onnx-diagnostic 0.6.1__py3-none-any.whl → 0.6.3__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- onnx_diagnostic/__init__.py +1 -1
- onnx_diagnostic/_command_lines_parser.py +24 -3
- onnx_diagnostic/doc.py +46 -0
- onnx_diagnostic/helpers/doc_helper.py +163 -0
- onnx_diagnostic/helpers/model_builder_helper.py +3 -0
- onnx_diagnostic/helpers/onnx_helper.py +291 -7
- onnx_diagnostic/reference/torch_evaluator.py +141 -11
- onnx_diagnostic/reference/torch_ops/__init__.py +1 -1
- onnx_diagnostic/reference/torch_ops/_op_run.py +14 -5
- onnx_diagnostic/reference/torch_ops/access_ops.py +18 -8
- onnx_diagnostic/reference/torch_ops/binary_ops.py +2 -2
- onnx_diagnostic/reference/torch_ops/controlflow_ops.py +7 -4
- onnx_diagnostic/reference/torch_ops/generator_ops.py +4 -3
- onnx_diagnostic/reference/torch_ops/nn_ops.py +34 -14
- onnx_diagnostic/reference/torch_ops/other_ops.py +19 -19
- onnx_diagnostic/reference/torch_ops/reduce_ops.py +6 -6
- onnx_diagnostic/reference/torch_ops/sequence_ops.py +6 -6
- onnx_diagnostic/reference/torch_ops/shape_ops.py +16 -15
- onnx_diagnostic/reference/torch_ops/unary_ops.py +13 -13
- onnx_diagnostic/torch_export_patches/patch_module_helper.py +1 -0
- onnx_diagnostic/torch_models/test_helper.py +34 -12
- {onnx_diagnostic-0.6.1.dist-info → onnx_diagnostic-0.6.3.dist-info}/METADATA +1 -1
- {onnx_diagnostic-0.6.1.dist-info → onnx_diagnostic-0.6.3.dist-info}/RECORD +26 -25
- {onnx_diagnostic-0.6.1.dist-info → onnx_diagnostic-0.6.3.dist-info}/WHEEL +0 -0
- {onnx_diagnostic-0.6.1.dist-info → onnx_diagnostic-0.6.3.dist-info}/licenses/LICENSE.txt +0 -0
- {onnx_diagnostic-0.6.1.dist-info → onnx_diagnostic-0.6.3.dist-info}/top_level.txt +0 -0
|
@@ -2,18 +2,18 @@ from typing import Optional
|
|
|
2
2
|
import onnx
|
|
3
3
|
import torch
|
|
4
4
|
from ...helpers.torch_helper import onnx_dtype_to_torch_dtype
|
|
5
|
-
from . import
|
|
5
|
+
from . import OpRunKernel, OpRunSequence, OpRunTensor
|
|
6
6
|
|
|
7
7
|
|
|
8
|
-
class OpRunOpSequence(
|
|
8
|
+
class OpRunOpSequence(OpRunKernel):
|
|
9
9
|
"Ancestor for kernel using sequences."
|
|
10
10
|
|
|
11
11
|
|
|
12
12
|
class ConcatFromSequence_11(OpRunOpSequence):
|
|
13
13
|
"ConcatFromSequence"
|
|
14
14
|
|
|
15
|
-
def __init__(self, node: onnx.NodeProto, version: Optional[int] = None):
|
|
16
|
-
super().__init__(node, version)
|
|
15
|
+
def __init__(self, node: onnx.NodeProto, version: Optional[int] = None, verbose: int = 0):
|
|
16
|
+
super().__init__(node, version, verbose=verbose)
|
|
17
17
|
axis = self.get_attribute_int(node, "axis", None)
|
|
18
18
|
assert isinstance(axis, int), f"Unexpected value for attribute axis={axis!r}"
|
|
19
19
|
self.axis = axis
|
|
@@ -39,8 +39,8 @@ class ConcatFromSequence_11(OpRunOpSequence):
|
|
|
39
39
|
class SequenceEmpty_11(OpRunOpSequence):
|
|
40
40
|
"SqeuenceEmpty"
|
|
41
41
|
|
|
42
|
-
def __init__(self, node: onnx.NodeProto, version: Optional[int] = None):
|
|
43
|
-
super().__init__(node, version)
|
|
42
|
+
def __init__(self, node: onnx.NodeProto, version: Optional[int] = None, verbose: int = 0):
|
|
43
|
+
super().__init__(node, version, verbose=verbose)
|
|
44
44
|
self.dtype = onnx_dtype_to_torch_dtype(
|
|
45
