]].copy()
|
|
885
|
+
g["count"] = 1
|
|
886
|
+
r = g.groupby([*key_index, *key_columns], dropna=False).sum()
|
|
887
|
+
not_unique = r[r["count"] > 1]
|
|
888
|
+
assert not_unique.shape[0] == 0, (
|
|
889
|
+
f"view_def.name={view_def.name!r}, "
|
|
890
|
+
f"unable to run the pivot with index={sorted(key_index)}, "
|
|
891
|
+
f"key={sorted(key_columns)}, key_agg={key_agg}, values={sorted(values)}, "
|
|
892
|
+
f"columns={sorted(data.columns)}, ignored={view_def.ignore_columns}, "
|
|
893
|
+
f"not unique={set(data.columns) - unique}"
|
|
894
|
+
f"\n--\n{not_unique.head()}"
|
|
895
|
+
)
|
|
896
|
+
|
|
897
|
+
# pivot
|
|
898
|
+
if verbose:
|
|
899
|
+
print(f"[CubeLogs.view] values={values}")
|
|
900
|
+
if key_index:
|
|
901
|
+
piv = data.pivot(index=key_index[::-1], columns=key_columns, values=values)
|
|
902
|
+
else:
|
|
903
|
+
# pivot does return the same rank with it is empty.
|
|
904
|
+
# Let's add arficially one
|
|
905
|
+
data = data.copy()
|
|
906
|
+
data["ALL"] = "ALL"
|
|
907
|
+
piv = data.pivot(index=["ALL"], columns=key_columns, values=values)
|
|
908
|
+
if isinstance(piv, pandas.Series):
|
|
909
|
+
piv = piv.to_frame(name="series")
|
|
910
|
+
names = list(piv.columns.names)
|
|
911
|
+
assert (
|
|
912
|
+
"METRICS" not in names
|
|
913
|
+
), f"Not implemented when a level METRICS already exists {names!r}"
|
|
914
|
+
names[0] = "METRICS"
|
|
915
|
+
piv.columns = piv.columns.set_names(names)
|
|
916
|
+
if final_stack:
|
|
917
|
+
piv = piv.stack("METRICS", future_stack=True)
|
|
918
|
+
if view_def.transpose:
|
|
919
|
+
piv = piv.T
|
|
920
|
+
if isinstance(piv, pandas.Series):
|
|
921
|
+
piv = piv.to_frame("VALUE")
|
|
922
|
+
piv.sort_index(inplace=True)
|
|
923
|
+
|
|
924
|
+
if isinstance(piv.columns, pandas.MultiIndex):
|
|
925
|
+
if corder:
|
|
926
|
+
# reorder the levels for the columns with the view definition
|
|
927
|
+
new_corder = [c for c in corder if c in piv.columns.names]
|
|
928
|
+
new_names = [
|
|
929
|
+
*[c for c in piv.columns.names if c not in new_corder],
|
|
930
|
+
*new_corder,
|
|
931
|
+
]
|
|
932
|
+
piv.columns = piv.columns.reorder_levels(new_names)
|
|
933
|
+
elif self.time in piv.columns.names:
|
|
934
|
+
# put time at the end
|
|
935
|
+
new_names = list(piv.columns.names)
|
|
936
|
+
ind = new_names.index(self.time)
|
|
937
|
+
if ind < len(new_names) - 1:
|
|
938
|
+
del new_names[ind]
|
|
939
|
+
new_names.append(self.time)
|
|
940
|
+
piv.columns = piv.columns.reorder_levels(new_names)
|
|
941
|
+
|
|
942
|
+
if view_def.no_index:
|
|
943
|
+
piv = piv.reset_index(drop=False)
|
|
944
|
+
else:
|
|
945
|
+
piv.sort_index(inplace=True, axis=1)
|
|
946
|
+
|
|
947
|
+
if verbose:
|
|
948
|
+
print(f"[CubeLogs.view] levels {piv.index.names}, {piv.columns.names}")
|
|
949
|
+
print(f"[CubeLogs.view] -- done view {view_def.name!r}")
|
|
950
|
+
return (piv, view_def) if return_view_def else piv
|
|
951
|
+
|
|
952
|
+
def _dropna(
|
|
953
|
+
self,
|
|
954
|
+
data: pandas.DataFrame,
|
|
955
|
+
key_index: Sequence[str],
|
|
956
|
+
key_columns: Sequence[str],
|
|
957
|
+
values: Sequence[str],
|
|
958
|
+
keep_columns_in_index: Optional[Sequence[str]] = None,
|
|
959
|
+
) -> Tuple[pandas.DataFrame, Sequence[str], Sequence[str], Sequence[str]]:
|
|
960
|
+
set_keep_columns_in_index = (
|
|
961
|
+
set(keep_columns_in_index) if keep_columns_in_index else set()
|
|
962
|
+
)
|
|
963
|
+
v = data[values]
|
|
964
|
+
new_data = data[~v.isnull().all(1)]
|
|
965
|
+
if data.shape == new_data.shape:
|
|
966
|
+
return data, key_index, key_columns, values
|
|
967
|
+
new_data = new_data.copy()
|
|
968
|
+
new_key_index = []
|
|
969
|
+
for c in key_index:
|
|
970
|
+
if c in set_keep_columns_in_index:
|
|
971
|
+
new_key_index.append(c)
|
|
972
|
+
continue
|
|
973
|
+
v = new_data[c]
|
|
974
|
+
sv = set(v.dropna())
|
|
975
|
+
if len(sv) > 1 or (v.isna().max() and len(sv) > 0):
|
|
976
|
+
new_key_index.append(c)
|
|
977
|
+
new_key_columns = []
|
|
978
|
+
for c in key_columns:
|
|
979
|
+
if c in set_keep_columns_in_index:
|
|
980
|
+
new_key_columns.append(c)
|
|
981
|
+
continue
|
|
982
|
+
v = new_data[c]
|
|
983
|
+
sv = set(v.dropna())
|
|
984
|
+
if len(sv) > 1 or (v.isna().max() and len(sv) > 0):
|
|
985
|
+
new_key_columns.append(c)
|
|
986
|
+
for c in set(key_index) | set(key_columns):
|
|
987
|
+
s = new_data[c]
|
|
988
|
+
if s.isna().max():
|
|
989
|
+
if pandas.api.types.is_numeric_dtype(s):
|
|
990
|
+
min_v = s.dropna().min()
|
|
991
|
+
assert (
|
|
992
|
+
min_v >= 0
|
|
993
|
+
), f"Unable to replace nan values in column {c!r}, min_v={min_v}"
|
|
994
|
+
new_data[c] = s.fillna(-1)
|
|
995
|
+
else:
|
|
996
|
+
new_data[c] = s.fillna("NAN")
|
|
997
|
+
return new_data, new_key_index, new_key_columns, values
|
|
998
|
+
|
|
999
|
+
def describe(self) -> pandas.DataFrame:
|
|
1000
|
+
"""Basic description of all variables."""
