omnigenome 0.3.0a1__py3-none-any.whl → 0.3.1a0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (66) hide show
  1. omnigenome/__init__.py +16 -8
  2. omnigenome/auto/auto_bench/__init__.py +0 -1
  3. omnigenome/auto/auto_bench/auto_bench.py +24 -14
  4. omnigenome/auto/auto_train/__init__.py +0 -1
  5. omnigenome/auto/auto_train/auto_train.py +11 -12
  6. omnigenome/auto/bench_hub/__init__.py +0 -1
  7. omnigenome/auto/bench_hub/bench_hub.py +1 -1
  8. omnigenome/cli/__init__.py +0 -1
  9. omnigenome/cli/commands/__init__.py +0 -1
  10. omnigenome/cli/commands/base.py +10 -10
  11. omnigenome/cli/commands/bench/__init__.py +0 -1
  12. omnigenome/cli/commands/bench/bench_cli.py +10 -10
  13. omnigenome/cli/commands/rna/__init__.py +0 -1
  14. omnigenome/cli/commands/rna/rna_design.py +10 -11
  15. omnigenome/src/__init__.py +0 -1
  16. omnigenome/src/abc/__init__.py +0 -1
  17. omnigenome/src/abc/abstract_dataset.py +38 -19
  18. omnigenome/src/abc/abstract_metric.py +7 -7
  19. omnigenome/src/abc/abstract_model.py +15 -14
  20. omnigenome/src/abc/abstract_tokenizer.py +9 -7
  21. omnigenome/src/dataset/omni_dataset.py +16 -14
  22. omnigenome/src/lora/__init__.py +0 -1
  23. omnigenome/src/lora/lora_model.py +47 -41
  24. omnigenome/src/metric/classification_metric.py +11 -11
  25. omnigenome/src/metric/metric.py +19 -19
  26. omnigenome/src/metric/ranking_metric.py +15 -15
  27. omnigenome/src/metric/regression_metric.py +18 -18
  28. omnigenome/src/misc/utils.py +40 -36
  29. omnigenome/src/model/augmentation/__init__.py +0 -1
  30. omnigenome/src/model/augmentation/model.py +17 -17
  31. omnigenome/src/model/classification/__init__.py +0 -1
  32. omnigenome/src/model/classification/model.py +28 -32
  33. omnigenome/src/model/embedding/__init__.py +0 -1
  34. omnigenome/src/model/embedding/model.py +35 -35
  35. omnigenome/src/model/mlm/__init__.py +0 -1
  36. omnigenome/src/model/mlm/model.py +13 -13
  37. omnigenome/src/model/module_utils.py +17 -17
  38. omnigenome/src/model/regression/__init__.py +0 -1
  39. omnigenome/src/model/regression/model.py +72 -77
  40. omnigenome/src/model/regression/resnet.py +32 -32
  41. omnigenome/src/model/rna_design/__init__.py +0 -1
  42. omnigenome/src/model/rna_design/model.py +65 -58
  43. omnigenome/src/model/seq2seq/__init__.py +0 -1
  44. omnigenome/src/model/seq2seq/model.py +4 -4
  45. omnigenome/src/tokenizer/bpe_tokenizer.py +27 -27
  46. omnigenome/src/tokenizer/kmers_tokenizer.py +22 -22
  47. omnigenome/src/tokenizer/single_nucleotide_tokenizer.py +11 -11
  48. omnigenome/src/trainer/accelerate_trainer.py +40 -32
  49. omnigenome/src/trainer/hf_trainer.py +8 -8
  50. omnigenome/src/trainer/trainer.py +37 -25
  51. omnigenome/utility/dataset_hub/__init__.py +0 -1
  52. omnigenome/utility/dataset_hub/dataset_hub.py +13 -13
  53. omnigenome/utility/ensemble.py +26 -26
  54. omnigenome/utility/hub_utils.py +8 -8
  55. omnigenome/utility/model_hub/__init__.py +0 -1
  56. omnigenome/utility/model_hub/model_hub.py +26 -25
  57. omnigenome/utility/pipeline_hub/__init__.py +0 -1
  58. omnigenome/utility/pipeline_hub/pipeline.py +49 -49
  59. omnigenome/utility/pipeline_hub/pipeline_hub.py +17 -17
  60. {omnigenome-0.3.0a1.dist-info → omnigenome-0.3.1a0.dist-info}/METADATA +2 -2
  61. omnigenome-0.3.1a0.dist-info/RECORD +78 -0
  62. omnigenome-0.3.0a1.dist-info/RECORD +0 -78
  63. {omnigenome-0.3.0a1.dist-info → omnigenome-0.3.1a0.dist-info}/WHEEL +0 -0
  64. {omnigenome-0.3.0a1.dist-info → omnigenome-0.3.1a0.dist-info}/entry_points.txt +0 -0
  65. {omnigenome-0.3.0a1.dist-info → omnigenome-0.3.1a0.dist-info}/licenses/LICENSE +0 -0
  66. {omnigenome-0.3.0a1.dist-info → omnigenome-0.3.1a0.dist-info}/top_level.txt +0 -0
@@ -31,12 +31,12 @@ from ...src.trainer.trainer import Trainer
31
31
  class Pipeline:
32
32
  """
33
33
  Complete machine learning pipeline combining model, tokenizer, datasets, and trainer.
