onesecondtrader 0.15.0__py3-none-any.whl → 0.16.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- onesecondtrader/__init__.py +0 -12
- onesecondtrader/indicators.py +102 -0
- onesecondtrader/ontology.py +18 -0
- {onesecondtrader-0.15.0.dist-info → onesecondtrader-0.16.0.dist-info}/METADATA +2 -1
- onesecondtrader-0.16.0.dist-info/RECORD +7 -0
- onesecondtrader/brokers/__init__.py +0 -0
- onesecondtrader/brokers/base_broker.py +0 -99
- onesecondtrader/brokers/simulated_broker.py +0 -10
- onesecondtrader/core/__init__.py +0 -0
- onesecondtrader/core/models.py +0 -204
- onesecondtrader/core/portfolio.py +0 -177
- onesecondtrader/core/py.typed +0 -0
- onesecondtrader/datafeeds/__init__.py +0 -0
- onesecondtrader/datafeeds/base_datafeed.py +0 -54
- onesecondtrader/datafeeds/csv_datafeed.py +0 -297
- onesecondtrader/indicators/__init__.py +0 -0
- onesecondtrader/indicators/base_indicator.py +0 -136
- onesecondtrader/indicators/moving_averages.py +0 -132
- onesecondtrader/messaging/__init__.py +0 -9
- onesecondtrader/messaging/eventbus.py +0 -499
- onesecondtrader/messaging/events.py +0 -894
- onesecondtrader/monitoring/__init__.py +0 -0
- onesecondtrader/monitoring/console.py +0 -14
- onesecondtrader/monitoring/py.typed +0 -0
- onesecondtrader/py.typed +0 -0
- onesecondtrader/strategies/__init__.py +0 -0
- onesecondtrader/strategies/base_strategy.py +0 -46
- onesecondtrader-0.15.0.dist-info/RECORD +0 -27
- {onesecondtrader-0.15.0.dist-info → onesecondtrader-0.16.0.dist-info}/WHEEL +0 -0
- {onesecondtrader-0.15.0.dist-info → onesecondtrader-0.16.0.dist-info}/licenses/LICENSE +0 -0
|
@@ -1,54 +0,0 @@
|
|
|
1
|
-
"""
|
|
2
|
-
This module provides the base class for all datafeeds.
|
|
3
|
-
"""
|
|
4
|
-
|
|
5
|
-
import abc
|
|
6
|
-
from onesecondtrader import messaging
|
|
7
|
-
from onesecondtrader.core import models
|
|
8
|
-
|
|
9
|
-
|
|
10
|
-
class BaseDatafeed(abc.ABC):
|
|
11
|
-
"""
|
|
12
|
-
Base class for all datafeeds.
|
|
13
|
-
"""
|
|
14
|
-
|
|
15
|
-
def __init__(self, event_bus: messaging.EventBus | None = None):
|
|
16
|
-
self.event_bus: messaging.EventBus = (
|
|
17
|
-
event_bus if event_bus else messaging.system_event_bus
|
|
18
|
-
)
|
|
19
|
-
|
|
20
|
-
@abc.abstractmethod
|
|
21
|
-
def connect(self):
|
|
22
|
-
"""
|
|
23
|
-
Connect to the datafeed.
|
|
24
|
-
"""
|
|
25
|
-
pass
|
|
26
|
-
|
|
27
|
-
@abc.abstractmethod
|
|
28
|
-
def watch(self, symbols: list[tuple[str, models.RecordType]]):
|
|
29
|
-
"""
|
|
30
|
-
Start watching symbols.
|
|
31
|
-
|
|
32
|
-
Args:
|
|
33
|
-
symbols (list[tuple[str, models.TimeFrame]]): List of symbols to watch with
|
|
34
|
-
their respective timeframes.
|
|
35
|
-
"""
|
|
36
|
-
pass
|
|
37
|
-
|
|
38
|
-
@abc.abstractmethod
|
|
39
|
-
def unwatch(self, symbols: list[tuple[str, models.RecordType]]):
|
|
40
|
-
"""
|
|
41
|
-
Stop watching symbols.
|
|
42
|
-
|
|
43
|
-
Args:
|
|
44
|
-
symbols (list[tuple[str, models.TimeFrame]]): List of symbols to stop
|
|
45
|
-
watching with their respective timeframes.