|
|
1001
|
+
rows = []
|
|
1002
|
+
for name in self.data.columns:
|
|
1003
|
+
values = self.data[name]
|
|
1004
|
+
dtype = values.dtype
|
|
1005
|
+
nonan = values.dropna()
|
|
1006
|
+
obs = dict(
|
|
1007
|
+
name=name,
|
|
1008
|
+
dtype=str(dtype),
|
|
1009
|
+
missing=len(values) - len(nonan),
|
|
1010
|
+
kind=(
|
|
1011
|
+
"time"
|
|
1012
|
+
if name == self.time
|
|
1013
|
+
else (
|
|
1014
|
+
"keys"
|
|
1015
|
+
if name in self.keys_no_time
|
|
1016
|
+
else (
|
|
1017
|
+
"values"
|
|
1018
|
+
if name in self.values
|
|
1019
|
+
else ("ignored" if name in self.ignored else "unused")
|
|
1020
|
+
)
|
|
1021
|
+
)
|
|
1022
|
+
),
|
|
1023
|
+
)
|
|
1024
|
+
if len(nonan) > 0:
|
|
1025
|
+
obs.update(dict(count=len(nonan)))
|
|
1026
|
+
if is_numeric_dtype(nonan):
|
|
1027
|
+
obs.update(
|
|
1028
|
+
dict(
|
|
1029
|
+
min=nonan.min(),
|
|
1030
|
+
max=nonan.max(),
|
|
1031
|
+
mean=nonan.mean(),
|
|
1032
|
+
sum=nonan.sum(),
|
|
1033
|
+
n_values=len(set(nonan)),
|
|
1034
|
+
)
|
|
1035
|
+
)
|
|
1036
|
+
elif obs["kind"] == "time":
|
|
1037
|
+
unique = set(nonan)
|
|
1038
|
+
obs["n_values"] = len(unique)
|
|
1039
|
+
o = dict(
|
|
1040
|
+
min=str(nonan.min()),
|
|
1041
|
+
max=str(nonan.max()),
|
|
1042
|
+
n_values=len(set(nonan)),
|
|
1043
|
+
)
|
|
1044
|
+
o["values"] = f"{o['min']} - {o['max']}"
|
|
1045
|
+
obs.update(o)
|
|
1046
|
+
else:
|
|
1047
|
+
unique = set(nonan)
|
|
1048
|
+
obs["n_values"] = len(unique)
|
|
1049
|
+
if len(unique) < 20:
|
|
1050
|
+
obs["values"] = ",".join(map(str, sorted(unique)))
|
|
1051
|
+
rows.append(obs)
|
|
1052
|
+
return pandas.DataFrame(rows).set_index("name")
|
|
1053
|
+
|
|
1054
|
+
def to_excel(
|
|
1055
|
+
self,
|
|
1056
|
+
output: str,
|
|
1057
|
+
views: Union[Sequence[str], Dict[str, Union[str, CubeViewDef]]],
|
|
1058
|
+
main: Optional[str] = "main",
|
|
1059
|
+
raw: Optional[str] = "raw",
|
|
1060
|
+
verbose: int = 0,
|
|
1061
|
+
csv: Optional[Sequence[str]] = None,
|
|
1062
|
+
):
|
|
1063
|
+
"""
|
|
1064
|
+
Creates an excel file with a list of view.
|
|
1065
|
+
|
|
1066
|
+
:param output: output file to create
|
|
1067
|
+
:param views: sequence or dictionary of views to append
|
|
1068
|
+
:param main: add a page with statitcs on all variables
|
|
1069
|
+
:param raw: add a page with the raw data
|
|
1070
|
+
:param csv: views to dump as csv files (same name as outputs + view naw)
|
|
1071
|
+
:param verbose: verbosity
|
|
1072
|
+
"""
|
|
1073
|
+
if verbose:
|
|
1074
|
+
print(f"[CubeLogs.to_excel] create Excel file {output}, shape={self.shape}")
|
|
1075
|
+
views = {k: k for k in views} if not isinstance(views, dict) else views
|
|
1076
|
+
f_highlights = {}
|
|
1077
|
+
plots = []
|
|
1078
|
+
with pandas.ExcelWriter(output, engine="openpyxl") as writer:
|
|
1079
|
+
if main:
|
|
1080
|
+
assert main not in views, f"{main!r} is duplicated in views {sorted(views)}"
|
|
1081
|
+
df = self.describe().sort_values("name")
|
|
1082
|
+
if verbose:
|
|
1083
|
+
print(f"[CubeLogs.to_excel] add sheet {main!r} with shape {df.shape}")
|
|
1084
|
+
df.to_excel(writer, sheet_name=main, freeze_panes=(1, 1))
|
|
1085
|
+
|
|
1086
|
+
for name, view in views.items():
|
|
1087
|
+
df, tview = self.view(view, return_view_def=True, verbose=max(verbose - 1, 0))
|
|
1088
|
+
memory = df.memory_usage(deep=True).sum()
|
|
1089
|
+
if verbose:
|
|
1090
|
+
print(
|
|
1091
|
+
f"[CubeLogs.to_excel] add sheet {name!r} with shape "
|
|
1092
|
+
f"{df.shape} ({memory} bytes), index={df.index.names}, "
|
|
1093
|
+
f"columns={df.columns.names}"
|
|
1094
|
+
)
|
|
1095
|
+
if self.time in df.columns.names:
|
|
1096
|
+
# Let's convert the time into str
|
|
1097
|
+
fr = df.columns.to_frame()
|
|
1098
|
+
if is_datetime64_any_dtype(fr[self.time]):
|
|
1099