34
-
34
+
35
35
  The Pipeline class provides a unified interface for managing complete machine
36
36
  learning workflows. It handles model initialization, training, inference, and
37
37
  persistence. Pipelines can be loaded from pre-built configurations or created
38
38
  from scratch with custom components.
39
-
39
+
40
40
  Attributes:
41
41
  model (OmniModel): The underlying model for the pipeline.
42
42
  tokenizer: Tokenizer for preprocessing input sequences.
@@ -45,7 +45,7 @@ class Pipeline:
45
45
  trainer (Trainer): Trainer instance for model training.
46
46
  device (str): Target device for model execution (CPU/GPU).
47
47
  name (str): Name identifier for the pipeline.
48
-
48
+
49
49
  Example:
50
50
  >>> from omnigenome import Pipeline, OmniModelForSequenceClassification
51
51
  >>> # Create pipeline from model
@@ -57,14 +57,14 @@ class Pipeline:
57
57
  >>> pipeline.train(datasets)
58
58
  >>> # Save pipeline
59
59
  >>> pipeline.save("./saved_pipeline")
60
-
60
+
61
61
  Note:
62
62
  - Pipelines automatically handle device placement and model optimization
63
63
  - Environment metadata is collected for reproducibility
64
64
  - Pipelines can be saved and loaded for easy deployment
65
65
  - Supports both local models and hub-based model loading
66
66
  """
67
-
67
+
68
68
  model: OmniModel = None
69
69
  tokenizer = None
70
70
  dataset: dict = None
@@ -82,7 +82,7 @@ class Pipeline:
82
82
  ):
83
83
  """
84
84
  Initialize a Pipeline instance.
85
-
85
+
86
86
  Args:
87
87
  name (str): Name identifier for the pipeline.
88
88
  model_name_or_path (Union[str, OmniModel]): Model to use in the pipeline.
@@ -97,20 +97,20 @@ class Pipeline:
97
97
  - device (str): Target device for model execution
98
98
  - trust_remote_code (bool): Whether to trust remote code in tokenizers
99
99
  - Other model-specific configuration parameters
100
-
100
+
101
101
  Raises:
102
102
  ValueError: If model initialization fails.
103
103
  ImportError: If required dependencies are not available.
104
104
  FileNotFoundError: If model path is invalid.
105
-
105
+
106
106
  Example:
107
107
  >>> # Create from model path
108
- >>> pipeline = Pipeline("rna_classification",
108
+ >>> pipeline = Pipeline("rna_classification",
109
109
  ... model_name_or_path="yangheng/OmniGenome-186M")
110
110
  >>> # Create from model instance
111
111
  >>> model = OmniModelForSequenceClassification("model_path", tokenizer)
112
112
  >>> pipeline = Pipeline("custom_pipeline", model_name_or_path=model)
113
-
113
+
114
114
  Note:
115
115
  - The pipeline automatically handles model loading and device placement
116
116
  - Environment metadata is collected for tracking system information
@@ -140,18 +140,18 @@ class Pipeline:
140
140
  def __call__(self, inputs, *args, **kwargs):
141
141
  """
142
142
  Call the pipeline for inference.
143
-
143
+
144
144
  This method provides a convenient interface for running inference
145
145
  through the pipeline. It delegates to the model's inference method.
146
-
146
+
147
147
  Args:
148
148
  inputs: Input data for inference (can be string, list, or tensor).
149
149
  *args: Additional positional arguments passed to model inference.
150
150
  **kwargs: Additional keyword arguments passed to model inference.
151
-
151
+
152
152
  Returns:
153
153
  dict: Inference results including predictions and confidence scores.
154
-
154
+
155
155
  Example:
156
156
  >>> pipeline = Pipeline("my_pipeline", model_name_or_path=model)
157
157
  >>> results = pipeline("ATCGATCG")
@@ -162,13 +162,13 @@ class Pipeline:
162
162
  def to(self, device):
163
163
  """
164
164
  Move the pipeline to a specific device.
165
-
165
+
166
166
  Args:
167
167
  device (str): Target device ('cpu', 'cuda', 'cuda:0', etc.).
168
-
168
+
169
169
  Returns:
170
170
  Pipeline: Self for method chaining.
171
-
171
+
172
172
  Example:
173
173
  >>> pipeline = Pipeline("my_pipeline", model_name_or_path=model)
174
174
  >>> pipeline.to("cuda:0") # Move to GPU
@@ -181,11 +181,11 @@ class Pipeline:
181
181
  def init_pipeline(self, *, model_name_or_path, tokenizer=None, **kwargs):
182
182
  """
183
183
  Initialize the pipeline components from a model path.
184
-
184
+
185
185
  This method handles loading the model, tokenizer, and configuration
186
186
  from a model path or identifier. It tries to load from the ModelHub
187
187
  first, then falls back to HuggingFace transformers.
188
-
188
+
189
189
  Args:
190
190
  model_name_or_path (str): Path or identifier of the model to load.
191
191
  tokenizer (optional): Tokenizer instance. If None, will be loaded
@@ -194,18 +194,18 @@ class Pipeline:
194
194
  - trust_remote_code (bool): Whether to trust remote code
195
195
  - device (str): Target device for the model
196
196
  - Other model-specific parameters
197
-
197
+
198
198
  Returns:
199
199
  Pipeline: Self for method chaining.