|
|
46
|
-
"""
|
|
47
|
-
pass
|
|
48
|
-
|
|
49
|
-
@abc.abstractmethod
|
|
50
|
-
def disconnect(self):
|
|
51
|
-
"""
|
|
52
|
-
Disconnect from the datafeed.
|
|
53
|
-
"""
|
|
54
|
-
pass
|
|
@@ -1,297 +0,0 @@
|
|
|
1
|
-
"""
|
|
2
|
-
This module provides a CSV-based simulated live datafeed.
|
|
3
|
-
"""
|
|
4
|
-
|
|
5
|
-
import os
|
|
6
|
-
import pandas as pd
|
|
7
|
-
import threading
|
|
8
|
-
import time
|
|
9
|
-
from pathlib import Path
|
|
10
|
-
from dotenv import load_dotenv
|
|
11
|
-
from onesecondtrader.messaging import events, eventbus
|
|
12
|
-
from onesecondtrader.core import models
|
|
13
|
-
from onesecondtrader.monitoring import console
|
|
14
|
-
from onesecondtrader.datafeeds import base_datafeed
|
|
15
|
-
from pandas.io.parsers.readers import TextFileReader
|
|
16
|
-
|
|
17
|
-
|
|
18
|
-
class CSVDatafeed(base_datafeed.BaseDatafeed):
|
|
19
|
-
"""
|
|
20
|
-
CSV-based simulated live datafeed.
|
|
21
|
-
|
|
22
|
-
Only one instance of any BaseDatafeed subclass can exist at a time.
|
|
23
|
-
"""
|
|
24
|
-
|
|
25
|
-
_instance = None
|
|
26
|
-
|
|
27
|
-
def __init__(
|
|
28
|
-
self,
|
|
29
|
-
event_bus: eventbus.EventBus,
|
|
30
|
-
csv_path: str | Path | None = None,
|
|
31
|
-
streaming_delay: float | None = None,
|
|
32
|
-
):
|
|
33
|
-
"""
|
|
34
|
-
Initialize CSV datafeed.
|
|
35
|
-
|
|
36
|
-
Args:
|
|
37
|
-
event_bus: Event bus used to publish market data events.
|
|
38
|
-
csv_path: Optional path to CSV file. Overrides CSV_PATH env var.
|
|
39
|
-
streaming_delay: Optional delay in seconds between processing rows.
|
|
40
|
-
Overrides CSV_STREAMING_DELAY env var.
|
|
41
|
-
|
|
42
|
-
Attributes:
|
|
43
|
-
self.csv_path (Path | None): Path to CSV file.
|
|
44
|
-
self.data_iterator (TextFileReader | None): Iterator for reading CSV.
|
|
45
|
-
self._watched_symbols (set[tuple[str, models.RecordType]]): Set of
|
|
46
|
-
symbols and record types currently being watched.
|
|
47
|
-
self._streaming_thread (threading.Thread | None): Background thread
|
|
48
|
-
for streaming data.
|
|
49
|
-
self._symbols_lock (threading.Lock): Lock to protect _watched_symbols
|
|
50
|
-
from concurrent access.
|
|
51
|
-
self._streaming_delay (float): Delay in seconds between processing
|
|
52
|
-
CSV rows (from CSV_STREAMING_DELAY env var, set in connect()).
|
|
53
|
-
self._init_csv_path (str | Path | None): CSV path provided during
|
|
54
|
-
initialization.
|
|
55
|
-
self._init_streaming_delay (float | None): Streaming delay provided
|
|
56
|
-
during initialization.
|
|
57
|
-
"""
|
|
58
|
-
if CSVDatafeed._instance is not None:
|
|
59
|
-
console.logger.warning(
|
|
60
|
-
f"Only one BaseDatafeed instance allowed. "
|
|
61
|
-
f"Current: {type(CSVDatafeed._instance).__name__}. "
|
|
62
|
-
f"Initialization failed."