|
+
dt = fr[self.time]
|
|
1100
|
+
has_time = (dt != dt.dt.normalize()).any()
|
|
1101
|
+
sdt = dt.apply(
|
|
1102
|
+
lambda t, has_time=has_time: t.strftime(
|
|
1103
|
+
"%Y-%m-%dT%H-%M-%S" if has_time else "%Y-%m-%d"
|
|
1104
|
+
)
|
|
1105
|
+
)
|
|
1106
|
+
fr[self.time] = sdt
|
|
1107
|
+
df.columns = pandas.MultiIndex.from_frame(fr)
|
|
1108
|
+
if csv and name in csv:
|
|
1109
|
+
name_csv = f"{output}.{name}.csv"
|
|
1110
|
+
if verbose:
|
|
1111
|
+
print(f"[CubeLogs.to_excel] saving sheet {name!r} in {name_csv!r}")
|
|
1112
|
+
df.reset_index(drop=False).to_csv(f"{output}.{name}.csv", index=False)
|
|
1113
|
+
|
|
1114
|
+
if memory > 2**22:
|
|
1115
|
+
msg = (
|
|
1116
|
+
f"[CubeLogs.to_excel] skipping {name!r}, "
|
|
1117
|
+
f"too big for excel with {memory} bytes"
|
|
1118
|
+
)
|
|
1119
|
+
if verbose:
|
|
1120
|
+
print(msg)
|
|
1121
|
+
else:
|
|
1122
|
+
warnings.warn(msg, category=RuntimeWarning, stacklevel=0)
|
|
1123
|
+
else:
|
|
1124
|
+
df.to_excel(
|
|
1125
|
+
writer,
|
|
1126
|
+
sheet_name=name,
|
|
1127
|
+
freeze_panes=(df.columns.nlevels + df.index.nlevels, df.index.nlevels),
|
|
1128
|
+
)
|
|
1129
|
+
f_highlights[name] = tview.f_highlight
|
|
1130
|
+
if tview.plots:
|
|
1131
|
+
plots.append(CubePlot(df, kind="barh", orientation="row", split=True))
|
|
1132
|
+
if raw:
|
|
1133
|
+
assert main not in views, f"{main!r} is duplicated in views {sorted(views)}"
|
|
1134
|
+
# Too long.
|
|
1135
|
+
# self._apply_excel_style(raw, writer, self.data)
|
|
1136
|
+
if csv and "raw" in csv:
|
|
1137
|
+
df.reset_index(drop=False).to_csv(f"{output}.raw.csv", index=False)
|
|
1138
|
+
memory = df.memory_usage(deep=True).sum()
|
|
1139
|
+
if memory > 2**22:
|
|
1140
|
+
msg = (
|
|
1141
|
+
f"[CubeLogs.to_excel] skipping 'raw', "
|
|
1142
|
+
f"too big for excel with {memory} bytes"
|
|
1143
|
+
)
|
|
1144
|
+
if verbose:
|
|
1145
|
+
print(msg)
|
|
1146
|
+
else:
|
|
1147
|
+
warnings.warn(msg, category=RuntimeWarning, stacklevel=0)
|
|
1148
|
+
else:
|
|
1149
|
+
if verbose:
|
|
1150
|
+
print(f"[CubeLogs.to_excel] add sheet 'raw' with shape {self.shape}")
|
|
1151
|
+
self.data.to_excel(
|
|
1152
|
+
writer, sheet_name="raw", freeze_panes=(1, 1), index=True
|
|
1153
|
+
)
|
|
1154
|
+
|
|
1155
|
+
if plots:
|
|
1156
|
+
from openpyxl.drawing.image import Image
|
|
1157
|
+
|
|
1158
|
+
if verbose:
|
|
1159
|
+
print(f"[CubeLogs.to_excel] plots {len(plots)} plots")
|
|
1160
|
+
sheet = writer.book.create_sheet("plots")
|
|
1161
|
+
pos = 0
|
|
1162
|
+
empty_row = 1
|
|
1163
|
+
times = self.data[self.time].dropna()
|
|
1164
|
+
mini, maxi = times.min(), times.max()
|
|
1165
|
+
title_suffix = (str(mini) if mini == maxi else f"{mini}-{maxi}").replace(
|
|
1166
|
+
" 00:00:00", ""
|
|
1167
|
+
)
|
|
1168
|
+
for plot in plots:
|
|
1169
|
+
imgs = plot.to_images(
|
|
1170
|
+
verbose=verbose, merge=True, title_suffix=title_suffix
|
|
1171
|
+
)
|
|
1172
|
+
for img in imgs:
|
|
1173
|
+
y = (pos // 2) * 16
|
|
1174
|
+
loc = f"A{y}" if pos % 2 == 0 else f"M{y}"
|
|
1175
|
+
sheet.add_image(Image(io.BytesIO(img)), loc)
|
|
1176
|
+
if verbose:
|
|
1177
|
+
no = f"{output}.png"
|
|
1178
|
+
print(f"[CubeLogs.to_excel] dump graphs into {no!r}")
|
|
1179
|
+
with open(no, "wb") as f:
|
|
1180
|
+
f.write(img)
|
|
1181
|
+
pos += 1
|
|
1182
|
+
empty_row += len(plots) + 2
|
|
1183
|
+
|
|
1184
|
+
if verbose:
|
|
1185
|
+
print(f"[CubeLogs.to_excel] applies style to {output!r}")
|
|
1186
|
+
apply_excel_style(writer, f_highlights) # type: ignore[arg-type]
|
|
1187
|
+
if verbose:
|
|
1188
|
+
print(f"[CubeLogs.to_excel] done with {len(views)} views")
|
|
1189
|
+
|
|
1190
|
+
|
|
1191
|
+
class CubeLogsPerformance(CubeLogs):
|
|
1192
|
+
"""
|
|
1193
|
+
Processes logs coming from experiments.
