onnx-diagnostic 0.5.0__py3-none-any.whl → 0.6.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (43) hide show
  1. onnx_diagnostic/__init__.py +2 -2
  2. onnx_diagnostic/_command_lines_parser.py +39 -1
  3. onnx_diagnostic/api.py +15 -0
  4. onnx_diagnostic/export/dynamic_shapes.py +14 -5
  5. onnx_diagnostic/ext_test_case.py +15 -1
  6. onnx_diagnostic/helpers/args_helper.py +1 -1
  7. onnx_diagnostic/helpers/graph_helper.py +386 -0
  8. onnx_diagnostic/helpers/helper.py +30 -5
  9. onnx_diagnostic/helpers/model_builder_helper.py +349 -0
  10. onnx_diagnostic/helpers/rt_helper.py +69 -1
  11. onnx_diagnostic/helpers/torch_helper.py +2 -0
  12. onnx_diagnostic/reference/__init__.py +1 -0
  13. onnx_diagnostic/reference/torch_evaluator.py +518 -0
  14. onnx_diagnostic/reference/torch_ops/__init__.py +55 -0
  15. onnx_diagnostic/reference/torch_ops/_op_run.py +326 -0
  16. onnx_diagnostic/reference/torch_ops/access_ops.py +84 -0
  17. onnx_diagnostic/reference/torch_ops/binary_ops.py +108 -0
  18. onnx_diagnostic/reference/torch_ops/controlflow_ops.py +118 -0
  19. onnx_diagnostic/reference/torch_ops/generator_ops.py +35 -0
  20. onnx_diagnostic/reference/torch_ops/nn_ops.py +176 -0
  21. onnx_diagnostic/reference/torch_ops/other_ops.py +106 -0
  22. onnx_diagnostic/reference/torch_ops/reduce_ops.py +130 -0
  23. onnx_diagnostic/reference/torch_ops/sequence_ops.py +65 -0
  24. onnx_diagnostic/reference/torch_ops/shape_ops.py +120 -0
  25. onnx_diagnostic/reference/torch_ops/unary_ops.py +86 -0
  26. onnx_diagnostic/tasks/__init__.py +22 -1
  27. onnx_diagnostic/tasks/image_classification.py +2 -2
  28. onnx_diagnostic/tasks/text_generation.py +3 -3
  29. onnx_diagnostic/torch_export_patches/eval/__init__.py +690 -0
  30. onnx_diagnostic/torch_export_patches/eval/model_cases.py +883 -0
  31. onnx_diagnostic/torch_export_patches/onnx_export_errors.py +34 -1
  32. onnx_diagnostic/torch_export_patches/onnx_export_serialization.py +6 -1
  33. onnx_diagnostic/torch_export_patches/patch_module_helper.py +148 -28
  34. onnx_diagnostic/torch_export_patches/patches/patch_torch.py +91 -0
  35. onnx_diagnostic/torch_export_patches/patches/patch_transformers.py +117 -1
  36. onnx_diagnostic/torch_models/hghub/hub_data_cached_configs.py +142 -0
  37. onnx_diagnostic/torch_models/test_helper.py +225 -22
  38. onnx_diagnostic/torch_onnx/runtime_info.py +289 -0
  39. {onnx_diagnostic-0.5.0.dist-info → onnx_diagnostic-0.6.1.dist-info}/METADATA +1 -1
  40. {onnx_diagnostic-0.5.0.dist-info → onnx_diagnostic-0.6.1.dist-info}/RECORD +43 -24
  41. {onnx_diagnostic-0.5.0.dist-info → onnx_diagnostic-0.6.1.dist-info}/WHEEL +1 -1
  42. {onnx_diagnostic-0.5.0.dist-info → onnx_diagnostic-0.6.1.dist-info}/licenses/LICENSE.txt +0 -0
  43. {onnx_diagnostic-0.5.0.dist-info → onnx_diagnostic-0.6.1.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,518 @@
1
+ import functools
2
+ from typing import Dict, List, Optional, Sequence, Tuple, Union
3
+ import numpy as np
4
+ import onnx
5
+ import torch
6
+ from ..helpers.torch_helper import to_tensor
7
+ from ..torch_onnx.runtime_info import first_used_last_used, RuntimeValue
8
+ from . import torch_ops
9
+
10
+
11
+ @functools.lru_cache
12
+ def get_kernels() -> Dict[Tuple[str, str, int], type[torch_ops.OpRun]]:
13
+ """
14
+ Retrieves all the available kernels class :class:`TorchOnnxEvaluator`
15
+ can use. The full list is the following.