45
|
self.get_attribute_int(node, "dtype", onnx.TensorProto.FLOAT) # type: ignore[arg-type]
|
|
46
46
|
)
|
|
@@ -1,10 +1,10 @@
|
|
|
1
1
|
from typing import Optional, Tuple
|
|
2
2
|
import onnx
|
|
3
3
|
import torch
|
|
4
|
-
from . import
|
|
4
|
+
from . import OpRunKernel, OpRunTensor
|
|
5
5
|
|
|
6
6
|
|
|
7
|
-
class ConstantOfShape_9(
|
|
7
|
+
class ConstantOfShape_9(OpRunKernel):
|
|
8
8
|
"ConstantOfShape"
|
|
9
9
|
|
|
10
10
|
@classmethod
|
|
@@ -19,8 +19,9 @@ class ConstantOfShape_9(OpRun):
|
|
|
19
19
|
node: onnx.NodeProto,
|
|
20
20
|
version: Optional[int] = None,
|
|
21
21
|
device: Optional[torch.device] = None,
|
|
22
|
+
verbose: int = 0,
|
|
22
23
|
):
|
|
23
|
-
super().__init__(node, version)
|
|
24
|
+
super().__init__(node, version, verbose=verbose)
|
|
24
25
|
value = self.get_attribute_tensor(node, "value")
|
|
25
26
|
if value is None:
|
|
26
27
|
value = torch.tensor([0], dtype=torch.float32)
|
|
@@ -37,7 +38,7 @@ class ConstantOfShape_9(OpRun):
|
|
|
37
38
|
)
|
|
38
39
|
|
|
39
40
|
|
|
40
|
-
class Expand_8(
|
|
41
|
+
class Expand_8(OpRunKernel):
|
|
41
42
|
"Expand"
|
|
42
43
|
|
|
43
44
|
def run(self, data: OpRunTensor, shape: OpRunTensor) -> OpRunTensor:
|
|
@@ -45,11 +46,11 @@ class Expand_8(OpRun):
|
|
|
45
46
|
return OpRunTensor(data.tensor.expand(ishape))
|
|
46
47
|
|
|
47
48
|
|
|
48
|
-
class Reshape_14(
|
|
49
|
+
class Reshape_14(OpRunKernel):
|
|
49
50
|
"Reshape"
|
|
50
51
|
|
|
51
|
-
def __init__(self, node: onnx.NodeProto, version: Optional[int] = None):
|
|
52
|
-
super().__init__(node, version)
|
|
52
|
+
def __init__(self, node: onnx.NodeProto, version: Optional[int] = None, verbose: int = 0):
|
|
53
|
+
super().__init__(node, version, verbose=verbose)
|
|
53
54
|
self.allowzero = self.get_attribute_int(node, "allowzero", 0)
|
|
54
55
|
|
|
55
56
|
def run(self, data: OpRunTensor, shape: OpRunTensor) -> OpRunTensor:
|
|
@@ -64,9 +65,9 @@ class Reshape_14(OpRun):
|
|
|
64
65
|
return OpRunTensor(data.tensor.reshape(ishape))
|
|
65
66
|
|
|
66
67
|
|
|
67
|
-
class Shape_15(
|
|
68
|
-
def __init__(self, node: onnx.NodeProto, version: Optional[int] = None):
|
|
69
|
-
super().__init__(node, version)
|
|
68
|
+
class Shape_15(OpRunKernel):
|
|
69
|
+
def __init__(self, node: onnx.NodeProto, version: Optional[int] = None, verbose: int = 0):
|
|
70
|
+
super().__init__(node, version, verbose=verbose)
|
|
70
71
|
self.start = self.get_attribute_int(node, "start", 0)
|
|
71
72
|
self.end = self.get_attribute_int(node, "end", None)
|
|
72
73
|
|
|
@@ -76,9 +77,9 @@ class Shape_15(OpRun):
|
|
|
76
77
|
return OpRunTensor(torch.tensor(sh, dtype=torch.int64), is_constant=True)
|
|
77
78
|
|
|
78
79
|
|
|
79
|
-
class Split_18(
|
|
80
|
-
def __init__(self, node: onnx.NodeProto, version: Optional[int] = None):
|
|
81
|
-
super().__init__(node, version)
|
|
80
|
+
class Split_18(OpRunKernel):
|
|
81
|
+
def __init__(self, node: onnx.NodeProto, version: Optional[int] = None, verbose: int = 0):
|
|
82
|
+
super().__init__(node, version, verbose=verbose)
|
|
82
83
|
self.axis = self.get_attribute_int(node, "axis", 0)
|
|
83
84
|
self.num_outputs = self.get_attribute_int(node, "num_outputs", None)
|
|
84
85