|
|
1194
|
+
"""
|
|
1195
|
+
|
|
1196
|
+
def __init__(
|
|
1197
|
+
self,
|
|
1198
|
+
data: Any,
|
|
1199
|
+
time: str = "DATE",
|
|
1200
|
+
keys: Sequence[str] = (
|
|
1201
|
+
"^version_.*",
|
|
1202
|
+
"^model_.*",
|
|
1203
|
+
"device",
|
|
1204
|
+
"opt_patterns",
|
|
1205
|
+
"suite",
|
|
1206
|
+
"memory_peak",
|
|
1207
|
+
"machine",
|
|
1208
|
+
"exporter",
|
|
1209
|
+
"dynamic",
|
|
1210
|
+
"rtopt",
|
|
1211
|
+
"dtype",
|
|
1212
|
+
"device",
|
|
1213
|
+
"architecture",
|
|
1214
|
+
),
|
|
1215
|
+
values: Sequence[str] = (
|
|
1216
|
+
"^time_.*",
|
|
1217
|
+
"^disc.*",
|
|
1218
|
+
"^ERR_.*",
|
|
1219
|
+
"CMD",
|
|
1220
|
+
"^ITER",
|
|
1221
|
+
"^onnx_.*",
|
|
1222
|
+
"^op_onnx_.*",
|
|
1223
|
+
"^peak_gpu_.*",
|
|
1224
|
+
),
|
|
1225
|
+
ignored: Sequence[str] = ("version_python",),
|
|
1226
|
+
recent: bool = True,
|
|
1227
|
+
formulas: Optional[
|
|
1228
|
+
Union[
|
|
1229
|
+
Sequence[str],
|
|
1230
|
+
Dict[str, Union[str, Callable[[pandas.DataFrame], pandas.Series]]],
|
|
1231
|
+
]
|
|
1232
|
+
] = (
|
|
1233
|
+
"speedup",
|
|
1234
|
+
"bucket[speedup]",
|
|
1235
|
+
"ERR1",
|
|
1236
|
+
"n_models",
|
|
1237
|
+
"n_model_eager",
|
|
1238
|
+
"n_model_running",
|
|
1239
|
+
"n_model_acc01",
|
|
1240
|
+
"n_model_acc001",
|
|
1241
|
+
"n_model_dynamic",
|
|
1242
|
+
"n_model_pass",
|
|
1243
|
+
"n_model_faster",
|
|
1244
|
+
"n_model_faster2x",
|
|
1245
|
+
"n_model_faster3x",
|
|
1246
|
+
"n_model_faster4x",
|
|
1247
|
+
"n_node_attention",
|
|
1248
|
+
"n_node_control_flow",
|
|
1249
|
+
"n_node_scatter",
|
|
1250
|
+
"n_node_function",
|
|
1251
|
+
"n_node_initializer",
|
|
1252
|
+
"n_node_constant",
|
|
1253
|
+
"n_node_shape",
|
|
1254
|
+
"n_node_expand",
|
|
1255
|
+
"peak_gpu_torch",
|
|
1256
|
+
"peak_gpu_nvidia",
|
|
1257
|
+
"time_export_unbiased",
|
|
1258
|
+
),
|
|
1259
|
+
fill_missing: Optional[Sequence[Tuple[str, Any]]] = (("model_attn_impl", "eager"),),
|
|
1260
|
+
keep_last_date: bool = False,
|
|
1261
|
+
):
|
|
1262
|
+
super().__init__(
|
|
1263
|
+
data=data,
|
|
1264
|
+
time=time,
|
|
1265
|
+
keys=keys,
|
|
1266
|
+
values=values,
|
|
1267
|
+
ignored=ignored,
|
|
1268
|
+
recent=recent,
|
|
1269
|
+
formulas=formulas,
|
|
1270
|
+
fill_missing=fill_missing,
|
|
1271
|
+
keep_last_date=keep_last_date,
|
|
1272
|
+
)
|
|
1273
|
+
|
|
1274
|
+
def _process_formula(
|
|
1275
|
+
self, formula: Union[str, Callable[[pandas.DataFrame], pandas.Series]]
|
|
1276
|
+
) -> Callable[[pandas.DataFrame], pandas.Series]:
|
|
1277
|
+
"""
|
|
1278
|
+
Processes a formula, converting it into a function.
|
|
1279
|
+
|
|
1280
|
+
:param formula: a formula string
|
|
1281
|
+
:return: a function
|
|
1282
|
+
"""
|
|
1283
|
+
if callable(formula):
|
|
1284
|
+
return formula
|
|
1285
|
+
assert isinstance(
|
|
1286
|
+
formula, str
|
|
1287
|
+
), f"Unexpected type for formula {type(formula)}: {formula!r}"
|
|
1288
|
+
|
|
1289
|
+
def gdf(df, cname, default_value=np.nan):
|
|
1290
|
+
if cname in df.columns:
|
|
1291
|
+
return df[cname]
|
|
1292
|
+
return pandas.Series(default_value, index=df.index)
|
|
1293
|
+
|
|
1294
|
+
def ghas_value(df, cname):
|
|
1295
|
+
if cname not in df.columns:
|
|
1296
|
+
return pandas.Series(np.nan, index=df.index)
|
|
1297
|
+
isna = df[cname].isna()
|
|
1298
|
+
return pandas.Series(np.where(isna, np.nan, 1.0), index=df.index)
|
|
1299
|
+
|
|
1300
|
+
def gpreserve(df, cname, series):
|
|
1301
|
+
if cname not in df.columns:
|
|
1302
|
+
return pandas.Series(np.nan, index=df.index)
|
|
1303
|
+
isna = df[cname].isna()
|
|
1304
|
+
return pandas.Series(np.where(isna, np.nan, series), index=df.index).astype(float)
|
|
1305
|
+
|
|
1306
|
+
if formula == "speedup":
|
|
1307
|
+
columns = set(self._filter_column(["^time_.*"], self.data.columns))
|
|
1308
|
+
assert "time_latency" in columns and "time_latency_eager" in columns, (