16
+
17
+ .. runpython::
18
+ :showcode:
19
+
20
+ from onnx_diagnostic.reference.torch_evaluator import get_kernels
21
+
22
+ for k, v in sorted(get_kernels().items()):
23
+ domain, name, version = k
24
+ f = f"{name}({version})" if domain == "" else f"{name}[{domain}]({version})"
25
+ add = " " * max(25 - len(f), 0)
26
+ dd = " -- device dependent" if v.device_dependent() else ""
27
+ print(f"{f}{add} -- {v.__name__}{dd}")
28
+ """
29
+ res = {}
30
+ for _k, v in torch_ops.__dict__.items():
31
+ if isinstance(v, type) and issubclass(v, torch_ops.OpRun) and "_" in v.__name__:
32
+ name, version = v.__name__.split("_")
33
+ domain = getattr(v, "domain", "")
34
+ res[domain, name, int(version)] = v
35
+ return res
36
+
37
+
38
+ class TorchOnnxEvaluator:
39
+ """
40
+ Torch evaluator for onnx models.
41
+ The model does not stores the original proto it evaluates to avoid
42
+
43
+ :param proto: a proto
44
+ :param providers: where to run the model
45
+ :param opsets: needed if proto is a graph
46
+ :param functions: known local functions
47
+ :param verbose: verbosity level
48
+
49
+ The class holds the following attributes:
50
+
51
+ * `providers`: providers
52
+ * `default_device`: default torch device
53
+ * `constants`: all initializers or constants
54
+ * `kernels`: kernels
55
+ * `runtime_info`: produced by :func:`first_used_last_used
56
+ <onnx_diagnostic.torch_onnx.runtime_info.first_used_last_used>`
57
+ * `last_used`: contains the list of intermediate results,
58
+ to remove after every node execution,
59
+ this avoid the memory to grow too much
60
+ * `functions`: local functions
61
+
62
+ The class is not multithreaded. `runtime_info` gets updated
63
+ by the the class. The list of available kernels is returned by function
64
+ :func:`onnx_diagnostic.reference.torch_evaluator.get_kernels`.
65
+ Example:
66
+
67
+ .. runpython::
68
+ :showcode:
69
+
70
+ import onnx
71
+ import onnx.helper as oh
72
+ import torch
73
+ from onnx_diagnostic.helpers import string_type
74
+ from onnx_diagnostic.reference import TorchOnnxEvaluator
75
+
76
+ TFLOAT = onnx.TensorProto.FLOAT
77
+
78
+ proto = oh.make_model(
79
+ oh.make_graph(
80
+ [
81
+ oh.make_node("Sigmoid", ["Y"], ["sy"]),
82
+ oh.make_node("Mul", ["Y", "sy"], ["ysy"]),
83
+ oh.make_node("Mul", ["X", "ysy"], ["final"]),
84
+ ],
85
+ "-nd-",
86
+ [
87
+ oh.make_tensor_value_info("X", TFLOAT, [1, "b", "c"]),
88
+ oh.make_tensor_value_info("Y", TFLOAT, ["a", "b", "c"]),
89
+ ],
90
+ [oh.make_tensor_value_info("final", TFLOAT, ["a", "b", "c"])],
91
+ ),
92
+ opset_imports=[oh.make_opsetid("", 18)],
93
+ ir_version=9,
94
+ )
95
+
96
+ sess = TorchOnnxEvaluator(proto)
97
+ feeds = dict(X=torch.rand((4, 5)), Y=torch.rand((4, 5)))
98
+ result = sess.run(None, feeds)
99
+ print(string_type(result, with_shape=True, with_min_max=True))
100
+
101
+ Adding ``verbose=1`` shows which kernels is executed:
102
+
103
+ .. runpython::
104
+ :showcode:
105
+
106
+ import onnx
107
+ import onnx.helper as oh
108
+ import torch
109
+ from onnx_diagnostic.helpers import string_type
110