|
|
|
@@ -101,7 +102,7 @@ class Split_18(OpRun):
|
|
|
101
102
|
return tuple(OpRunTensor(t) for t in spl)
|
|
102
103
|
|
|
103
104
|
|
|
104
|
-
class Squeeze_13(
|
|
105
|
+
class Squeeze_13(OpRunKernel):
|
|
105
106
|
"Squeeze"
|
|
106
107
|
|
|
107
108
|
def run(self, data: OpRunTensor, axes: Optional[OpRunTensor] = None) -> OpRunTensor:
|
|
@@ -110,7 +111,7 @@ class Squeeze_13(OpRun):
|
|
|
110
111
|
return OpRunTensor(data.tensor.squeeze(axes.as_tuple_int))
|
|
111
112
|
|
|
112
113
|
|
|
113
|
-
class Unsqueeze_13(
|
|
114
|
+
class Unsqueeze_13(OpRunKernel):
|
|
114
115
|
"Unsqueeze"
|
|
115
116
|
|
|
116
117
|
def run(self, data: OpRunTensor, axes: OpRunTensor) -> OpRunTensor:
|
|
@@ -1,85 +1,85 @@
|
|
|
1
1
|
import torch
|
|
2
|
-
from . import
|
|
2
|
+
from . import OpRunKernel, OpRunTensor
|
|
3
3
|
|
|
4
4
|
|
|
5
|
-
class Abs_1(
|
|
5
|
+
class Abs_1(OpRunKernel):
|
|
6
6
|
"""Abs"""
|
|
7
7
|
|
|
8
8
|
def run(self, x: OpRunTensor) -> OpRunTensor:
|
|
9
9
|
return OpRunTensor(torch.abs(x.tensor))
|
|
10
10
|
|
|
11
11
|
|
|
12
|
-
class Cos_1(
|
|
12
|
+
class Cos_1(OpRunKernel):
|
|
13
13
|
"""Cos"""
|
|
14
14
|
|
|
15
15
|
def run(self, x: OpRunTensor) -> OpRunTensor:
|
|
16
16
|
return OpRunTensor(x.tensor.cos())
|
|
17
17
|
|
|
18
18
|
|
|
19
|
-
class Erf_9(
|
|
19
|
+
class Erf_9(OpRunKernel):
|
|
20
20
|
"""Erf"""
|
|
21
21
|
|
|
22
22
|
def run(self, x: OpRunTensor) -> OpRunTensor:
|
|
23
23
|
return OpRunTensor(x.tensor.erf())
|
|
24
24
|
|
|
25
25
|
|
|
26
|
-
class Exp_1(
|
|
26
|
+
class Exp_1(OpRunKernel):
|
|
27
27
|
"""Exp"""
|
|
28
28
|
|
|
29
29
|
def run(self, x: OpRunTensor) -> OpRunTensor:
|
|
30
30
|
return OpRunTensor(x.tensor.exp())
|
|
31
31
|
|
|
32
32
|
|
|
33
|
-
class Identity_1(
|
|
33
|
+
class Identity_1(OpRunKernel):
|
|
34
34
|
"Identity"
|
|
35
35
|
|
|
36
36
|
def run(self, x: OpRunTensor) -> OpRunTensor:
|
|
37
37
|
return OpRunTensor(x.tensor)
|
|
38
38
|
|
|
39
39
|
|
|
40
|
-
class Log_1(
|
|
40
|
+
class Log_1(OpRunKernel):
|
|
41
41
|
"""Log"""
|
|
42
42
|
|
|
43
43
|
def run(self, x: OpRunTensor) -> OpRunTensor:
|
|
44
44
|
return OpRunTensor(x.tensor.log())
|
|
45
45
|
|
|
46
46
|
|
|
47
|
-
class Neg_1(
|
|
47
|
+
class Neg_1(OpRunKernel):
|
|
48
48
|
"""Neg"""
|
|
49
49
|
|
|
50
50
|
def run(self, x: OpRunTensor) -> OpRunTensor:
|
|
51
51
|
return OpRunTensor(-x.tensor)
|
|
52
52
|
|
|
53
53
|
|
|
54
|
-
class Not_1(
|
|
54
|
+
class Not_1(OpRunKernel):
|
|
55
55
|
"""Not"""
|
|
56
56
|
|
|
57
57
|
def run(self, x: OpRunTensor) -> OpRunTensor:
|
|
58
58
|
return OpRunTensor(~x.tensor)
|
|
59
59
|
|
|
60
60
|
|
|
61
|
-
class Reciprocal_1(
|
|
61
|
+
class Reciprocal_1(OpRunKernel):
|
|
62
62
|
"""REciprocal"""
|
|
63
63
|
|
|
64
64
|
def run(self, x: OpRunTensor) -> OpRunTensor:
|
|
65
65
|
return OpRunTensor(1 / x.tensor)
|
|
66
66
|
|
|
67
67
|
|
|
68
|
-
class Sigmoid_6(
|
|
68
|
+
class Sigmoid_6(OpRunKernel):
|
|
69
69
|
"""Sqrt"""
|
|
70
70
|
|
|
71
71
|
def run(self, x: OpRunTensor) -> OpRunTensor:
|
|
72
72
|
return OpRunTensor(torch.sigmoid(x.tensor))
|
|
73
73
|
|
|
74
74
|
|
|
75
|
-
class Sin_1(
|
|
75
|
+
class Sin_1(OpRunKernel):
|
|
76
76
|
"""Sin"""
|
|
77
77
|
|
|
78