|
|
63
|
-
)
|
|
64
|
-
return
|
|
65
|
-
|
|
66
|
-
super().__init__(event_bus)
|
|
67
|
-
CSVDatafeed._instance = self
|
|
68
|
-
|
|
69
|
-
self.csv_path: Path | None = None
|
|
70
|
-
self.data_iterator: TextFileReader | None = None
|
|
71
|
-
self._watched_symbols: set[tuple[str, models.RecordType]] = set()
|
|
72
|
-
self._stop_event = threading.Event()
|
|
73
|
-
self._streaming_thread: threading.Thread | None = None
|
|
74
|
-
self._symbols_lock: threading.Lock = threading.Lock()
|
|
75
|
-
self._streaming_delay: float = 0.0
|
|
76
|
-
|
|
77
|
-
self._init_csv_path: str | Path | None = csv_path
|
|
78
|
-
self._init_streaming_delay: float | None = streaming_delay
|
|
79
|
-
|
|
80
|
-
def connect(self):
|
|
81
|
-
"""
|
|
82
|
-
Connect to CSV file specified in .env file (CSV_PATH variable) and
|
|
83
|
-
create data iterator.
|
|
84
|
-
"""
|
|
85
|
-
load_dotenv()
|
|
86
|
-
|
|
87
|
-
if self._init_csv_path is not None:
|
|
88
|
-
csv_path_str = str(self._init_csv_path)
|
|
89
|
-
console.logger.info(f"Using CSV path from initialization: {csv_path_str}")
|
|
90
|
-
else:
|
|
91
|
-
csv_path_str = os.getenv("CSV_PATH")
|
|
92
|
-
if not csv_path_str:
|
|
93
|
-
console.logger.error(
|
|
94
|
-
"CSV_PATH not found in environment variables and not "
|
|
95
|
-
"provided in __init__. Either set CSV_PATH in .env file "
|
|
96
|
-
"or pass csv_path to CSVDatafeed()"
|
|
97
|
-
)
|
|
98
|
-
return False
|
|
99
|
-
|
|
100
|
-
if self._init_streaming_delay is not None:
|
|
101
|
-
self._streaming_delay = self._init_streaming_delay
|
|
102
|
-
if self._streaming_delay < 0:
|
|
103
|
-
console.logger.warning(
|
|
104
|
-
f"Streaming delay cannot be negative "
|
|
105
|
-
f"({self._streaming_delay}), using default 0.0"
|
|
106
|
-
)
|
|
107
|
-
self._streaming_delay = 0.0
|
|
108
|
-
else:
|
|
109
|
-
console.logger.info(
|
|
110
|
-
f"CSV streaming delay set from initialization: "
|
|
111
|
-
f"{self._streaming_delay} seconds"
|
|
112
|
-
)
|
|
113
|
-
else:
|
|
114
|
-
streaming_delay_str = os.getenv("CSV_STREAMING_DELAY", "0.0")
|
|
115
|
-
try:
|
|
116
|
-
self._streaming_delay = float(streaming_delay_str)
|
|
117
|
-
if self._streaming_delay < 0:
|
|
118
|
-
console.logger.warning(
|
|
119
|
-
f"CSV_STREAMING_DELAY cannot be negative "
|
|
120
|
-
f"({self._streaming_delay}), using default 0.0"
|
|
121
|
-
)
|
|
122
|
-
self._streaming_delay = 0.0
|
|
123
|
-
else:
|
|
124
|
-
console.logger.info(
|
|
125
|
-
f"CSV streaming delay set from environment: "
|
|
126
|
-
f"{self._streaming_delay} seconds"
|
|
127
|
-
)
|
|
128
|
-
except ValueError:
|
|
129
|
-
console.logger.error(
|
|
130
|
-
f"Invalid CSV_STREAMING_DELAY value "
|
|
131
|
-
f"'{streaming_delay_str}', must be a number. "
|
|
132
|
-
f"Using default 0.0"
|
|
133
|
-
)
|
|
134
|
-
self._streaming_delay = 0.0
|
|
135
|
-
|
|
136
|
-
self.csv_path = Path(csv_path_str)
|
|
137
|
-
|
|
138
|
-
try:
|
|
139
|
-
self.data_iterator = pd.read_csv(
|
|
140
|
-
self.csv_path,
|
|
141
|
-
usecols=[
|
|
142
|
-
"ts_event",
|
|
143
|
-
"rtype",
|
|
144
|
-
"open",
|
|
145
|
-
"high",
|
|
146
|
-
"low",
|
|
147
|
-
"close",
|
|
148
|
-
"volume",
|
|
149
|
-
"symbol",
|
|
150
|
-
],
|
|
151
|
-
dtype={
|
|
152
|
-
"ts_event": int,
|
|
153
|
-
"rtype": int,
|
|
154
|
-
"open": int,
|
|
155
|
-
"high": int,
|
|
156
|
-
"low": int,
|
|
157
|
-
"close": int,
|
|
158
|
-
"volume": int,
|
|
159
|
-
"symbol": str,
|
|
160
|
-
},
|
|
161
|
-
iterator=True,
|
|
162
|
-
chunksize=1,
|
|
163
|
-
)
|
|
164
|
-
console.logger.info(f"CSV datafeed connected to: {self.csv_path}")
|
|
165
|
-
self._stop_event.clear()
|
|
166
|
-
return True
|
|
167
|
-
|
|
168
|
-
except Exception as e:
|
|
169
|
-
console.logger.error(f"Failed to connect to CSV file {self.csv_path}: {e}")
|
|
170
|
-
return False
|
|
171
|
-
|
|
172
|
-
def watch(self, symbols):
|
|
173
|
-
"""
|
|
174
|
-
Start streaming data for specified symbols.