+ from onnx_diagnostic.reference import TorchOnnxEvaluator
111
+
112
+ TFLOAT = onnx.TensorProto.FLOAT
113
+
114
+ proto = oh.make_model(
115
+ oh.make_graph(
116
+ [
117
+ oh.make_node("Sigmoid", ["Y"], ["sy"]),
118
+ oh.make_node("Mul", ["Y", "sy"], ["ysy"]),
119
+ oh.make_node("Mul", ["X", "ysy"], ["final"]),
120
+ ],
121
+ "-nd-",
122
+ [
123
+ oh.make_tensor_value_info("X", TFLOAT, [1, "b", "c"]),
124
+ oh.make_tensor_value_info("Y", TFLOAT, ["a", "b", "c"]),
125
+ ],
126
+ [oh.make_tensor_value_info("final", TFLOAT, ["a", "b", "c"])],
127
+ ),
128
+ opset_imports=[oh.make_opsetid("", 18)],
129
+ ir_version=9,
130
+ )
131
+
132
+ sess = TorchOnnxEvaluator(proto, verbose=1)
133
+ feeds = dict(X=torch.rand((4, 5)), Y=torch.rand((4, 5)))
134
+ result = sess.run(None, feeds)
135
+ print(string_type(result, with_shape=True, with_min_max=True))
136
+
137
+ It also shows when a result is not needed anymore. In that case,
138
+ it is deleted to free the memory it takes.
139
+ The runtime can also execute the kernel the onnx model on CUDA.
140
+ It follows the same logic as :class:`onnxruntime.InferenceSession`:
141
+ ``providers=["CUDAExecutionProvider"]``.
142
+ It is better in that case to move the input on CUDA. The class
143
+ tries to move every weight on CUDA but tries to keep any tensor
144
+ identified as a shape in CPU. Some bugs may remain as torch
145
+ raises an exception when devices are expected to be the same.
146
+ The runtime was validated with model :epkg:`arnir0/Tiny-LLM`.
147
+ """
148
+
149
+ class IO:
150
+ "IO"
151
+
152
+ def __init__(self, name: str, type: int, shape: Tuple[Union[str, int], ...]):
153
+ self.name = name
154
+ self.type = type
155
+ self.shape = shape
156
+
157
+ @classmethod
158
+ def _on_cuda(cls, providers) -> int:
159
+ if not providers:
160
+ return -1
161
+ for p in providers:
162
+ if p == "CUDAExecutionProvider":
163
+ return 0
164
+ if isinstance(p, tuple) and p[0] == "CUDAExecutionProvider":
165
+ return p[1]["device_id"]
166
+ return -1
167
+
168
+ def __init__(
169
+ self,
170
+ proto: Union[onnx.FunctionProto, onnx.GraphProto, onnx.ModelProto],
171
+ providers: Tuple[str, ...] = ("CPUExecutionProvider",),
172
+ opsets: Optional[Dict[str, int]] = None,
173
+ local_functions: Optional[Dict[Tuple[str, str], "TorchOnnxEvaluator"]] = None,
174
+ verbose: int = 0,
175
+ ):
176
+ self.providers = providers
177
+ self.constants: Dict[str, torch.Tensor] = {}
178
+ self.kernels: List[Optional[torch_ops.OpRun]] = []
179
+ self.functions = local_functions.copy() if local_functions else {}
180
+ self.CPU = torch.tensor([0]).to("cpu").device
181
+ self.verbose = verbose
182
+ dev = self._on_cuda(providers)
183
+ if dev < 0:
184
+ self.default_device = self.CPU
185
+ self.CUDA = None
186
+ else:
187
+ self.CUDA = torch.tensor([0]).to(f"cuda:{dev}").device
188
+ self.default_device = self.CUDA
189
+
190
+ if isinstance(proto, str):
191
+ proto = onnx.load(proto)
192
+ if isinstance(proto, onnx.ModelProto):
193
+ assert opsets is None, "proto is a model, opsets must be None in that case"
194
+ assert not proto.graph.sparse_initializer, "sparse_initializer not support yet"