78
|
def run(self, x: OpRunTensor) -> OpRunTensor:
|
|
79
79
|
return OpRunTensor(x.tensor.sin())
|
|
80
80
|
|
|
81
81
|
|
|
82
|
-
class Sqrt_1(
|
|
82
|
+
class Sqrt_1(OpRunKernel):
|
|
83
83
|
"""Sqrt"""
|
|
84
84
|
|
|
85
85
|
def run(self, x: OpRunTensor) -> OpRunTensor:
|
|
@@ -80,6 +80,7 @@ def known_transformers_rewritings_clamp_float16() -> Dict[str, str]:
|
|
|
80
80
|
"AutoformerModel": "AutoformerEncoderLayer",
|
|
81
81
|
"BartEncoderLayer": "BartEncoderLayer",
|
|
82
82
|
"BartForConditionalGeneration": "BartEncoderLayer",
|
|
83
|
+
"BartModel": "BartEncoderLayer",
|
|
83
84
|
"BigBirdPegasusForConditionalGeneration": "BigBirdPegasusEncoderLayer",
|
|
84
85
|
"BigBirdPegasusForQuestionAnswering": "BigBirdPegasusEncoderLayer",
|
|
85
86
|
"BigBirdPegasusForCausalLM": "BigBirdPegasusEncoderLayer",
|
|
@@ -278,6 +278,8 @@ def validate_model(
|
|
|
278
278
|
) -> Tuple[Dict[str, Union[int, float, str]], Dict[str, Any]]:
|
|
279
279
|
"""
|
|
280
280
|
Validates a model.
|
|
281
|
+
The function can also be called through the command line
|
|
282
|
+
:ref:`l-cmd-validate`.
|
|
281
283
|
|
|
282
284
|
:param model_id: model id to validate
|
|
283
285
|
:param task: task used to generate the necessary inputs,
|
|
@@ -285,7 +287,8 @@ def validate_model(
|
|
|
285
287
|
if it can be determined
|
|
286
288
|
:param do_run: checks the model works with the defined inputs
|
|
287
289
|
:param exporter: exporter the model using this exporter,
|
|
288
|
-
available list: ``export-strict``, ``export-nostrict``,
|
|
290
|
+
available list: ``export-strict``, ``export-nostrict``, ...
|
|
291
|
+
see below
|
|
289
292
|
:param do_same: checks the discrepancies of the exported model
|
|
290
293
|
:param verbose: verbosity level
|
|
291
294
|
:param dtype: uses this dtype to check the model
|
|
@@ -322,6 +325,20 @@ def validate_model(
|
|
|
322
325
|
information:
|
|
323
326
|
|
|
324
327
|
* ``PRINT_CONFIG``: prints the model configuration
|
|
328
|
+
|
|
329
|
+
The following exporters are available:
|
|
330
|
+
|
|
331
|
+
* ``export-nostrict``: run :func:`torch.export.export` (..., strict=False)
|
|
332
|
+
* ``onnx-dynamo``: run :func:`torch.onnx.export` (..., dynamo=True),
|
|
333
|
+
models can be optimized with ``optimization`` in ``("ir", "os_ort")``
|
|
334
|
+
* ``modelbuilder``: use :epkg:`ModelBuilder` to builds the onnx model
|
|
335
|
+
* ``custom``: custom exporter (see :epkg:`experimental-experiment`),
|
|
336
|
+
models can be optimized with ``optimization`` in
|
|
337
|
+
``("default", "default+onnxruntime", "default+os_ort", "default+onnxruntime+os_ort")``
|
|
338
|
+
|
|
339
|
+
The default runtime, :epkg:`onnxruntime` is used to validate a model and check the
|
|
340
|
+
exported model returns the same outputs as the original one, otherwise,
|
|
341
|
+
:class:`onnx_diagnostic.reference.TorchOnnxEvaluator` is used.
|
|
325
342
|
"""
|
|
326
343
|
assert (
|
|
327
344
|
not rewrite or patch
|
|
@@ -370,6 +387,12 @@ def validate_model(
|
|
|
370
387
|
if model_options:
|
|
371
388
|
print(f"[validate_model] model_options={model_options!r}")
|
|
372
389
|
print(f"[validate_model] get dummy inputs with input_options={input_options}...")