200
-
200
+
201
201
  Raises:
202
202
  ValueError: If model loading fails.
203
203
  ImportError: If required dependencies are not available.
204
-
204
+
205
205
  Example:
206
206
  >>> pipeline = Pipeline("my_pipeline")
207
207
  >>> pipeline.init_pipeline(model_name_or_path="yangheng/OmniGenome-186M")
208
-
208
+
209
209
  Note:
210
210
  - First attempts to load from OmniGenome ModelHub
211
211
  - Falls back to HuggingFace transformers if ModelHub fails
@@ -241,11 +241,11 @@ class Pipeline:
241
241
  def train(self, datasets: dict = None, trainer=None, **kwargs):
242
242
  """
243
243
  Train the model in the pipeline.
244
-
244
+
245
245
  This method initiates training of the model using the provided datasets
246
246
  and trainer configuration. If no trainer is provided, the pipeline's
247
247
  existing trainer will be used.
248
-
248
+
249
249
  Args:
250
250
  datasets (dict, optional): Dictionary containing train/validation/test
251
251
  datasets. If None, uses the pipeline's existing datasets.
@@ -253,11 +253,11 @@ class Pipeline:
253
253
  trainer (Trainer, optional): Trainer instance to use for training.
254
254
  If None, uses the pipeline's existing trainer. Defaults to None.
255
255
  **kwargs: Additional keyword arguments passed to the trainer.
256
-
256
+
257
257
  Raises:
258
258
  ValueError: If no trainer is available or datasets are invalid.
259
259
  RuntimeError: If training fails.
260
-
260
+
261
261
  Example:
262
262
  >>> pipeline = Pipeline("my_pipeline", model_name_or_path=model)
263
263
  >>> # Train with existing datasets
@@ -269,7 +269,7 @@ class Pipeline:
269
269
  >>> from omnigenome import Trainer
270
270
  >>> custom_trainer = Trainer(model, train_dataset=train_data)
271
271
  >>> pipeline.train(trainer=custom_trainer)
272
-
272
+
273
273
  Note:
274
274
  - Training uses the pipeline's current model and device
275
275
  - Progress and metrics are logged during training
@@ -284,24 +284,24 @@ class Pipeline:
284
284
  def predict(self, inputs, **kwargs):
285
285
  """
286
286
  Generate predictions for input data.
287
-
287
+
288
288
  This method provides a high-level interface for generating predictions
289
289
  from the pipeline's model. It handles preprocessing and postprocessing
290
290
  automatically.
291
-
291
+
292
292
  Args:
293
293
  inputs: Input data for prediction. Can be:
294
294
  - str: Single sequence string
295
295
  - list: List of sequence strings
296
296
  - tensor: Preprocessed input tensors
297
297
  **kwargs: Additional keyword arguments passed to model prediction.
298
-
298
+
299
299
  Returns:
300
300
  dict: Prediction results including:
301
301
  - predictions: Predicted labels or values
302
302
  - confidence: Confidence scores (if available)
303
303
  - logits: Raw model outputs (if requested)
304
-
304
+
305
305
  Example:
306
306
  >>> pipeline = Pipeline("my_pipeline", model_name_or_path=model)
307
307
  >>> # Single prediction
@@ -310,7 +310,7 @@ class Pipeline:
310
310
  >>> # Batch prediction
311
311
  >>> results = pipeline.predict(["ATCGATCG", "GCTAGCTA"])
312
312
  >>> print(results['predictions'])
313
-
313
+
314
314
  Note:
315
315
  - Input preprocessing is handled automatically
316
316
  - Results are formatted consistently across different model types
@@ -321,11 +321,11 @@ class Pipeline:
321
321
  def inference(self, inputs, **kwargs):
322
322
  """
323
323
  Run full inference pipeline on input data.
324
-
324
+
325
325
  This method provides the complete inference pipeline including
326
326
  preprocessing, model forward pass, and postprocessing. It's the
327
327
  recommended method for production inference.
328
-
328
+
329
329
  Args:
330
330
  inputs: Input data for inference. Can be:
331
331
  - str: Single sequence string
@@ -335,14 +335,14 @@ class Pipeline:
335
335
  - return_attention: Whether to return attention weights
336
336
  - return_hidden_states: Whether to return hidden states
337
337
  - temperature: Temperature for sampling (if applicable)
338
-
338
+
339
339
  Returns:
340
340
  dict: Complete inference results including:
341
341
  - predictions: Final predictions
342
342
  - confidence: Confidence scores
343
343
  - attention: Attention weights (if requested)
344
344
  - hidden_states: Hidden states (if requested)
345
-
345
+
346
346
  Example:
347
347
  >>> pipeline = Pipeline("my_pipeline", model_name_or_path=model)
348
348
  >>> # Basic inference
@@ -351,7 +351,7 @@ class Pipeline:
351
351
  >>> # Inference with attention
352
352
  >>> results = pipeline.inference("ATCGATCG", return_attention=True)
353
353
  >>> print(results['attention'].shape)
354
-
354
+
355
355
  Note:
356
356
  - This is the most comprehensive inference method
357
357
  - Handles all preprocessing and postprocessing automatically
@@ -363,10 +363,10 @@ class Pipeline:
363
363
  def load(pipeline_name_or_path, local_only=False, **kwargs):
364
364
  """
365
365
  Load a pipeline from disk or hub.