195
+ self.opsets = {d.domain: d.version for d in proto.opset_import}
196
+ for f in proto.functions:
197
+ self.functions[f.domain, f.name] = self.__class__(
198
+ f,
199
+ providers=providers,
200
+ local_functions=self.functions,
201
+ verbose=self.verbose,
202
+ )
203
+ self._build_initializers(proto.graph.initializer)
204
+ self._build_initializers(proto.graph.node)
205
+ self._build_kernels(proto.graph.node)
206
+ self.input_names = [i.name for i in proto.graph.input]
207
+ self.output_names = [i.name for i in proto.graph.output]
208
+ self._io_input_names = [
209
+ self.IO(
210
+ name=i.name,
211
+ type=i.type.tensor_type.elem_type,
212
+ shape=tuple(
213
+ d.dim_param or d.dim_value for d in i.type.tensor_type.shape.dim
214
+ ),
215
+ )
216
+ for i in proto.graph.input
217
+ ]
218
+ self._io_output_names = [
219
+ self.IO(
220
+ name=i.name,
221
+ type=i.type.tensor_type.elem_type,
222
+ shape=tuple(
223
+ d.dim_param or d.dim_value for d in i.type.tensor_type.shape.dim
224
+ ),
225
+ )
226
+ for i in proto.graph.output
227
+ ]
228
+ elif isinstance(proto, onnx.GraphProto):
229
+ assert opsets, "opsets must be specified if proto is a graph"
230
+ assert not proto.sparse_initializer, "sparse_initializer not support yet"
231
+ self.opsets = opsets
232
+ self._build_initializers(proto.initializer)
233
+ self._build_initializers(proto.node)
234
+ self._build_kernels(proto.node)
235
+ self.input_names = [i.name for i in proto.input]
236
+ self.output_names = [i.name for i in proto.output]
237
+ elif isinstance(proto, onnx.FunctionProto):
238
+ assert opsets is None, "proto is a model, opsets must be None in that case"
239
+ self.opsets = {d.domain: d.version for d in proto.opset_import}
240
+ self._build_initializers(proto.node)
241
+ self._build_kernels(proto.node)
242
+ self.input_names = list(proto.input)
243
+ self.output_names = list(proto.output)
244
+ else:
245
+ raise TypeError(f"Unexpected type {type(proto)} for proto")
246
+
247
+ self.runtime_info = first_used_last_used(proto, constant_as_initializer=True)
248
+ self.last_used: List[List[str]] = [[] for _ in self.kernels]
249
+ for name, info in self.runtime_info.items():
250
+ assert isinstance(info.last_used, int) or info.is_input, (
251
+ f"Missing field last_used in {info!r}, last_used={info.last_used!r}, "
252
+ f"This may mean the node is unused and it should be removed."
253
+ )
254
+ if info.last_used is None:
255
+ # Not used.
256
+ self.last_used[0].append(name)
257
+ elif not info.is_output and not info.is_initializer:
258
+ self.last_used[info.last_used].append(name)
259
+
260
+ def get_inputs(self):
261
+ "Same API than onnxruntime."
262
+ assert hasattr(self, "_io_input_names"), "Missing attribute '_io_input_names'."
263
+ return self._io_input_names
264
+
265
+ def get_outputs(self):
266
+ "Same API than onnxruntime."
267
+ assert hasattr(self, "_io_output_names"), "Missing attribute '_io_output_names'."
268
+ return self._io_output_names
269
+
270
+ @property
271
+ def on_cuda(self) -> bool:
272
+ "Tells if the default device is CUDA."