|
|
390
|
+
print(
|
|
391
|
+
f"[validate_model] rewrite={rewrite}, patch={patch}, "
|
|
392
|
+
f"stop_if_static={stop_if_static}"
|
|
393
|
+
)
|
|
394
|
+
print(f"[validate_model] exporter={exporter!r}, optimization={optimization!r}")
|
|
395
|
+
print(f"[validate_model] dump_folder={dump_folder!r}")
|
|
373
396
|
summary["model_id"] = model_id
|
|
374
397
|
summary["model_subfolder"] = subfolder or ""
|
|
375
398
|
|
|
@@ -429,6 +452,8 @@ def validate_model(
|
|
|
429
452
|
print(f"[validate_model] model_rewrite={summary['model_rewrite']}")
|
|
430
453
|
else:
|
|
431
454
|
del data["rewrite"]
|
|
455
|
+
if verbose:
|
|
456
|
+
print("[validate_model] no rewrite")
|
|
432
457
|
if os.environ.get("PRINT_CONFIG", "0") in (1, "1"):
|
|
433
458
|
print("[validate_model] -- PRINT CONFIG")
|
|
434
459
|
print("-- type(config)", type(data["configuration"]))
|
|
@@ -1317,13 +1342,13 @@ def call_torch_export_custom(
|
|
|
1317
1342
|
"custom-nostrict",
|
|
1318
1343
|
"custom-nostrict-default",
|
|
1319
1344
|
"custom-nostrict-all",
|
|
1320
|
-
"custom-
|
|
1321
|
-
"custom-strict-
|
|
1322
|
-
"custom-strict-default-
|
|
1323
|
-
"custom-strict-all-
|
|
1324
|
-
"custom-nostrict-
|
|
1325
|
-
"custom-nostrict-default-
|
|
1326
|
-
"custom-nostrict-all-
|
|
1345
|
+
"custom-noinline",
|
|
1346
|
+
"custom-strict-noinline",
|
|
1347
|
+
"custom-strict-default-noinline",
|
|
1348
|
+
"custom-strict-all-noinline",
|
|
1349
|
+
"custom-nostrict-noinline",
|
|
1350
|
+
"custom-nostrict-default-noinline",
|
|
1351
|
+
"custom-nostrict-all-noinline",
|
|
1327
1352
|
}
|
|
1328
1353
|
assert exporter in available, f"Unexpected value for exporter={exporter!r} in {available}"
|
|
1329
1354
|
assert "model" in data, f"model is missing from data: {sorted(data)}"
|
|
@@ -1364,10 +1389,7 @@ def call_torch_export_custom(
|
|
|
1364
1389
|
),
|
|
1365
1390
|
save_ep=(os.path.join(dump_folder, f"{exporter}.ep") if dump_folder else None),
|
|
1366
1391
|
)
|
|
1367
|
-
inline = "-
|
|
1368
|
-
if inline:
|
|
1369
|
-
export_options.aten_as_function = set()
|
|
1370
|
-
|
|
1392
|
+
inline = "-noinline" not in exporter
|
|
1371
1393
|
options = OptimizationOptions(patterns=optimization) if optimization else None
|
|
1372
1394
|
model = data["model"]
|
|
1373
1395
|
kws = dict(
|
|
@@ -1,8 +1,8 @@
|
|
|
1
|
-
onnx_diagnostic/__init__.py,sha256=
|
|
1
|
+
onnx_diagnostic/__init__.py,sha256=mRkq5dlSo05GQMct7d6mMZLb6s5T24eG_3mD5O3wBo0,173
|
|
2
2
|
onnx_diagnostic/__main__.py,sha256=YmyV_Aq_ianDlHyKLHMa6h8YK3ZmFPpLVHLKjM91aCk,79
|
|
3
|
-
onnx_diagnostic/_command_lines_parser.py,sha256=
|
|
3
|
+
onnx_diagnostic/_command_lines_parser.py,sha256=pxG3dYpTTpRCjBRzFGEZm4ewb7xprZihP7fG08kWL04,19989
|
|
4
4
|
onnx_diagnostic/api.py,sha256=BhCl_yCd78N7TlVtPOHjeYv1QBEy39TjZ647rcHqLh0,345
|
|
5
|
-
onnx_diagnostic/doc.py,sha256=
|
|
5
|
+
onnx_diagnostic/doc.py,sha256=O_ncetL0G4-oHIxLv8ofTIIxCT_5ESSkKxfYvgccJEc,2038
|
|
6
6
|
onnx_diagnostic/ext_test_case.py,sha256=nhWz75caudvKn-svH1ppUY8uw8MoTD4cEdqMdj6PiPc,42399