366
-
366
+
367
367
  This static method loads a complete pipeline including model, tokenizer,
368
368
  datasets, and trainer from a saved pipeline directory or hub identifier.
369
-
369
+
370
370
  Args:
371
371
  pipeline_name_or_path (str): Path to saved pipeline directory or
372
372
  hub identifier for downloading.
@@ -376,16 +376,16 @@ class Pipeline:
376
376
  - device: Target device for the model
377
377
  - name: Custom name for the pipeline
378
378
  - trust_remote_code: Whether to trust remote code
379
-
379
+
380
380
  Returns:
381
381
  Pipeline: Loaded pipeline instance ready for use.
382
-
382
+
383
383
  Raises:
384
384
  FileNotFoundError: If pipeline cannot be found locally and
385
385
  local_only is True.
386
386
  ValueError: If pipeline files are corrupted or invalid.
387
387
  ImportError: If required dependencies are not available.
388
-
388
+
389
389
  Example:
390
390
  >>> # Load from local path
391
391
  >>> pipeline = Pipeline.load("./saved_pipeline")
@@ -393,7 +393,7 @@ class Pipeline:
393
393
  >>> pipeline = Pipeline.load("yangheng/OmniGenome-RNA-Classification")
394
394
  >>> # Use loaded pipeline
395
395
  >>> results = pipeline("ATCGATCG")
396
-
396
+
397
397
  Note:
398
398
  - Loads all pipeline components (model, tokenizer, datasets, trainer)
399
399
  - Automatically handles device placement
@@ -430,22 +430,22 @@ class Pipeline:
430
430
  def save(self, path, overwrite=False, **kwargs):
431
431
  """
432
432
  Save the pipeline to disk.
433
-
433
+
434
434
  This method saves the complete pipeline including model, tokenizer,
435
435
  datasets, trainer, and metadata to a directory. The saved pipeline
436
436
  can be loaded later using Pipeline.load().
437
-
437
+
438
438
  Args:
439
439
  path (str): Directory path where to save the pipeline.
440
440
  overwrite (bool, optional): If True, overwrite existing directory.
441
441
  If False, raise error if directory exists. Defaults to False.
442
442
  **kwargs: Additional keyword arguments for model saving.
443
-
443
+
444
444
  Raises:
445
445
  FileExistsError: If path exists and overwrite is False.
446
446
  OSError: If there are issues creating the directory or writing files.
447
447
  RuntimeError: If saving fails due to model or data issues.
448
-
448
+
449
449
  Example:
450
450
  >>> pipeline = Pipeline("my_pipeline", model_name_or_path=model)
451
451
  >>> # Train the pipeline
@@ -454,7 +454,7 @@ class Pipeline:
454
454
  >>> pipeline.save("./trained_pipeline", overwrite=True)
455
455
  >>> # Load the saved pipeline later
456
456
  >>> loaded_pipeline = Pipeline.load("./trained_pipeline")
457
-
457
+
458
458
  Note:
459
459
  - Saves all pipeline components (model, tokenizer, datasets, trainer)
460
460
  - Preserves training configurations and metadata
@@ -21,37 +21,37 @@ from ...src.misc.utils import env_meta_info
21
21
  class PipelineHub:
22
22
  """
23
23
  Hub for managing and loading pre-built OmniGenome pipelines.
24
-
24
+
25
25
  The PipelineHub provides a centralized interface for accessing pre-built
26
26
  pipelines that combine models, tokenizers, datasets, and training
27
27
  configurations. It handles automatic downloading and loading of pipelines
28
28
  from the OmniGenome hub.
29
-
29
+
30
30
  Attributes:
31
31
  metadata (dict): Environment metadata including system information,
32
32
  package versions, and hardware details.
33
-
33
+
34
34
  Example:
35
35
  >>> from omnigenome import PipelineHub
36
36
  >>> hub = PipelineHub()
37
37
  >>> pipeline = hub.load("yangheng/OmniGenome-RNA-Classification")
38
38
  >>> predictions = pipeline("ATCGATCG")
39
39
  >>> print(predictions['predictions'])
40
-
40
+
41
41
  Note:
42
42
  - Pipelines can be loaded from local paths or downloaded from the hub
43
43
  - The hub automatically handles model, tokenizer, and dataset loading
44
44
  - Environment metadata is collected for reproducibility
45
45
  """
46
-
46
+
47
47
  def __init__(self, *args, **kwargs):
48
48
  """
49
49
  Initialize the PipelineHub.
50
-
50
+
51
51
  Args:
52
52
  *args: Variable length argument list (currently unused).
53
53
  **kwargs: Arbitrary keyword arguments (currently unused).
54
-
54
+
55
55
  Note:
56
56
  The constructor initializes environment metadata for tracking
57
57
  system information and package versions.
@@ -63,11 +63,11 @@ class PipelineHub:
63
63
  def load(pipeline_name_or_path, local_only=False, **kwargs):
64
64
  """
65
65
  Load a pipeline from the hub or local path.
66
-
66
+
67
67
  This method loads a complete pipeline including the model, tokenizer,
68
68
  datasets, and trainer configuration. If the pipeline doesn't exist
69
69
  locally and local_only is False, it will be downloaded from the hub.