273
+ return self.default_device == self.CUDA
274
+
275
+ def _build_initializers(self, inits: Sequence[Union[onnx.NodeProto, onnx.TensorProto]]):
276
+ for init in inits:
277
+ if isinstance(init, onnx.TensorProto):
278
+ self.constants[init.name] = to_tensor(init).to(self.default_device)
279
+ elif (
280
+ isinstance(init, onnx.NodeProto)
281
+ and init.op_type == "Constant"
282
+ and init.domain == ""
283
+ ):
284
+ value = None
285
+ for att in init.attribute:
286
+ if att.name == "value":
287
+ value = to_tensor(att.t).to(self.default_device)
288
+ elif att.name == "value_floats":
289
+ value = torch.tensor(list(att.floats), dtype=torch.float32).to(
290
+ self.default_device
291
+ )
292
+ assert value is not None, f"No attribute value in node {init}"
293
+ self.constants[init.output[0]] = value
294
+
295
+ def _build_kernels(self, nodes: Sequence[onnx.NodeProto]):
296
+ kernels = get_kernels()
297
+ self.kernels.clear()
298
+ for node in nodes:
299
+ if (node.domain, node.op_type) in self.functions:
300
+ kernel = torch_ops.OpRunFunction(
301
+ self.functions[node.domain, node.op_type], node, self.opsets[node.domain]
302
+ )
303
+ self.kernels.append(kernel)
304
+ continue
305
+
306
+ if node.op_type == "Constant" and node.domain == "":
307
+ # Treated as a constant.
308
+ self.kernels.append(None)
309
+ continue
310
+
311
+ opset = self.opsets[node.domain]
312
+ key = node.domain, node.op_type, opset
313
+ while key not in kernels and opset > 0:
314
+ opset -= 1
315
+ key = node.domain, node.op_type, opset
316
+ assert key in kernels, (
317
+ f"Missing kernel for node type {node.op_type!r} from domain {node.domain!r}, "
318
+ f"local functions={sorted(self.functions)}"
319
+ )
320
+ cls = kernels[key]
321
+ ags = [self.default_device] if cls.device_dependent() else []
322
+ kws = dict(parent=self) if cls.has_subgraphs() else {}
323
+ kernel2 = cls(node, opset, *ags, **kws)
324
+ self.kernels.append(kernel2)
325
+
326
+ def run(
327
+ self,
328
+ outputs: Optional[List[str]],
329
+ feeds: Union[Dict[str, torch.Tensor], Dict[str, np.ndarray]],
330
+ ) -> Union[List[Optional[torch.Tensor]], List[Optional[np.ndarray]]]:
331
+ """
332
+ Runs the ONNX model.
333
+
334
+ :param outputs: outputs required
335
+ :param feeds: inputs
336
+ :return: output tensors.
337
+ """
338
+ use_numpy = any(isinstance(t, np.ndarray) for t in feeds.values())
339
+ if use_numpy:
340
+ feeds = {k: torch.from_numpy(v) for k, v in feeds.items()}
341
+ if outputs is None:
342
+ outputs = self.output_names
343
+
344
+ # sets constants
345
+ for k, v in self.constants.items():
346
+ r = self.runtime_info[k]
347
+ if not r.has_value:
348
+ r.set_value(
349
+ torch_ops.OpRunTensor(
350
+ v.to(self.CUDA) if not r.is_shape and self.on_cuda else v,
351
+ is_constant=True,
352
+ may_cpu=len(v.shape) == 1 and v.numel() < 8 and v.dtype == torch.int64,
353
+ )
354
+ )
355
+ if self.verbose:
356
+ print(f"+C {r.name}: {r.string_type()}")
357
+
358
+ # inputs
359
+ for k, v in feeds.items():
360
+ r = self.runtime_info[k]
361
+ r.set_value(
362
+ torch_ops.OpRunTensor(
363
+ v.to(self.CUDA) if not r.is_shape and self.on_cuda else v,
364
+ is_constant=False,
365
+ may_cpu=len(v.shape) == 1 and v.numel() < 8 and v.dtype == torch.int64,
366
+ )
367
+ )
368
+ if self.verbose:
369
+ print(f"+I {r.name}: {r.string_type()}")
370
+
371
+ # node execution
372
+ for it, kernel in enumerate(self.kernels):
373
+ if kernel is not None:
374
+ if self.verbose:
375
+ print(
376
+ f"{kernel.__class__.__name__}"
377
+ f"({', '.join(kernel.input)}) -> "
378
+ f"{', '.join(kernel.output)}"
379
+ )
380
+ # kernel execution
381
+ inputs = [(self.runtime_info[i].value if i else None) for i in kernel.input]
382
+ if kernel.has_subgraphs():
383
+ res = kernel.run(*inputs, context=self.runtime_info) # type: ignore[call-arg]
384
+ else:
385
+ res = kernel.run(*inputs)
386
+ if isinstance(res, tuple):
387
+ # outputs
388
+ assert all(isinstance(o, torch_ops.OpRunValue) for o in res), (
389
+ f"Unexpected output type {[type(o) for o in res]} "
390
+ f"for kernel {type(kernel)}."