|
|
1309
|
+
f"Unable to apply formula {formula!r}, with columns\n"
|
|
1310
|
+
f"{pprint.pformat(sorted(columns))}"
|
|
1311
|
+
)
|
|
1312
|
+
return lambda df: df["time_latency_eager"] / df["time_latency"]
|
|
1313
|
+
|
|
1314
|
+
if formula == "bucket[speedup]":
|
|
1315
|
+
columns = set(self._filter_column(["^time_.*", "speedup"], self.data.columns))
|
|
1316
|
+
assert "speedup" in columns, (
|
|
1317
|
+
f"Unable to apply formula {formula!r}, with columns\n"
|
|
1318
|
+
f"{pprint.pformat(sorted(columns))}"
|
|
1319
|
+
)
|
|
1320
|
+
# return lambda df: df["time_latency_eager"] / df["time_latency"]
|
|
1321
|
+
return lambda df: pandas.cut(
|
|
1322
|
+
df["speedup"], bins=BUCKET_SCALES, right=False, duplicates="raise"
|
|
1323
|
+
)
|
|
1324
|
+
|
|
1325
|
+
if formula == "ERR1":
|
|
1326
|
+
columns = set(self._filter_column(["^ERR_.*"], self.data.columns))
|
|
1327
|
+
if not columns:
|
|
1328
|
+
return lambda df: np.nan
|
|
1329
|
+
|
|
1330
|
+
def first_err(df: pandas.DataFrame) -> pandas.Series:
|
|
1331
|
+
ordered = [
|
|
1332
|
+
c
|
|
1333
|
+
for c in [
|
|
1334
|
+
"ERR_timeout",
|
|
1335
|
+
"ERR_load",
|
|
1336
|
+
"ERR_feeds",
|
|
1337
|
+
"ERR_warmup_eager",
|
|
1338
|
+
"ERR_export",
|
|
1339
|
+
"ERR_ort",
|
|
1340
|
+
"ERR_warmup",
|
|
1341
|
+
# "ERR_std",
|
|
1342
|
+
# "ERR_crash",
|
|
1343
|
+
# "ERR_stdout",
|
|
1344
|
+
]
|
|
1345
|
+
if c in df.columns
|
|
1346
|
+
]
|
|
1347
|
+
res = None
|
|
1348
|
+
for c in ordered:
|
|
1349
|
+
if res is None:
|
|
1350
|
+
res = df[c].fillna("")
|
|
1351
|
+
else:
|
|
1352
|
+
res = pandas.Series(np.where(res != "", res, df[c].fillna("")))
|
|
1353
|
+
return res
|
|
1354
|
+
|
|
1355
|
+
return first_err
|
|
1356
|
+
|
|
1357
|
+
if formula.startswith("n_"):
|
|
1358
|
+
lambdas = dict(
|
|
1359
|
+
n_models=lambda df: ghas_value(df, "model_name"),
|
|
1360
|
+
n_model_eager=lambda df: ghas_value(df, "time_latency_eager"),
|
|
1361
|
+
n_model_running=lambda df: ghas_value(df, "time_latency"),
|
|
1362
|
+
n_model_acc01=lambda df: gpreserve(
|
|
1363
|
+
df, "discrepancies_abs", (gdf(df, "discrepancies_abs") <= 0.1)
|
|
1364
|
+
),
|
|
1365
|
+
n_model_acc001=lambda df: gpreserve(
|
|
1366
|
+
df, "discrepancies_abs", gdf(df, "discrepancies_abs") <= 0.01
|
|
1367
|
+
),
|
|
1368
|
+
n_model_dynamic=lambda df: gpreserve(
|
|
1369
|
+
df,
|
|
1370
|
+
"discrepancies_dynamic_abs",
|
|
1371
|
+
(gdf(df, "discrepancies_dynamic_abs") <= 0.1),
|
|
1372
|
+
),
|
|
1373
|
+
n_model_pass=lambda df: gpreserve(
|
|
1374
|
+
df,
|
|
1375
|
+
"time_latency",
|
|
1376
|
+
(gdf(df, "discrepancies_abs", np.inf) < 0.1)
|
|
1377
|
+
& (gdf(df, "time_latency_eager") > gdf(df, "time_latency", np.inf) * 0.98),
|
|
1378
|
+
),
|
|
1379
|
+
n_model_faster=lambda df: gpreserve(
|
|
1380
|
+
df,
|
|
1381
|
+
"time_latency",
|
|
1382
|
+
gdf(df, "time_latency_eager") > gdf(df, "time_latency", np.inf) * 0.98,
|
|
1383
|
+
),
|
|
1384
|
+
n_model_faster2x=lambda df: gpreserve(
|
|
1385
|
+
df,
|
|
1386
|
+
"time_latency",
|
|
1387
|
+
gdf(df, "time_latency_eager") > gdf(df, "time_latency", np.inf) * 1.98,
|
|
1388
|
+
),
|
|
1389
|
+
n_model_faster3x=lambda df: gpreserve(
|
|
1390
|
+
df,
|
|
1391
|
+
"time_latency",
|
|
1392
|
+
gdf(df, "time_latency_eager") > gdf(df, "time_latency", np.inf) * 2.98,
|
|
1393
|
+
),
|
|
1394
|
+
n_model_faster4x=lambda df: gpreserve(
|
|
1395
|
+
df,
|
|
1396
|
+
"time_latency",
|
|
1397
|
+
gdf(df, "time_latency_eager") > gdf(df, "time_latency", np.inf) * 3.98,
|
|
1398
|
+
),
|
|
1399
|
+
n_node_attention=lambda df: gpreserve(
|
|
1400
|
+
df,
|
|
1401
|
+
"op_onnx_com.microsoft_Attention",
|
|
1402
|
+
gdf(df, "op_onnx_com.microsoft_Attention")
|
|
1403
|
+
+ gdf(df, "op_onnx_com.microsoft_MultiHeadAttention"),
|
|
1404
|
+
),
|
|
1405
|
+
n_node_control_flow=lambda df: gpreserve(