70
-
70
+
71
71
  Args:
72
72
  pipeline_name_or_path (str): Name or path of the pipeline to load.
73
73
  Can be a local directory path or a hub identifier.
@@ -78,17 +78,17 @@ class PipelineHub:
78
78
  - device: Target device for the model
79
79
  - trust_remote_code: Whether to trust remote code in tokenizers
80
80
  - name: Custom name for the pipeline
81
-
81
+
82
82
  Returns:
83
83
  Pipeline: Loaded pipeline instance with model, tokenizer, datasets,
84
84
  and trainer ready for use.
85
-
85
+
86
86
  Raises:
87
87
  FileNotFoundError: If the pipeline cannot be found locally and
88
88
  local_only is True.
89
89
  ValueError: If the pipeline configuration is invalid.
90
90
  ImportError: If required dependencies are not available.
91
-
91
+
92
92
  Example:
93
93
  >>> hub = PipelineHub()
94
94
  >>> # Load from hub
@@ -97,7 +97,7 @@ class PipelineHub:
97
97
  >>> pipeline = hub.load("./my_pipeline", local_only=True)
98
98
  >>> # Use pipeline for inference
99
99
  >>> results = pipeline("ATCGATCG")
100
-
100
+
101
101
  Note:
102
102
  - The pipeline includes all necessary components for training and inference
103
103
  - Model weights, tokenizer, and datasets are automatically loaded
@@ -108,17 +108,17 @@ class PipelineHub:
108
108
  def push(self, pipeline, **kwargs):
109
109
  """
110
110
  Push a pipeline to the hub (not yet implemented).
111
-
111
+
112
112
  This method is intended to upload custom pipelines to the OmniGenome hub
113
113
  for sharing and distribution. Currently not implemented.
114
-
114
+
115
115
  Args:
116
116
  pipeline (Pipeline): Pipeline instance to upload to the hub.
117
117
  **kwargs: Additional keyword arguments for the upload process.
118
-
118
+
119
119
  Raises:
120
120
  NotImplementedError: This method has not been implemented yet.
121
-
121
+
122
122
  Note:
123
123
  Future implementation will support:
124
124
  - Pipeline metadata and documentation
@@ -1,8 +1,8 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: omnigenome
3
- Version: 0.3.0a1
3
+ Version: 0.3.1a0
4
4
  Summary: OmniGenome: A comprehensive toolkit for genome analysis.
5
- Home-page: https://github.com/yangheng95/OmniGenomeBench
5
+ Home-page: https://github.com/yangheng95/OmniGenBench
6
6
  Author: Yang, Heng
7
7
  Author-email: hy345@exeter.ac.uk
8
8
  License: Apache-2.0
@@ -0,0 +1,78 @@
1
+ omnigenome/__init__.py,sha256=2tXjLkxTWA1Akx9iks04X-JZckhVmkIEPDO5wKTucF8,9897
2
+ omnigenome/auto/__init__.py,sha256=UhcuYy43WsR7IowjajlcGwNVFFFDaufl8KqtNDmVqz0,97
3
+ omnigenome/auto/auto_bench/__init__.py,sha256=M2roe3FdlmRLeXs9cOH00KrccLrazkDvlYGSg_N9upo,410
4
+ omnigenome/auto/auto_bench/auto_bench.py,sha256=BdCzS-KF_Eos22TGlNdTtLFXlNt0Hd6yYpfvb1TawjE,20997
5
+ omnigenome/auto/auto_bench/auto_bench_cli.py,sha256=B3iJiTKuAc6dkEu2h9ApGFpJJwS0I2zwxXtZ6bWfarM,7608
6
+ omnigenome/auto/auto_bench/auto_bench_config.py,sha256=2mw6VFcWCSR6dJVAGDejlwmK_VmAZgqMvYlqznl5Ck8,7723
7
+ omnigenome/auto/auto_bench/config_check.py,sha256=5RYOOOC-CqvU-46-3uSK6vspLtPSVxdZsFMnNa-3rj0,1086
8
+ omnigenome/auto/auto_train/__init__.py,sha256=JClK_1E1_YVAy2rNzQewYzYxvLanqm71-swdXAx8uZs,447