|
|
7
7
|
onnx_diagnostic/export/__init__.py,sha256=yEIoWiOeTwBsDhyYt2fTKuhtA0Ya1J9u9ZzMTOTWaWs,101
|
|
8
8
|
onnx_diagnostic/export/dynamic_shapes.py,sha256=EHB7VoWNx8sVetvOgE1vgC7wHtIjWDLjanhbEJNpK88,39892
|
|
@@ -12,12 +12,13 @@ onnx_diagnostic/helpers/args_helper.py,sha256=SRWnqC7EENg09RZlA50B_PcdiIhdbgA4C3
|
|
|
12
12
|
onnx_diagnostic/helpers/bench_run.py,sha256=CGA6VMJZMH2gDhVueT9ypNm4PMcjGrrGFYp08nhWj9k,16539
|
|
13
13
|
onnx_diagnostic/helpers/cache_helper.py,sha256=soKjyIXa7EQgALd9PAUGIKYzXlJGoLevYiQDsxoqkQ4,8349
|
|
14
14
|
onnx_diagnostic/helpers/config_helper.py,sha256=aZATKVbZuw8L56KQpwMNcqJ3Qi5OplzS_N3ETR3hmj0,3351
|
|
15
|
+
onnx_diagnostic/helpers/doc_helper.py,sha256=pl5MZd3_FaE8BqQnqoBuSBxoNCFcd2OJd3eITUSku5c,5897
|
|
15
16
|
onnx_diagnostic/helpers/graph_helper.py,sha256=hevQT5a7_QuriVPQcbT5qe18n99Doyl5h3-qshx1-uk,14093
|
|
16
17
|
onnx_diagnostic/helpers/helper.py,sha256=oPybQruFcVLqvqLDhjphOZ8zZU1HHJWAlABMuTkAO8A,57090
|
|
17
18
|
onnx_diagnostic/helpers/memory_peak.py,sha256=OT6mz0muBbBZY0pjgW2_eCk_lOtFRo-5w4jFo2Z6Kok,6380
|
|
18
19
|
onnx_diagnostic/helpers/mini_onnx_builder.py,sha256=R1Vu4zHzN7GIUnbMVQzpkaXj8cCyyOweWOI9-TSgAHM,20966
|
|
19
|
-
onnx_diagnostic/helpers/model_builder_helper.py,sha256=
|
|
20
|
-
onnx_diagnostic/helpers/onnx_helper.py,sha256=
|
|
20
|
+
onnx_diagnostic/helpers/model_builder_helper.py,sha256=xIZmsVMFHfdtYeZHVEffBtxYObAaRPiaSmwwSKkmLwY,13502
|
|
21
|
+
onnx_diagnostic/helpers/onnx_helper.py,sha256=pXXQjfyNTSUF-Kt72U4fnBDkYAnWYMxdSw8m0qk3xmE,39670
|
|
21
22
|
onnx_diagnostic/helpers/ort_session.py,sha256=UgUUeUslDxEFBc6w6f3HMq_a7bn4TBlItmojqWquSj4,29281
|
|
22
23
|
onnx_diagnostic/helpers/rt_helper.py,sha256=BXU_u1syk2RyM0HTFHKEiO6rHHhZW2UFPyUTVdeq8BU,4251
|
|
23
24
|
onnx_diagnostic/helpers/torch_helper.py,sha256=mrmn4mBeRvMRJ9cEu7BbNG-AHq2OJfSm8dxgtzh-yQQ,31631
|
|
@@ -25,7 +26,7 @@ onnx_diagnostic/reference/__init__.py,sha256=nrd09rRuwMDBCPTSZ6kSKZXp1W9W_ExO1t9
|
|
|
25
26
|
onnx_diagnostic/reference/evaluator.py,sha256=RzNzjFDeMe-4X51Tb22N6aagazY5ktNq-mRmPcfY5EU,8848
|
|
26
27
|
onnx_diagnostic/reference/ort_evaluator.py,sha256=OaWMREF8fuJwimmONpIjQ6WxQT1X2roDsdJsgR8H_Cg,24853
|
|
27
28
|
onnx_diagnostic/reference/quantized_tensor.py,sha256=5u67uS2uGacdMD5VYCbpojNjiesDlV_kO0fAJ0vUWGE,1098
|
|
28
|
-
onnx_diagnostic/reference/torch_evaluator.py,sha256=
|
|
29
|
+
onnx_diagnostic/reference/torch_evaluator.py,sha256=qAeYvSFwOCMDctc39evBEle_2bX8kuJW2QSLksofzn8,26600
|
|
29
30
|
onnx_diagnostic/reference/ops/__init__.py,sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZOCcBY74-YBdrKVGs,1
|
|
30
31
|
onnx_diagnostic/reference/ops/op_add_add_mul_mul.py,sha256=CXQVtgVrT066gDJFwxL4nDSY4G8r08XNu3EwhWqMapU,1521
|
|
31
32
|
onnx_diagnostic/reference/ops/op_attention.py,sha256=ThALMDF53v3QeG1bohi0bvX2o90HZhGJbbAFOtwEHPE,2027
|
|
@@ -55,18 +56,18 @@ onnx_diagnostic/reference/ops/op_skip_layer_normalization.py,sha256=oJ7fQNx2iQh9
|
|
|
55
56
|