|
|
1406
|
+
df,
|
|
1407
|
+
"op_onnx__If",
|
|
1408
|
+
(
|
|
1409
|
+
gdf(df, "op_onnx__If", 0)
|
|
1410
|
+
+ gdf(df, "op_onnx__Scan", 0)
|
|
1411
|
+
+ gdf(df, "op_onnx__Loop", 0)
|
|
1412
|
+
),
|
|
1413
|
+
),
|
|
1414
|
+
n_node_scatter=lambda df: gpreserve(
|
|
1415
|
+
df,
|
|
1416
|
+
"op_onnx__ScatterND",
|
|
1417
|
+
gdf(df, "op_onnx__ScatterND", 0) + gdf(df, "op_onnx__ScatterElements", 0),
|
|
1418
|
+
),
|
|
1419
|
+
n_node_function=lambda df: gpreserve(
|
|
1420
|
+
df, "onnx_n_functions", gdf(df, "onnx_n_functions")
|
|
1421
|
+
),
|
|
1422
|
+
n_node_initializer=lambda df: gpreserve(
|
|
1423
|
+
df, "onnx_n_initializer", gdf(df, "onnx_n_initializer")
|
|
1424
|
+
),
|
|
1425
|
+
n_node_constant=lambda df: gpreserve(
|
|
1426
|
+
df, "op_onnx__Constant", gdf(df, "op_onnx__Constant")
|
|
1427
|
+
),
|
|
1428
|
+
n_node_shape=lambda df: gpreserve(
|
|
1429
|
+
df, "op_onnx__Shape", gdf(df, "op_onnx__Shape")
|
|
1430
|
+
),
|
|
1431
|
+
n_node_expand=lambda df: gpreserve(
|
|
1432
|
+
df, "op_onnx__Expand", gdf(df, "op_onnx__Expand")
|
|
1433
|
+
),
|
|
1434
|
+
)
|
|
1435
|
+
assert (
|
|
1436
|
+
formula in lambdas
|
|
1437
|
+
), f"Unexpected formula={formula!r}, should be in {sorted(lambdas)}"
|
|
1438
|
+
return lambdas[formula]
|
|
1439
|
+
|
|
1440
|
+
if formula == "peak_gpu_torch":
|
|
1441
|
+
return lambda df: gdf(df, "mema_gpu_5_after_export") - gdf(df, "mema_gpu_4_reset")
|
|
1442
|
+
if formula == "peak_gpu_nvidia":
|
|
1443
|
+
return (
|
|
1444
|
+
lambda df: (gdf(df, "memory_gpu0_peak") - gdf(df, "memory_gpu0_begin")) * 2**20
|
|
1445
|
+
)
|
|
1446
|
+
if formula == "time_export_unbiased":
|
|
1447
|
+
|
|
1448
|
+
def unbiased_export(df):
|
|
1449
|
+
if "time_warmup_first_iteration" not in df.columns:
|
|
1450
|
+
return pandas.Series(np.nan, index=df.index)
|
|
1451
|
+
return pandas.Series(
|
|
1452
|
+
np.where(
|
|
1453
|
+
df["exporter"] == "inductor",
|
|
1454
|
+
df["time_warmup_first_iteration"] + df["time_export_success"],
|
|
1455
|
+
df["time_export_success"],
|
|
1456
|
+
),
|
|
1457
|
+
index=df.index,
|
|
1458
|
+
)
|
|
1459
|
+
|
|
1460
|
+
return lambda df: gpreserve(df, "time_warmup_first_iteration", unbiased_export(df))
|
|
1461
|
+
|
|
1462
|
+
raise ValueError(
|
|
1463
|
+
f"Unexpected formula {formula!r}, available columns are\n"
|
|
1464
|
+
f"{pprint.pformat(sorted(self.data.columns))}"
|
|
1465
|
+
)
|
|
1466
|
+
|
|
1467
|
+
def view(
|
|
1468
|
+
self,
|
|
1469
|
+
view_def: Union[str, CubeViewDef],
|
|
1470
|
+
return_view_def: bool = False,
|
|
1471
|
+
verbose: int = 0,
|
|
1472
|
+
) -> Union[pandas.DataFrame, Tuple[pandas.DataFrame, CubeViewDef]]:
|
|
1473
|
+
"""
|
|
1474
|
+
Returns a dataframe, a pivot view.
|
|
1475
|
+
|
|
1476
|
+
If view_def is a string, it is replaced by a prefined view.
|
|
1477
|
+
|
|
1478
|
+
:param view_def: view definition or a string
|
|
1479
|
+
:param return_view_def: returns the view definition as well
|
|
1480
|
+
:param verbose: verbosity level
|
|
1481
|
+
:return: dataframe
|
|
1482
|
+
"""
|
|
1483
|
+
if isinstance(view_def, str):
|
|
1484
|
+
view_def = self.make_view_def(view_def)
|
|
1485
|
+
return super().view(view_def, return_view_def=return_view_def, verbose=verbose)
|
|
1486
|
+
|
|
1487
|
+
def make_view_def(self, name: str) -> CubeViewDef:
|
|
1488
|
+
"""
|
|
1489
|
+
Returns a view definition.
|
|
1490
|
+
|
|
1491
|
+
:param name: name of the view
|
|
1492
|
+
:return: a CubeViewDef
|
|
1493
|
+
|
|
1494
|
+
Available views:
|
|
1495
|
+
|
|
1496
|
+
* **agg-suite:** aggregation per suite
|
|
1497
|
+
* **disc:** discrepancies
|
|
1498
|
+
* **speedup:** speedup
|
|
1499
|
+
* **bucket_speedup:** speedup in buckets
|
|
1500
|
+
* **time:** latency
|
|
1501
|
+
* **time_export:** time to export
|
|
1502
|
+
* **counts:** status, running, faster, has control flow, ...