9
+ omnigenome/auto/auto_train/auto_train.py,sha256=af5ca6SGyxn8apIxwU0vKPoAC0mKDP2CFqN9w1N_a2M,17506
10
+ omnigenome/auto/auto_train/auto_train_cli.py,sha256=vSjQ1t3hfe4HEvIWVB7V6cmYf-47_obKZGHWrk_LWDc,7298
11
+ omnigenome/auto/bench_hub/__init__.py,sha256=JryopzWvewnBtN_EZKNEDKvIsc6x0wCsntNFyCGhpmU,395
12
+ omnigenome/auto/bench_hub/bench_hub.py,sha256=eTxcVrKQdb-tdgt4CZDmD7zsUxMdw6McOeDAuaDiQZc,740
13
+ omnigenome/cli/__init__.py,sha256=sLM_HMGX4lK8LKvIsIBmQUAbZKih6bfYoHmqQFKfGBM,445
14
+ omnigenome/cli/omnigenome_cli.py,sha256=fvpxWqowa7IFSU097EXrhChYcMN4yekGS9UA5nsbpz4,4386
15
+ omnigenome/cli/commands/__init__.py,sha256=nnD9NFBNHGYhUt7nI5y4iuylIn2JOdvn6iEhlDJjhes,435
16
+ omnigenome/cli/commands/base.py,sha256=KU_lhhZpjCMRAK0LZz_txV3R9ZfzCAo_k3u44cBztMk,2858
17
+ omnigenome/cli/commands/bench/__init__.py,sha256=dAVl47_QKktT5DpHjv0VMY18vlmxkNMSXbfIWZ1l69k,440
18
+ omnigenome/cli/commands/bench/bench_cli.py,sha256=N4mkhg2MRo3beAWmUDJe2NsB5vL3hquxs8fBN-c9Z-A,7523
19
+ omnigenome/cli/commands/rna/__init__.py,sha256=rUyJljDj9JGcn83iyRSB2qC2BAXkgsbb24SWsimOFVE,434
20
+ omnigenome/cli/commands/rna/rna_design.py,sha256=Vb9jhh4Aj8RlUsBSHirQY5supkmMYzaXNIbs32Jjsyo,6408
21
+ omnigenome/src/__init__.py,sha256=MtntWq77RoL1K6iUQQlVcwgfDZIrykvjcpP4O4_7jgM,412
22
+ omnigenome/src/abc/__init__.py,sha256=4E5Ba2Fwf9VlxmjwZ50kku-YPGU00JZPgAcNuesaG3g,424
23
+ omnigenome/src/abc/abstract_dataset.py,sha256=YEHMwqohAPozmmbVemzA7CoA2hKyvrkW1wIB1msEQqA,24254
24
+ omnigenome/src/abc/abstract_metric.py,sha256=nRISSO93i1L9Q-TDL0ZnhtKAXgLRKVlzL6oKHknFU-4,4326
25
+ omnigenome/src/abc/abstract_model.py,sha256=t1XqLqs7VLJ4I9Tzu0chWYyFr3_ElaHk5vzQK5JGa7E,28639
26
+ omnigenome/src/abc/abstract_tokenizer.py,sha256=5z5dhL2qSswTa5W7Gdn7u8q7sC8cBfv2JuJf3G-F8Gw,9888
27
+ omnigenome/src/dataset/__init__.py,sha256=2Lz3xfGaiP5hl2Pf1eW0eenpzrDk3zDyyi63CXbC4hE,628
28
+ omnigenome/src/dataset/omni_dataset.py,sha256=dFsDraF3x9N-JIsxbAyPiDhY74BIdWn2pg0A_bV8iuc,17609
29
+ omnigenome/src/lora/__init__.py,sha256=EncdIW5iV7LWh8JndQqoXIDTZgHWAIGaeNUEyMa1SlU,457
30
+ omnigenome/src/lora/lora_model.py,sha256=HX_CW_ZlwHjGWLY-wcL01_6X6fIQKS7QxDZrmdmll44,10101
31
+ omnigenome/src/metric/__init__.py,sha256=lZr6uiL44G8ujmCz98wTH_anHRv9QUdO3tUiBHriZXA,543
32
+ omnigenome/src/metric/classification_metric.py,sha256=9AEBqtwga6cojFcS1lP_i-LGkbmn3QLAD7JGFz2Z6bY,8030
33
+ omnigenome/src/metric/metric.py,sha256=lAn7brhugv-gOEnE3SatnhczjWDgV8JTLfWxJU-regc,7724
34
+ omnigenome/src/metric/ranking_metric.py,sha256=iQZd7DIHIiNqykQJPNPVVjmGlrV-6nSEeKIh5o2XUt4,5670
35
+ omnigenome/src/metric/regression_metric.py,sha256=hfUPD6TnrfrQ_wpW5Lyk6t6xdHyMWhJ0rthsk3MXJkw,7585
36
+ omnigenome/src/misc/__init__.py,sha256=Dpa-uCQdwKVKkprqy26Np71mRobcWglCjgtITjU6yw0,63
37
+ omnigenome/src/misc/utils.py,sha256=WHoXcRpwliV1-9YO5ZfttvJNzUGib77uHS6oNVUnVjo,17108
38
+ omnigenome/src/model/__init__.py,sha256=vu1vJVYp8FR9BgF7X2msKkwMfa6jbzsfAsUHduTB21w,621
39
+ omnigenome/src/model/module_utils.py,sha256=dmiORa835Jg6cGS24h8e1ZrwfB9_tGiz30IbwUagdaw,9158
40
+ omnigenome/src/model/augmentation/__init__.py,sha256=Q1uTFVJjlDV_nJZ9YP44gq6LSolz9b8_6gJ0Iz0RtAc,395