|
|
175
|
-
Can be called multiple times to add more symbols.
|
|
176
|
-
|
|
177
|
-
Args:
|
|
178
|
-
symbols (list[tuple[str, models.RecordType]]): List of symbols to
|
|
179
|
-
watch with their respective record types.
|
|
180
|
-
"""
|
|
181
|
-
if not self.data_iterator:
|
|
182
|
-
console.logger.error("Not connected. Call connect() first.")
|
|
183
|
-
return
|
|
184
|
-
|
|
185
|
-
with self._symbols_lock:
|
|
186
|
-
new_symbols = set(symbols) - self._watched_symbols
|
|
187
|
-
already_watched = set(symbols) & self._watched_symbols
|
|
188
|
-
|
|
189
|
-
self._watched_symbols.update(new_symbols)
|
|
190
|
-
|
|
191
|
-
if new_symbols:
|
|
192
|
-
console.logger.info(f"Added new symbols: {new_symbols}")
|
|
193
|
-
if already_watched:
|
|
194
|
-
console.logger.info(f"Already watching: {already_watched}")
|
|
195
|
-
console.logger.info(
|
|
196
|
-
f"Currently watching: {len(self._watched_symbols)} symbols"
|
|
197
|
-
)
|
|
198
|
-
|
|
199
|
-
if self._streaming_thread is None or not self._streaming_thread.is_alive():
|
|
200
|
-
self._streaming_thread = threading.Thread(
|
|
201
|
-
target=self._stream, name="CSVDatafeedStreaming", daemon=True
|
|
202
|
-
)
|
|
203
|
-
self._streaming_thread.start()
|
|
204
|
-
console.logger.info("Started CSV streaming thread")
|
|
205
|
-
|
|
206
|
-
def _stream(self):
|
|
207
|
-
"""Internal method that runs in background thread to stream CSV data."""
|
|
208
|
-
console.logger.info("CSV streaming thread started")
|
|
209
|
-
|
|
210
|
-
should_delay = self._streaming_delay > 0
|
|
211
|
-
delay_time = self._streaming_delay
|
|
212
|
-
|
|
213
|
-
while not self._stop_event.is_set():
|
|
214
|
-
try:
|
|
215
|
-
chunk = next(self.data_iterator)
|
|
216
|
-
row = chunk.iloc[0]
|
|
217
|
-
|
|
218
|
-
symbol = row["symbol"]
|
|
219
|
-
rtype = row["rtype"]
|
|
220
|
-
|
|
221
|
-
with self._symbols_lock:
|
|
222
|
-
symbol_key = (symbol, models.RecordType(rtype))
|
|
223
|
-
if symbol_key not in self._watched_symbols:
|
|
224
|
-
continue
|
|
225
|
-
|
|
226
|
-
bar_event = events.Market.IncomingBar(
|
|
227
|
-
ts_event=pd.Timestamp(row["ts_event"], unit="ns", tz="UTC"),
|
|
228
|
-
symbol=symbol,
|
|
229
|
-
bar=models.Bar(
|
|
230
|
-
open=row["open"] / 1e9,
|
|
231
|
-
high=row["high"] / 1e9,
|
|
232
|
-
low=row["low"] / 1e9,
|
|
233
|
-
close=row["close"] / 1e9,
|
|
234
|
-
volume=int(row["volume"]),
|
|
235
|
-
),
|
|
236
|
-
)
|
|
237
|
-
|
|
238
|
-
self.event_bus.publish(bar_event)
|
|
239
|
-
|
|
240
|
-
if should_delay:
|
|
241
|
-
time.sleep(delay_time)
|
|
242
|
-
|
|
243
|
-
except StopIteration:
|
|
244
|
-
console.logger.info("CSV datafeed reached end of file")
|
|
245
|
-
break
|
|
246
|
-
except ValueError as e:
|
|
247
|
-
console.logger.warning(f"Invalid rtype {row['rtype']} in CSV data: {e}")
|
|
248
|
-
continue
|
|
249
|
-
except Exception as e:
|
|
250
|
-
console.logger.error(f"CSV datafeed error reading data: {e}")
|
|
251
|
-
break
|
|
252
|
-
|
|
253
|
-
console.logger.info("CSV streaming thread stopped")
|
|
254
|
-
|
|
255
|
-
def unwatch(self, symbols):
|
|
256
|
-
"""
|
|
257
|
-
Stop watching specific symbols.