|
|
1503
|
+
* **err:** important errors
|
|
1504
|
+
* **cmd:** command lines
|
|
1505
|
+
* **raw-short:** raw data without all the unused columns
|
|
1506
|
+
"""
|
|
1507
|
+
fs = ["suite", "model_suite", "task", "model_name", "model_task"]
|
|
1508
|
+
index_cols = self._filter_column(fs, self.keys_time)
|
|
1509
|
+
assert index_cols, (
|
|
1510
|
+
f"No index columns found for {fs!r} in "
|
|
1511
|
+
f"{pprint.pformat(sorted(self.keys_time))}"
|
|
1512
|
+
)
|
|
1513
|
+
index_cols = [c for c in fs if c in set(index_cols)]
|
|
1514
|
+
|
|
1515
|
+
f_speedup = lambda x: ( # noqa: E731
|
|
1516
|
+
CubeViewDef.HighLightKind.NONE
|
|
1517
|
+
if not isinstance(x, (float, int))
|
|
1518
|
+
else (
|
|
1519
|
+
CubeViewDef.HighLightKind.RED
|
|
1520
|
+
if x < 0.9
|
|
1521
|
+
else (
|
|
1522
|
+
CubeViewDef.HighLightKind.GREEN
|
|
1523
|
+
if x > 1.1
|
|
1524
|
+
else CubeViewDef.HighLightKind.NONE
|
|
1525
|
+
)
|
|
1526
|
+
)
|
|
1527
|
+
)
|
|
1528
|
+
f_disc = lambda x: ( # noqa: E731
|
|
1529
|
+
CubeViewDef.HighLightKind.NONE
|
|
1530
|
+
if not isinstance(x, (float, int))
|
|
1531
|
+
else (
|
|
1532
|
+
CubeViewDef.HighLightKind.RED
|
|
1533
|
+
if x > 0.1
|
|
1534
|
+
else (
|
|
1535
|
+
CubeViewDef.HighLightKind.GREEN
|
|
1536
|
+
if x < 0.01
|
|
1537
|
+
else CubeViewDef.HighLightKind.NONE
|
|
1538
|
+
)
|
|
1539
|
+
)
|
|
1540
|
+
)
|
|
1541
|
+
f_bucket = lambda x: ( # noqa: E731
|
|
1542
|
+
CubeViewDef.HighLightKind.NONE
|
|
1543
|
+
if not isinstance(x, str)
|
|
1544
|
+
else (
|
|
1545
|
+
CubeViewDef.HighLightKind.RED
|
|
1546
|
+
if x in {"[-inf, 0.8)", "[0.8, 0.9)", "[0.9, 0.95)"}
|
|
1547
|
+
else (
|
|
1548
|
+
CubeViewDef.HighLightKind.NONE
|
|
1549
|
+
if x in {"[0.95, 0.98)", "[0.98, 1.02)", "[1.02, 1.05)"}
|
|
1550
|
+
else (
|
|
1551
|
+
CubeViewDef.HighLightKind.GREEN
|
|
1552
|
+
if "[" in x
|
|
1553
|
+
else CubeViewDef.HighLightKind.NONE
|
|
1554
|
+
)
|
|
1555
|
+
)
|
|
1556
|
+
)
|
|
1557
|
+
)
|
|
1558
|
+
|
|
1559
|
+
def mean_weight(gr):
|
|
1560
|
+
weight = gr["time_latency_eager"]
|
|
1561
|
+
x = gr["speedup"]
|
|
1562
|
+
if x.shape[0] == 0:
|
|
1563
|
+
return np.nan
|
|
1564
|
+
div = weight.sum()
|
|
1565
|
+
if div > 0:
|
|
1566
|
+
return (x * weight).sum() / div
|
|
1567
|
+
return np.nan
|
|
1568
|
+
|
|
1569
|
+
def mean_geo(gr):
|
|
1570
|
+
x = gr["speedup"]
|
|
1571
|
+
return np.exp(np.log(x.dropna()).mean())
|
|
1572
|
+
|
|
1573
|
+
order = ["model_attn_impl", "exporter", "opt_patterns", "DATE"]
|
|
1574
|
+
implemented_views = {
|
|
1575
|
+
"agg-suite": lambda: CubeViewDef(
|
|
1576
|
+
key_index=index_cols,
|
|
1577
|
+
values=self._filter_column(
|
|
1578
|
+
[
|
|
1579
|
+
"TIME_ITER",
|
|
1580
|
+
"speedup",
|
|
1581
|
+
"time_latency",
|
|
1582
|
+
"time_latency_eager",
|
|
1583
|
+
"time_export_success",
|
|
1584
|
+
"time_export_unbiased",
|
|
1585
|
+
"^n_.*",
|
|
1586
|
+
"target_opset",
|
|
1587
|
+
"onnx_filesize",
|
|
1588
|
+
"onnx_weight_size_torch",
|
|
1589
|
+
"onnx_weight_size_proto",
|
|
1590
|
+
"onnx_n_nodes",
|
|
1591
|
+
"peak_gpu_torch",
|
|
1592
|
+
"peak_gpu_nvidia",
|
|
1593
|
+
],
|
|
1594
|
+
self.values,
|
|
1595
|
+
),
|
|
1596
|
+
ignore_unique=True,
|
|
1597
|
+
key_agg=["model_name", "task", "model_task"],
|
|
1598
|
+
agg_args=lambda column_name: "sum" if column_name.startswith("n_") else "mean",
|
|
1599
|
+
agg_multi={"speedup_weighted": mean_weight, "speedup_geo": mean_geo},
|
|
1600
|
+
keep_columns_in_index=["suite"],
|
|
1601
|
+
name="agg-suite",
|
|
1602
|
+
order=order,
|
|
1603
|
+
),
|
|
1604
|
+
"agg-all": lambda: CubeViewDef(
|
|
1605
|
+
key_index=index_cols,
|
|
1606
|
+
values=self._filter_column(
|
|
1607
|
+
[
|
|
1608
|
+
"TIME_ITER",
|
|
1609
|
+
"speedup",
|
|
1610
|
+
"time_latency",
|
|
1611
|
+
"time_latency_eager",
|
|
1612
|
+
"time_export_success",
|
|
1613
|
+
"time_export_unbiased",
|
|
1614
|
+
"^n_.*",
|
|
1615
|
+
"target_opset",
|
|
1616
|
+
"onnx_filesize",
|
|
1617
|
+
"onnx_weight_size_torch",
|
|
1618
|
+
"onnx_weight_size_proto",
|
|
1619
|
+
"onnx_n_nodes",
|
|
1620
|
+
"peak_gpu_torch",
|
|
1621
|
+
"peak_gpu_nvidia",
|
|
1622
|
+
],
|
|
1623
|
+
self.values,
|
|
1624
|
+
),
|
|
1625
|
+
ignore_unique=True,
|
|
1626
|
+
key_agg=["model_name", "task", "model_task", "suite"],
|
|
1627
|
+
agg_args=lambda column_name: "sum" if column_name.startswith("n_") else "mean",
|
|
1628
|
+
agg_multi={"speedup_weighted": mean_weight, "speedup_geo": mean_geo},