onnx_diagnostic/reference/ops/op_slice.py,sha256=yRxfYBs8b7QezyyG9JHCD8MIJHij2qR2NNDpBmD3FJI,705
|
|
56
57
|
onnx_diagnostic/reference/ops/op_transpose_cast.py,sha256=ifef74rvh0Yvq1Zx51B4mfnISbxV9uRg9DFjkdL1_68,361
|
|
57
58
|
onnx_diagnostic/reference/ops/op_tri_matrix.py,sha256=Yn2gxAyygcwtF5Hjau9ihXDAzul0BAkdqVimVahtFBU,519
|
|
58
|
-
onnx_diagnostic/reference/torch_ops/__init__.py,sha256=
|
|
59
|
-
onnx_diagnostic/reference/torch_ops/_op_run.py,sha256=
|
|
60
|
-
onnx_diagnostic/reference/torch_ops/access_ops.py,sha256=
|
|
61
|
-
onnx_diagnostic/reference/torch_ops/binary_ops.py,sha256
|
|
62
|
-
onnx_diagnostic/reference/torch_ops/controlflow_ops.py,sha256=
|
|
63
|
-
onnx_diagnostic/reference/torch_ops/generator_ops.py,sha256=
|
|
64
|
-
onnx_diagnostic/reference/torch_ops/nn_ops.py,sha256=
|
|
65
|
-
onnx_diagnostic/reference/torch_ops/other_ops.py,sha256=
|
|
66
|
-
onnx_diagnostic/reference/torch_ops/reduce_ops.py,sha256=
|
|
67
|
-
onnx_diagnostic/reference/torch_ops/sequence_ops.py,sha256=
|
|
68
|
-
onnx_diagnostic/reference/torch_ops/shape_ops.py,sha256=
|
|
69
|
-
onnx_diagnostic/reference/torch_ops/unary_ops.py,sha256=
|
|
59
|
+
onnx_diagnostic/reference/torch_ops/__init__.py,sha256=eZ7FBYH9Ta3BC0f7BJQAnIqiebqRkCt2_T3ktpVV6iQ,1150
|
|
60
|
+
onnx_diagnostic/reference/torch_ops/_op_run.py,sha256=EEUIwfbRldEFDhULquYhk9x5ZDa9t6f2mKJ1sM__D6A,10517
|
|
61
|
+
onnx_diagnostic/reference/torch_ops/access_ops.py,sha256=Zfs5OF03PV1CqlCqKI5VV-c4MY3KyQxmO7QZksxQjX8,3274
|
|
62
|
+
onnx_diagnostic/reference/torch_ops/binary_ops.py,sha256=-KxMcCYGDTcZyOss9qU1nU0rmdyg9SdVHJQohseSTcQ,2653
|
|
63
|
+
onnx_diagnostic/reference/torch_ops/controlflow_ops.py,sha256=uOEmzbM4nR2FwZQ8UikwEaHih3yw6T24D_VLYkr5RSU,4518
|
|
64
|
+
onnx_diagnostic/reference/torch_ops/generator_ops.py,sha256=dqqFvhkazVxRUDYhO2t-Z1etqoUt30LeX-8Pb9ZcbaM,926
|
|
65
|
+
onnx_diagnostic/reference/torch_ops/nn_ops.py,sha256=TeFxQEiTezx9UUzu82ToCLUnUOU56kKv6X81RdZ8UC8,7238
|
|
66
|
+
onnx_diagnostic/reference/torch_ops/other_ops.py,sha256=FnCY60mhdrzrsiHgvN-XpFRHYUpI0gIRqxgVK5J_na0,3995
|
|
67
|
+
onnx_diagnostic/reference/torch_ops/reduce_ops.py,sha256=9gFfraPTQbe_ZEUNCUis1JSmA5dj4tSzjAOpZPJKG4Y,5102
|
|
68
|
+
onnx_diagnostic/reference/torch_ops/sequence_ops.py,sha256=3EiVKpGfN4d1Iry4hgnr3MIJyEEKUrAIDgmRGsUXXa0,2297
|
|
69
|
+
onnx_diagnostic/reference/torch_ops/shape_ops.py,sha256=pJrNR2UB4PlWl6cv4EDl1uGl8YTBUUMQkhJcsh5K4sA,4291
|
|
70
|
+
onnx_diagnostic/reference/torch_ops/unary_ops.py,sha256=E8Ys1eZsOTsucBKoXb1_Kl5LbBDygniDvW2BvN4IPMo,1708
|
|
70
71
|
onnx_diagnostic/tasks/__init__.py,sha256=5XXM-rv-Hk2gSHvqsww9DzVd9mcRifacgcPgvPCjnDM,2412
|
|
71
72
|
onnx_diagnostic/tasks/automatic_speech_recognition.py,sha256=oRoYy56M0Yv_WOcn1hJXv-R9wgHkJ8rbym7j7y8oslw,6851
|
|
72
73
|
onnx_diagnostic/tasks/feature_extraction.py,sha256=V-T5NpZ6EimOz00weWWxGfksZ9jQ5ZQyaP-mxuCEuJo,2223
|
|
@@ -87,7 +88,7 @@ onnx_diagnostic/torch_export_patches/onnx_export_serialization.py,sha256=l5HvE_F
|
|
|
87
88
|