|
|
258
|
-
|
|
259
|
-
Args:
|
|
260
|
-
symbols (list[tuple[str, models.RecordType]]): List of symbols to
|
|
261
|
-
stop watching.
|
|
262
|
-
"""
|
|
263
|
-
with self._symbols_lock:
|
|
264
|
-
for symbol in symbols:
|
|
265
|
-
self._watched_symbols.discard(symbol)
|
|
266
|
-
|
|
267
|
-
console.logger.info(f"Stopped watching symbols: {symbols}")
|
|
268
|
-
console.logger.info(f"Still watching: {self._watched_symbols}")
|
|
269
|
-
|
|
270
|
-
def disconnect(self):
|
|
271
|
-
"""
|
|
272
|
-
Disconnect from CSV datafeed.
|
|
273
|
-
"""
|
|
274
|
-
self._stop_event.set()
|
|
275
|
-
|
|
276
|
-
if self._streaming_thread and self._streaming_thread.is_alive():
|
|
277
|
-
console.logger.info("Waiting for streaming thread to stop...")
|
|
278
|
-
self._streaming_thread.join(timeout=5.0)
|
|
279
|
-
if self._streaming_thread.is_alive():
|
|
280
|
-
console.logger.warning("Streaming thread did not stop within timeout")
|
|
281
|
-
|
|
282
|
-
with self._symbols_lock:
|
|
283
|
-
self._watched_symbols.clear()
|
|
284
|
-
|
|
285
|
-
if self.data_iterator is not None:
|
|
286
|
-
try:
|
|
287
|
-
self.data_iterator.close()
|
|
288
|
-
console.logger.info("CSV iterator closed successfully")
|
|
289
|
-
except Exception as e:
|
|
290
|
-
console.logger.warning(f"Error closing CSV iterator: {e}")
|
|
291
|
-
finally:
|
|
292
|
-
self.data_iterator = None
|
|
293
|
-
|
|
294
|
-
self.csv_path = None
|
|
295
|
-
self._streaming_thread = None
|
|
296
|
-
|
|
297
|
-
CSVDatafeed._instance = None
|
|
File without changes
|
|
@@ -1,136 +0,0 @@
|
|
|
1
|
-
"""
|
|
2
|
-
This module provides the base class for all indicators.
|
|
3
|
-
"""
|
|
4
|
-
|
|
5
|
-
import abc
|
|
6
|
-
import collections
|
|
7
|
-
import threading
|
|
8
|
-
|
|
9
|
-
import numpy as np
|
|
10
|
-
from onesecondtrader.core import models
|
|
11
|
-
from onesecondtrader.monitoring import console
|
|
12
|
-
|
|
13
|
-
|
|
14
|
-
class BaseIndicator(abc.ABC):
|
|
15
|
-
"""
|
|
16
|
-
Base class for all indicators.
|
|
17
|
-
|
|
18
|
-
If new market data is received, the indicator is updated by calling the
|
|
19
|
-
`update(incoming_bar)` method.
|
|
20
|
-
When programming a new indicator, only the `name` property and the
|
|
21
|
-
`_compute_indicator()` method need to be implemented.