|
|
1629
|
+
name="agg-all",
|
|
1630
|
+
order=order,
|
|
1631
|
+
plots=True,
|
|
1632
|
+
),
|
|
1633
|
+
"disc": lambda: CubeViewDef(
|
|
1634
|
+
key_index=index_cols,
|
|
1635
|
+
values=self._filter_column(["discrepancies_abs"], self.values),
|
|
1636
|
+
ignore_unique=True,
|
|
1637
|
+
keep_columns_in_index=["suite"],
|
|
1638
|
+
f_highlight=f_disc,
|
|
1639
|
+
name="disc",
|
|
1640
|
+
order=order,
|
|
1641
|
+
),
|
|
1642
|
+
"speedup": lambda: CubeViewDef(
|
|
1643
|
+
key_index=index_cols,
|
|
1644
|
+
values=self._filter_column(["speedup"], self.values),
|
|
1645
|
+
ignore_unique=True,
|
|
1646
|
+
keep_columns_in_index=["suite"],
|
|
1647
|
+
f_highlight=f_speedup,
|
|
1648
|
+
name="speedup",
|
|
1649
|
+
order=order,
|
|
1650
|
+
),
|
|
1651
|
+
"counts": lambda: CubeViewDef(
|
|
1652
|
+
key_index=index_cols,
|
|
1653
|
+
values=self._filter_column(["^n_.*"], self.values),
|
|
1654
|
+
ignore_unique=True,
|
|
1655
|
+
keep_columns_in_index=["suite"],
|
|
1656
|
+
name="counts",
|
|
1657
|
+
order=order,
|
|
1658
|
+
),
|
|
1659
|
+
"peak-gpu": lambda: CubeViewDef(
|
|
1660
|
+
key_index=index_cols,
|
|
1661
|
+
values=self._filter_column(["^peak_gpu_.*"], self.values),
|
|
1662
|
+
ignore_unique=True,
|
|
1663
|
+
keep_columns_in_index=["suite"],
|
|
1664
|
+
name="peak-gpu",
|
|
1665
|
+
order=order,
|
|
1666
|
+
),
|
|
1667
|
+
"time": lambda: CubeViewDef(
|
|
1668
|
+
key_index=index_cols,
|
|
1669
|
+
values=self._filter_column(
|
|
1670
|
+
["time_latency", "time_latency_eager"], self.values
|
|
1671
|
+
),
|
|
1672
|
+
ignore_unique=True,
|
|
1673
|
+
keep_columns_in_index=["suite"],
|
|
1674
|
+
name="time",
|
|
1675
|
+
order=order,
|
|
1676
|
+
),
|
|
1677
|
+
"time_export": lambda: CubeViewDef(
|
|
1678
|
+
key_index=index_cols,
|
|
1679
|
+
values=self._filter_column(["time_export_unbiased"], self.values),
|
|
1680
|
+
ignore_unique=True,
|
|
1681
|
+
keep_columns_in_index=["suite"],
|
|
1682
|
+
name="time_export",
|
|
1683
|
+
order=order,
|
|
1684
|
+
),
|
|
1685
|
+
"err": lambda: CubeViewDef(
|
|
1686
|
+
key_index=index_cols,
|
|
1687
|
+
values=self._filter_column(
|
|
1688
|
+
["ERR1", "ERR_timeout", "ERR_export", "ERR_crash"], self.values
|
|
1689
|
+
),
|
|
1690
|
+
ignore_unique=True,
|
|
1691
|
+
keep_columns_in_index=["suite"],
|
|
1692
|
+
name="err",
|
|
1693
|
+
order=order,
|
|
1694
|
+
),
|
|
1695
|
+
"bucket-speedup": lambda: CubeViewDef(
|
|
1696
|
+
key_index=index_cols,
|
|
1697
|
+
values=self._filter_column(["bucket[speedup]"], self.values),
|
|
1698
|
+
ignore_unique=True,
|
|
1699
|
+
keep_columns_in_index=["suite"],
|
|
1700
|
+
name="bucket-speedup",
|
|
1701
|
+
f_highlight=f_bucket,
|
|
1702
|
+
order=order,
|
|
1703
|
+
),
|
|
1704
|
+
"cmd": lambda: CubeViewDef(
|
|
1705
|
+
key_index=index_cols,
|
|
1706
|
+
values=self._filter_column(["CMD"], self.values),
|
|
1707
|
+
ignore_unique=True,
|
|
1708
|
+
keep_columns_in_index=["suite"],
|
|
1709
|
+
name="cmd",
|
|
1710
|
+
order=order,
|
|
1711
|
+
),
|
|
1712
|
+
"raw-short": lambda: CubeViewDef(
|
|
1713
|
+
key_index=self.keys_time,
|
|
1714
|
+
values=[c for c in self.values if c not in {"ERR_std", "ERR_stdout"}],
|
|
1715
|
+
ignore_unique=False,
|
|
1716
|
+
keep_columns_in_index=["suite"],
|
|
1717
|
+
name="raw-short",
|
|
1718
|
+
no_index=True,
|
|
1719
|
+
),
|
|
1720
|
+
}
|
|
1721
|
+
assert name in implemented_views, (
|
|
1722
|
+
f"Unknown view {name!r}, expected a name in {sorted(implemented_views)},"
|
|
1723
|
+
f"\n--\nkeys={pprint.pformat(sorted(self.keys_time))}, "
|
|
1724
|
+
f"\n--\nvalues={pprint.pformat(sorted(self.values))}"
|
|
1725
|
+
)
|
|
1726
|
+
return implemented_views[name]()
|
|
1727
|
+
|
|
1728
|
+
def post_load_process_piece(
|
|
1729
|
+
self, df: pandas.DataFrame, unique: bool = False
|
|
1730
|
+
) -> pandas.DataFrame:
|
|
1731
|
+
df = super().post_load_process_piece(df, unique=unique)
|
|
1732
|
+
if unique:
|
|
1733
|
+
return df
|
|
1734
|
+
cols = self._filter_column(self._keys, df)
|
|
1735
|
+
res = None
|
|
1736
|
+
for c in cols:
|
|
1737
|
+
if df[c].isna().any():
|
|
1738
|
+
# Missing values for keys are not supposed to happen.
|
|
1739
|
+
uniq = set(df[c].dropna())
|
|
1740
|
+
if len(uniq) == 1:
|
|
1741
|
+
if res is None:
|
|
1742
|
+
res = df.copy()
|
|
1743
|
+
res[c] = res[c].fillna(uniq.pop())
|
|
1744
|
+
return df if res is None else res
|