onnx_diagnostic/torch_export_patches/patch_expressions.py,sha256=vr4tt61cbDnaaaduzMj4UBZ8OUtr6GfDpIWwOYqjWzs,3213
|
|
88
89
|
onnx_diagnostic/torch_export_patches/patch_inputs.py,sha256=9b4pmyT00BwLqi7WG-gliep1RUy3gXEgW6BDnlSSA-M,7689
|
|
89
90
|
onnx_diagnostic/torch_export_patches/patch_module.py,sha256=R2d9IHM-RwsBKDsxuBIJnEqMoxbS9gd4YWFGG2wwV5A,39881
|
|
90
|
-
onnx_diagnostic/torch_export_patches/patch_module_helper.py,sha256=
|
|
91
|
+
onnx_diagnostic/torch_export_patches/patch_module_helper.py,sha256=2U0AdyZuU0W54QTdE7tY7imVzMnpQ5091ADNtTCkT8Y,6967
|
|
91
92
|
onnx_diagnostic/torch_export_patches/eval/__init__.py,sha256=VtkQB1o3Q2Fh99OOF6vQ2dynkhwzx2Wx6oB-rRbvTI0,23954
|
|
92
93
|
onnx_diagnostic/torch_export_patches/eval/model_cases.py,sha256=DTvdHPtNQh25Akv5o3D4Jxf1L1-SJ7w14tgvj8AAns8,26577
|
|
93
94
|
onnx_diagnostic/torch_export_patches/patches/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
@@ -95,7 +96,7 @@ onnx_diagnostic/torch_export_patches/patches/patch_torch.py,sha256=KaZ8TjDa9ATgT
|
|
|
95
96
|
onnx_diagnostic/torch_export_patches/patches/patch_transformers.py,sha256=Hf-U50vzgzJ4iUjS2LAYkbfmzCEwX80Dzvdrr-Rhlp0,26456
|
|
96
97
|
onnx_diagnostic/torch_models/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
97
98
|
onnx_diagnostic/torch_models/llms.py,sha256=soyg4yC87ptGoeulJhKqw5opGmuLvH1pn_ZDXZ4Jr8E,90
|
|
98
|
-
onnx_diagnostic/torch_models/test_helper.py,sha256=
|
|
99
|
+
onnx_diagnostic/torch_models/test_helper.py,sha256=tt6bgLjGRayzvkXrTelKHTjr7XU9BvhX7uE4XJq6H6o,59927
|
|
99
100
|
onnx_diagnostic/torch_models/hghub/__init__.py,sha256=vi1Q7YHdddj1soiBN42MSvJdFqe2_KUoWafHISjwOu8,58
|
|
100
101
|
onnx_diagnostic/torch_models/hghub/hub_api.py,sha256=BgM_p57Q0gT9GOhdrmOYcnbuTTzCWp80jS4OQqWwFhs,9990
|
|
101
102
|
onnx_diagnostic/torch_models/hghub/hub_data.py,sha256=885wKyZkdM-Qp5Sg6C9Ol1dxigmA8FYAko-Ys08sppo,8096
|
|
@@ -107,8 +108,8 @@ onnx_diagnostic/torch_models/untrained/llm_tiny_llm.py,sha256=7N3fGvT_4Mn4NbIo0Q
|
|
|
107
108
|
onnx_diagnostic/torch_onnx/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
108
109
|
onnx_diagnostic/torch_onnx/runtime_info.py,sha256=1g9F_Jf9AAgYQU4stbsrFXwQl-30mWlQrFbQ7val8Ps,9268
|
|
109
110
|
onnx_diagnostic/torch_onnx/sbs.py,sha256=1EL25DeYFzlBSiFG_XjePBLvsiItRXbdDrr5-QZW2mA,16878
|
|
110
|
-
onnx_diagnostic-0.6.
|
|
111
|
-
onnx_diagnostic-0.6.
|
|
112
|
-
onnx_diagnostic-0.6.
|
|
113
|
-
onnx_diagnostic-0.6.
|
|
114
|
-
onnx_diagnostic-0.6.
|
|
111
|
+
onnx_diagnostic-0.6.3.dist-info/licenses/LICENSE.txt,sha256=Vv6TXglX6Rc0d-f8aREhayhT-6PMQXEyOmI2NKlUCMc,1045
|
|
112
|
+
onnx_diagnostic-0.6.3.dist-info/METADATA,sha256=eJxj0KTPv1rXf-3T9KImWIF-u8g7wHXBGZm5zvXM7V8,6643
|
|
113
|
+
onnx_diagnostic-0.6.3.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
|
|
114
|
+
onnx_diagnostic-0.6.3.dist-info/top_level.txt,sha256=KwNkXewmcobM3ZT1DJLVWH6ebJzA5qKg7cWqKfpGNT4,16
|
|
115
|
+
onnx_diagnostic-0.6.3.dist-info/RECORD,,
|
|
File without changes
|
|
File without changes
|
|
File without changes
|