|
|
22
|
-
|
|
23
|
-
Examples:
|
|
24
|
-
>>> from onesecondtrader.indicators import base_indicator
|
|
25
|
-
>>> from onesecondtrader.core import models
|
|
26
|
-
>>> class DummyCloseIndicator(base_indicator.BaseIndicator):
|
|
27
|
-
... @property
|
|
28
|
-
... def name(self) -> str:
|
|
29
|
-
... return "dummy_close_indicator"
|
|
30
|
-
... def _compute_indicator(self, incoming_bar: models.Bar):
|
|
31
|
-
... return incoming_bar.close
|
|
32
|
-
...
|
|
33
|
-
>>> dummy_close_indicator = DummyCloseIndicator(max_history=10)
|
|
34
|
-
>>> incoming_bar = models.Bar(
|
|
35
|
-
... open=100.0, high=101.0, low=99.0, close=100.5, volume=10000
|
|
36
|
-
... )
|
|
37
|
-
>>> dummy_close_indicator.update(incoming_bar)
|
|
38
|
-
>>> dummy_close_indicator[0]
|
|
39
|
-
100.5
|
|
40
|
-
>>> dummy_close_indicator[-1]
|
|
41
|
-
nan
|
|
42
|
-
>>> next_incoming_bar = models.Bar(
|
|
43
|
-
... open=100.0, high=101.0, low=99.0, close=101.0, volume=10000
|
|
44
|
-
... )
|
|
45
|
-
>>> dummy_close_indicator.update(next_incoming_bar)
|
|
46
|
-
>>> dummy_close_indicator[0]
|
|
47
|
-
101.0
|
|
48
|
-
>>> dummy_close_indicator[-1]
|
|
49
|
-
100.5
|
|
50
|
-
"""
|
|
51
|
-
|
|
52
|
-
def __init__(self, max_history: int = 100) -> None:
|
|
53
|
-
"""
|
|
54
|
-
Initialize the indicator with a maximum lookback history length.
|
|
55
|
-
|
|
56
|
-
Args:
|
|
57
|
-
max_history (int): Maximum lookback history length as number of periods.
|
|
58
|
-
Defaults to 100.
|
|
59
|
-
|
|
60
|
-
Attributes:
|
|
61
|
-
self._lock (threading.Lock): Lock to protect concurrent access to the
|
|
62
|
-
indicator's state.
|
|
63
|
-
self._history (collections.deque): Deque to store the lookback history.
|
|
64
|
-
"""
|
|
65
|
-
if max_history < 1:
|
|
66
|
-
console.logger.warning(
|
|
67
|
-
f"max_history must be >= 1, got {max_history}; defaulting to 1"
|
|
68
|
-
)
|
|
69
|
-
max_history = 1
|
|
70
|
-
self._lock: threading.Lock = threading.Lock()
|
|
71
|
-
|
|
72
|
-
self._history: collections.deque[float] = collections.deque(maxlen=max_history)
|
|
73
|
-
|
|
74
|
-
@property
|
|
75
|
-
@abc.abstractmethod
|
|
76
|
-
def name(self) -> str:
|
|
77
|
-
"""
|
|
78
|
-
Name of the indicator.
|
|
79
|
-
This property must be implemented by subclasses.
|
|
80
|
-
|
|
81
|
-
Returns:
|
|
82
|
-
str: Name of the indicator.
|
|
83
|
-
"""
|
|
84
|
-
pass
|
|
85
|
-
|
|
86
|
-
@property
|
|
87
|
-
def latest(self) -> float:
|
|
88
|
-
"""
|
|
89
|
-
The latest (most recent) indicator value.
|
|
90
|
-
|
|
91
|
-
Equivalent to self[0]. Returns numpy.nan when no value is available yet.
|
|
92
|
-
"""
|
|
93
|
-
return self[0]
|
|
94
|
-
|
|
95
|
-
def update(self, incoming_bar: models.Bar) -> None:
|
|
96
|
-
"""
|
|
97
|
-
Updates the indicator based on an incoming closed bar by calling
|
|
98
|
-
`self._compute_indicator()`.
|
|
99
|
-
"""
|
|
100
|
-
new_value = self._compute_indicator(incoming_bar)
|
|
101
|
-
with self._lock:
|
|
102
|
-
self._history.append(new_value)
|
|
103
|
-
|
|
104
|
-
@abc.abstractmethod
|
|
105
|
-
def _compute_indicator(self, incoming_bar: models.Bar) -> float:
|
|
106
|
-
"""
|
|
107
|
-
Computes the new indicator value based on an incoming closed bar.