41
+ omnigenome/src/model/augmentation/model.py,sha256=rA-NZGzydqvpZuHy4fq4xVJcFA97rjb6NcoV-Leeaqg,8174
42
+ omnigenome/src/model/classification/__init__.py,sha256=T1pW6HLdjUywf4-mN9d4ERRWPiZsGpDqsbalFPtyVCc,399
43
+ omnigenome/src/model/classification/model.py,sha256=wAets3HAF_T66LbBmdoEutKMYAwaIvWvMffDgGhnUbU,25022
44
+ omnigenome/src/model/embedding/__init__.py,sha256=Q6UqgzCEOujfAvYKcHnYhCa6kMIzFFFIa_5Ut8iHQgg,394
45
+ omnigenome/src/model/embedding/model.py,sha256=JJIjQTy50U8fVzeeXbgvUdJv_W59dF-f0gZD6qB8ha8,10140
46
+ omnigenome/src/model/mlm/__init__.py,sha256=PqKckKLXhvkJr8dLkSpKTwFYsclGv51nhXBKjI55oYw,406
47
+ omnigenome/src/model/mlm/model.py,sha256=rFYjn_QYFcREqHzSGO8GsbdUGGMzjOkAcooa-P9SaQ8,6435
48
+ omnigenome/src/model/regression/__init__.py,sha256=9_PEGxaiJrwPXvzOf6jGx6Wl1x4UQlOsCGUwNYPUDbc,395
49
+ omnigenome/src/model/regression/model.py,sha256=lXLg1Z0B7jzXHRkt8F1sP3KAitfSIAvhe8EAOFiUMFI,27591
50
+ omnigenome/src/model/regression/resnet.py,sha256=Xvpssyo3LmmPMJYHwdqKHU0x9F39dllkKY94aI9mHO0,16861
51
+ omnigenome/src/model/rna_design/__init__.py,sha256=cqC0Ap954sBDOe3RI8nVlYahx_gIg0nqwoBg8CRQ62E,395
52
+ omnigenome/src/model/rna_design/model.py,sha256=kDDM0BHpoFN9nlGxNWrjTjsFWn7E6CPYjfAfkJyLxGY,16939
53
+ omnigenome/src/model/seq2seq/__init__.py,sha256=38YtCYxAQRytOsW98G8cqgCXB6mmzrSGPKs1DbwzZ40,405
54
+ omnigenome/src/model/seq2seq/model.py,sha256=UC7j691BSbr6He3kCYwO_93V4RLWLt3fQOCQnnwJwgQ,1695
55
+ omnigenome/src/tokenizer/__init__.py,sha256=zYUgX-FJ-fw0GNJuuW8ovo9kflDmGDd8Z0F3AMDFXF4,556
56
+ omnigenome/src/tokenizer/bpe_tokenizer.py,sha256=_g1x3jJ3wzGgDu3_y2pW-KghYllgbiqoJfjMUF3sNTE,7646
57
+ omnigenome/src/tokenizer/kmers_tokenizer.py,sha256=KpPA5_MSP-Wvbp2aeRGD67al6xS1unhbreIQOio-1U4,9155
58
+ omnigenome/src/tokenizer/single_nucleotide_tokenizer.py,sha256=alwWeXuvGvzGflsyzm_V0AelAbdfMs79FGSo4pL5roo,9710
59
+ omnigenome/src/trainer/__init__.py,sha256=adib_MJlED-EXXkNCt9MhV1U9mPPoOrLReA-dxhgdT0,453
60
+ omnigenome/src/trainer/accelerate_trainer.py,sha256=u0gU1MRLjEcj3zPAkDztjxU1aNWDA_XTl6k_Wk3esIs,28377
61
+ omnigenome/src/trainer/hf_trainer.py,sha256=eRw0v21lBZW1gTi-5zmagLuR0A1X7OOb0bZlmzROcMI,2591
62
+ omnigenome/src/trainer/trainer.py,sha256=wyHJcb8IhrIrSW9dE7uK5MU_EL0_LRHJBP65z7RW9gA,21333
63
+ omnigenome/utility/__init__.py,sha256=UvgBH3hsW2JoXfGG6dHJeQLHVF7rXdzK39wGCoJOEKI,101
64
+ omnigenome/utility/ensemble.py,sha256=z9opb_9H213OeeNn4VJbKQfXVK_Kzig3mNDIjviG1oQ,13141
65
+ omnigenome/utility/hub_utils.py,sha256=iYxt1iAKW2OTsQ0rYxMixRiarwIxjYzCQtaDyijFnWw,20269
66
+ omnigenome/utility/dataset_hub/__init__.py,sha256=86rjBJixstpSiTbtprf0RnaC1V5lykh2Bs2cnZG9j3s,433
67
+ omnigenome/utility/dataset_hub/dataset_hub.py,sha256=aTPfk5Owoa5OtSGbFPM34WmZ3Oy9x8ZrILQgF6VXI3g,6960
68
+ omnigenome/utility/model_hub/__init__.py,sha256=Y5AcnzrtX9zPVbsAZy-6kLPJef-eddcPtZRAe8N7BOE,391
69
+ omnigenome/utility/model_hub/model_hub.py,sha256=0K0XOQvPLiscHt0LRphF7Gja6MXHDgBARbdQzr1G8mI,8574
70
+ omnigenome/utility/pipeline_hub/__init__.py,sha256=lz9kdc_arVwqDENvt_dN0h8fAhBeTRyG6LQRQrQAjGE,394
71