391
+ )
392
+ for name, t in zip(kernel.output, res):
393
+ self.runtime_info[name].set_value(t)
394
+ if self.verbose:
395
+ for name in kernel.output:
396
+ print(f"+R {name}: {self.runtime_info[name].string_type()}")
397
+ else:
398
+ assert isinstance(
399
+ res, torch_ops.OpRunValue
400
+ ), f"Unexpected output type {type(res)} for kernel {type(kernel)}."
401
+ self.runtime_info[kernel.output[0]].set_value(res)
402
+ if self.verbose:
403
+ print(
404
+ f"+R {kernel.output[0]}: "
405
+ f"{self.runtime_info[kernel.output[0]].string_type()}"
406
+ )
407
+
408
+ # free intermediate results
409
+ for name in self.last_used[it]:
410
+ self.runtime_info[name].clean_value()
411
+ if self.verbose:
412
+ print(f"- clean {name}")
413
+
414
+ assert all(
415
+ self.runtime_info[o].value is not None for o in outputs
416
+ ), "Not implemented yet when one output is None."
417
+ fres = [self.runtime_info[o].value.tensor for o in outputs] # type: ignore[union-attr]
418
+ if self.verbose:
419
+ print(f"++ outputs {', '.join(outputs)}")
420
+
421
+ # clean previous execution
422
+ for k in feeds:
423
+ self.runtime_info[k].clean_value()
424
+ if self.verbose:
425
+ print(f"- clean {k}")
426
+ for o in outputs:
427
+ self.runtime_info[o].clean_value()
428
+ if self.verbose:
429
+ print(f"- clean {o}")
430
+
431
+ if use_numpy:
432
+ return [None if a is None else a.detach().cpu().numpy() for a in fres]
433
+ return fres
434
+
435
+ def run_with_values(
436
+ self,
437
+ *args: Optional[torch_ops.OpRunTensor],
438
+ context: Optional[Dict[str, RuntimeValue]] = None,
439
+ ) -> Union[torch_ops.OpRunValue, Tuple[torch_ops.OpRunValue, ...]]:
440
+ """
441
+ Runs the ONNX model.
442
+
443
+ :param args: inputs
444
+ :param context: local context for the execution of subgraphs
445
+ :return: output OpRunTensor
446
+ """
447
+ assert all(
448
+ isinstance(a, torch_ops.OpRunValue) for a in args
449
+ ), f"Unexpected type in args: {[type(a) for a in args]}"
450
+ outputs = self.output_names
451
+ context = context or {}
452
+
453
+ # sets constants
454
+ for k, v in self.constants.items():
455
+ r = self.runtime_info[k]
456
+ if not r.has_value:
457
+ r.set_value(
458
+ torch_ops.OpRunTensor(
459
+ v.to(self.CUDA) if r.is_shape is False and self.on_cuda else v,
460
+ is_constant=True,
461
+ may_cpu=len(v.shape) == 1 and v.numel() < 8 and v.dtype == torch.int64,
462
+ )
463
+ )
464
+
465
+ # inputs
466
+ for k, v in zip(self.input_names, args):
467
+ r = self.runtime_info[k]
468
+ r.set_value(
469
+ torch_ops.OpRunTensor(None) if v is None else v.__class__(v.tensor_or_sequence)
470
+ )
471
+
472
+ # node execution
473
+ for it, kernel in enumerate(self.kernels):
474
+ if kernel is not None:
475
+ # kernel execution
476
+ inputs = [
477
+ (
478
+ (
479
+ self.runtime_info[i].value
480
+ if i in self.runtime_info
481
+ else context[i].value
482
+ )
483
+ if i
484
+ else None
485
+ )
486
+ for i in kernel.input
487
+ ]
488
+ res = kernel.run(*inputs)
489
+ if isinstance(res, tuple):
490
+ # outputs
491
+ assert all(isinstance(o, torch_ops.OpRunTensor) for o in res), (
492
+ f"Unexpected output type {[type(o) for o in res]} "
493
+ f"for kernel {type(kernel)}."