|
|
108
|
-
This method must be implemented by subclasses.
|
|
109
|
-
"""
|
|
110
|
-
pass
|
|
111
|
-
|
|
112
|
-
def __getitem__(self, index: int) -> float:
|
|
113
|
-
"""
|
|
114
|
-
Return the indicator value at the given index with tolerant indexing.
|
|
115
|
-
|
|
116
|
-
Indexing rules:
|
|
117
|
-
|
|
118
|
-
- `0` returns the current (most recent) value
|
|
119
|
-
- `-1` returns the previous value, `-2` two periods back, and so on
|
|
120
|
-
- For convenience, a positive `k` behaves like `-k` (e.g., `1 == -1`,
|
|
121
|
-
`2 == -2`)
|
|
122
|
-
- Out-of-range indices return `np.nan` instead of raising an `IndexError`.
|
|
123
|
-
"""
|
|
124
|
-
normalized: int
|
|
125
|
-
if index == 0:
|
|
126
|
-
normalized = -1
|
|
127
|
-
elif index > 0:
|
|
128
|
-
normalized = -(index + 1)
|
|
129
|
-
else:
|
|
130
|
-
normalized = index - 1
|
|
131
|
-
|
|
132
|
-
with self._lock:
|
|
133
|
-
try:
|
|
134
|
-
return self._history[normalized]
|
|
135
|
-
except IndexError:
|
|
136
|
-
return np.nan
|
|
@@ -1,132 +0,0 @@
|
|
|
1
|
-
"""
|
|
2
|
-
This module provides various moving average indicators.
|
|
3
|
-
"""
|
|
4
|
-
|
|
5
|
-
import numpy as np
|
|
6
|
-
import collections
|
|
7
|
-
from onesecondtrader.indicators import base_indicator
|
|
8
|
-
from onesecondtrader.core import models
|
|
9
|
-
from onesecondtrader.monitoring import console
|
|
10
|
-
|
|
11
|
-
|
|
12
|
-
class SimpleMovingAverage(base_indicator.BaseIndicator):
|
|
13
|
-
"""
|
|
14
|
-
Simple Moving Average (SMA) indicator for different OHLC-data related time series,
|
|
15
|
-
the possible modes for the SMA calculation are indicated in the
|
|
16
|
-
`core.models.XMAMode` enum (currently: `open`, `high`, `low`, `close`,
|
|
17
|
-
`typical_price`, `weighted close`).
|
|
18
|
-
|
|
19
|
-
Examples:
|
|
20
|
-
>>> from onesecondtrader.indicators import moving_averages
|
|
21
|
-
>>> from onesecondtrader.core import models
|
|
22
|
-
>>> sma = moving_averages.SimpleMovingAverage(
|
|
23
|
-
... period=3, mode=models.XMAMode.CLOSE
|
|
24
|
-
... )
|
|
25
|
-
>>> bar1 = models.Bar(
|
|
26
|
-
... open=100.0, high=101.0, low=99.0, close=100.0, volume=1000
|
|
27
|
-
... )
|
|
28
|
-
>>> sma.update(bar1)
|
|
29
|
-
>>> import numpy as np
|
|
30
|
-
>>> np.isnan(sma.latest)
|
|
31
|
-
True
|
|
32
|
-
>>> bar2 = models.Bar(
|
|
33
|
-
... open=100.0, high=102.0, low=100.0, close=101.0, volume=1500
|
|
34
|
-
... )
|
|
35
|
-
>>> sma.update(bar2)
|
|
36
|
-
>>> np.isnan(sma.latest)
|
|
37
|
-
True
|
|
38
|
-
>>> bar3 = models.Bar(
|
|
39
|
-
... open=101.0, high=103.0, low=101.0, close=102.0, volume=2000
|
|
40
|
-
... )
|
|
41
|
-
>>> sma.update(bar3)
|
|
42
|
-
>>> np.isnan(sma.latest)
|
|
43
|
-
False
|
|
44
|
-
>>> sma.latest
|
|
45
|
-
101.0
|
|
46
|
-
"""
|
|
47
|
-
|
|
48
|
-
def __init__(
|
|
49
|
-
self,
|
|
50
|
-
period: int,
|
|
51
|
-
mode: models.XMAMode = models.XMAMode.CLOSE,
|
|
52
|
-
max_history: int = 100,
|
|
53
|
-
) -> None:
|
|
54
|
-
"""
|
|
55
|
-
Initialize the indicator with a period and a mode.
|
|
56
|
-
|
|
57
|
-
Args:
|
|
58
|
-
period (int): Period of the moving average. Will be set to 1 if < 1.
|
|
59
|
-
mode (models.XMAMode): Mode of the moving average. Defaults to `CLOSE`.
|
|
60
|
-
max_history (int): Maximum lookback history length. Defaults to 100.
|
|
61
|
-
|
|
62
|
-
Attributes:
|
|
63
|
-
self.period (int): Period of the moving average.
|
|
64
|
-
self.mode (models.XMAMode): Mode of the moving average.
|
|
65
|
-
"""
|
|
66
|
-
if period < 1:
|
|
67
|
-
console.logger.warning(
|
|
68
|
-
f"Period must be >= 1, got {period}; defaulting to 1"
|
|
69
|
-
)
|
|
70
|
-
period = 1
|
|
71
|
-
|
|
72
|
-
super().__init__(max_history=max_history)
|
|
73
|
-
self.period: int = period
|
|
74
|
-
self.mode: models.XMAMode = mode
|
|
75
|
-
self._window: collections.deque[float] = collections.deque(maxlen=self.period)
|
|
76
|
-
|
|
77
|
-
@property
|
|
78
|
-
def name(self) -> str:
|
|
79
|
-
return f"SMA_{self.period}_{self.mode.name}"
|
|
80
|
-
|
|
81
|
-
def _compute_indicator(self, incoming_bar: models.Bar) -> float:
|
|
82
|
-
"""
|
|
83
|
-
Compute the specified simple moving average based on the incoming bar.
|
|
84
|
-
|
|
85
|
-
Args:
|
|
86
|
-
incoming_bar (models.Bar): Incoming bar with OHLCV data.
|
|
87
|
-
|
|
88
|
-
Returns:
|
|
89
|
-
float: Simple moving average value, or np.nan if insufficient data or
|
|
90
|
-
errors occur.
|
|
91
|
-
"""
|
|
92
|
-
try:
|
|
93
|
-
mode = self.mode
|
|
94
|
-
if mode is models.XMAMode.OPEN:
|
|
95
|
-
current_value = incoming_bar.open
|
|
96
|
-
elif mode is models.XMAMode.HIGH:
|
|
97
|
-
current_value = incoming_bar.high
|
|
98
|
-
elif mode is models.XMAMode.LOW:
|
|
99
|
-
current_value = incoming_bar.low
|
|
100
|
-
elif mode is models.XMAMode.CLOSE:
|
|
101
|
-
current_value = incoming_bar.close
|
|
102
|
-
elif mode is models.XMAMode.TYPICAL_PRICE:
|
|
103
|
-
current_value = (
|
|
104
|
-
incoming_bar.high + incoming_bar.low + incoming_bar.close
|
|
105
|
-
) / 3.0
|
|
106
|
-
elif mode is models.XMAMode.WEIGHTED_CLOSE:
|
|
107
|
-
current_value = (
|
|
108
|
-
incoming_bar.high + incoming_bar.low + 2.0 * incoming_bar.close
|
|
109
|
-
) / 4.0
|
|
110
|
-
else:
|
|
111
|
-
console.logger.warning(
|
|
112
|
-
f"Unsupported XMAMode: {mode}; using close price"
|
|
113
|
-
)
|
|
114
|
-
current_value = incoming_bar.close
|
|
115
|
-
|
|
116
|
-
if not np.isfinite(current_value):
|
|
117
|
-
console.logger.warning(
|
|
118
|
-
f"Invalid value extracted: {current_value} (mode={mode.name}); "
|
|
119
|
-
f"using np.nan"
|
|
120
|
-
)
|
|
121
|
-
return np.nan
|
|
122
|
-
|
|
123
|
-
with self._lock:
|
|
124
|
-
self._window.append(current_value)
|
|
125
|
-
if len(self._window) < self.period:
|
|
126
|
-
return np.nan
|
|
127
|
-
sma_value = sum(self._window) / self.period
|
|
128
|
-
return sma_value
|
|
129
|
-
|
|
130
|
-
except Exception as e:
|
|
131
|
-
console.logger.warning(f"SMA calculation failed: {e}; returning np.nan")
|
|
132
|
-
return np.nan
|