494
+ )
495
+ for name, t in zip(kernel.output, res):
496
+ self.runtime_info[name].set_value(t)
497
+ else:
498
+ assert isinstance(
499
+ res, torch_ops.OpRunValue
500
+ ), f"Unexpected output type {type(res)} for kernel {type(kernel)}."
501
+ self.runtime_info[kernel.output[0]].set_value(res)
502
+
503
+ # free intermediate results
504
+ for name in self.last_used[it]:
505
+ self.runtime_info[name].clean_value()
506
+
507
+ assert all(
508
+ self.runtime_info[o].value is not None for o in outputs
509
+ ), "Not implemented yet when one output is None."
510
+ res2 = [self.runtime_info[o].value.copy() for o in outputs] # type: ignore[assignment, union-attr]
511
+
512
+ # clean previous execution
513
+ for k in self.input_names:
514
+ self.runtime_info[k].clean_value()
515
+ for o in self.output_names:
516
+ self.runtime_info[o].clean_value()
517
+
518
+ return res2[0] if len(res2) == 1 else tuple(res2) # type: ignore[index, return-value, arg-type]
@@ -0,0 +1,55 @@
1
+ from ._op_run import OpRun, OpRunFunction, OpRunSequence, OpRunTensor, OpRunValue
2
+ from .access_ops import Gather_1, ScatterND_16, Slice_13
3
+ from .binary_ops import (
4
+ And_1,
5
+ Add_1,
6
+ Div_1,
7
+ Equal_1,
8
+ Greater_1,
9
+ GreaterOrEqual_1,
10
+ Less_1,
11
+ LessOrEqual_1,
12
+ MatMul_1,
13
+ Mul_1,
14
+ Or_1,
15
+ Pow_12,
16
+ Sub_1,
17
+ )
18
+ from .controlflow_ops import If_1, Loop_16
19
+ from .generator_ops import Range_11
20
+ from .nn_ops import AveragePool_11, Conv_11, LayerNormalization_17, Softmax_13, Tanh_6
21
+ from .other_ops import (
22
+ Cast_6,
23
+ CastLike_15,
24
+ NonZero_13,
25
+ Concat_1,
26
+ Tile_6,
27
+ Transpose_1,
28
+ Trilu_14,
29
+ Where_9,
30
+ )
31
+ from .reduce_ops import ReduceMax_18, ReduceMean_18, ReduceMin_17, ReduceMin_18, ReduceSum_13
32
+ from .sequence_ops import ConcatFromSequence_11, SequenceEmpty_11, SequenceInsert_11
33
+ from .shape_ops import (
34
+ ConstantOfShape_9,
35
+ Expand_8,
36
+ Reshape_14,
37
+ Shape_15,
38
+ Squeeze_13,
39
+ Split_18,
40
+ Unsqueeze_13,
41
+ )
42
+ from .unary_ops import (
43
+ Abs_1,
44
+ Cos_1,
45
+ Erf_9,
46
+ Exp_1,
47
+ Identity_1,
48
+ Log_1,
49
+ Neg_1,
50
+ Not_1,
51
+ Reciprocal_1,
52
+ Sigmoid_6,
53
+ Sin_1,
54
+ Sqrt_1,
55
+ )