+ omnigenome/utility/pipeline_hub/pipeline.py,sha256=Ft56dolrLJWSLBj7jba8Fka3yCwtBso2Vx_Nt17ZB7A,19756
72
+ omnigenome/utility/pipeline_hub/pipeline_hub.py,sha256=bt2QLg4cld8QT2fbMZXJKL0vE3ReuNWHsqhLgiwc6HI,5268
73
+ omnigenome-0.3.1a0.dist-info/licenses/LICENSE,sha256=oQoefBV6siHctF0ET-OO3EaSZgtqGtf-wdIAmokS8iY,11560
74
+ omnigenome-0.3.1a0.dist-info/METADATA,sha256=LA0FxjRSjsEhsXvOV3noKYAis1t4_JY-wqTDjV9Fszo,10315
75
+ omnigenome-0.3.1a0.dist-info/WHEEL,sha256=lTU6B6eIfYoiQJTZNc-fyaR6BpL6ehTzU3xGYxn2n8k,91
76
+ omnigenome-0.3.1a0.dist-info/entry_points.txt,sha256=uu40UgMPxY65ASdRbrhkwH94r7CIYgyG_iDBmqFQbD8,84
77
+ omnigenome-0.3.1a0.dist-info/top_level.txt,sha256=LVFxm_WPaxjj9KnAqdW94W4D4lbOk30gdsaKlJiSzTo,11
78
+ omnigenome-0.3.1a0.dist-info/RECORD,,
@@ -1,78 +0,0 @@
1
- omnigenome/__init__.py,sha256=ueMMkmyP6EjSvPUwNGLupoWT0W673sRbMXULhjbPjnU,9863
2
- omnigenome/auto/__init__.py,sha256=UhcuYy43WsR7IowjajlcGwNVFFFDaufl8KqtNDmVqz0,97
3
- omnigenome/auto/auto_bench/__init__.py,sha256=o0sPxaZM_KP5lRgidFUySr12OWguqB6PlL9ZhvWV1DM,411
4
- omnigenome/auto/auto_bench/auto_bench.py,sha256=nprUgDGLLh4OIG9Qys6Aing1j8n_aw3ndSmx4PzAYN4,20781
5
- omnigenome/auto/auto_bench/auto_bench_cli.py,sha256=B3iJiTKuAc6dkEu2h9ApGFpJJwS0I2zwxXtZ6bWfarM,7608
6
- omnigenome/auto/auto_bench/auto_bench_config.py,sha256=2mw6VFcWCSR6dJVAGDejlwmK_VmAZgqMvYlqznl5Ck8,7723
7
- omnigenome/auto/auto_bench/config_check.py,sha256=5RYOOOC-CqvU-46-3uSK6vspLtPSVxdZsFMnNa-3rj0,1086
8
- omnigenome/auto/auto_train/__init__.py,sha256=piAuS6ry7obkTthpbBvn5u2kqqhtrTwiGsrWIPqE4w0,448
9
- omnigenome/auto/auto_train/auto_train.py,sha256=ne2G9oOMsqYysDxpOQbrp-v29-aDqtuAu4fo_HG4D2A,17563
10
- omnigenome/auto/auto_train/auto_train_cli.py,sha256=vSjQ1t3hfe4HEvIWVB7V6cmYf-47_obKZGHWrk_LWDc,7298
11
- omnigenome/auto/bench_hub/__init__.py,sha256=lbqmvd01gyyaijag-cg_MqjIlKcXfDskf-vLaWKpxBM,396
12
- omnigenome/auto/bench_hub/bench_hub.py,sha256=CsnONzpcDw2HWNszCa_Ak4zUpIqKhV72cENkG0qoB0U,744
13
- omnigenome/cli/__init__.py,sha256=xDO_D_enpEDCkpOqIcgIBn_nA7Na1x3AIHFfw42w_XU,446
14
- omnigenome/cli/omnigenome_cli.py,sha256=fvpxWqowa7IFSU097EXrhChYcMN4yekGS9UA5nsbpz4,4386
15
- omnigenome/cli/commands/__init__.py,sha256=vKd5VEfonNnNc6k77q2lGyfpyA12Lgl9cI0soMU24Ns,436
16
- omnigenome/cli/commands/base.py,sha256=cziPHmbzHyBlQ1t-SbDt3k1Mwkb9i6cba8i-MCaoRWw,2931
17
- omnigenome/cli/commands/bench/__init__.py,sha256=BnoQ23hFXEkKy8GtNVQbynvGyKNkvVF8UFDSmSprSAI,441
18
- omnigenome/cli/commands/bench/bench_cli.py,sha256=5tpPpV_pIBC4_oUoD2jz9GlMjEHR7f-zbThlIYkWrwU,7625
19
- omnigenome/cli/commands/rna/__init__.py,sha256=hLyxZjMFFSGU8wuSEaxvWxM2plLbCGoI9B-sMcrxjvY,435
20
- omnigenome/cli/commands/rna/rna_design.py,sha256=JQGaCMMTq45mTAxFXylFQ4gfpLWb9mvciTRGtapDpu8,6519
21
- omnigenome/src/__init__.py,sha256=gciGhCbdgcNEVoyquqnWubNmN1X-Ir53dHT2cAgOZUk,413
22
- omnigenome/src/abc/__init__.py,sha256=RdVIA2WOyGbt9aTdMWXDZIG3I_6M49BV_WP8ti887LM,425
23
- omnigenome/src/abc/abstract_dataset.py,sha256=jZFRVnAmif4gwGvhi2uYApLPYyYTz6k-RENGeWizrfU,23816
24
- omnigenome/src/abc/abstract_metric.py,sha256=bR5mBnEiDAzBbzd2kF8aYV59Kipej2wZ8QlZsPzFP7o,4353
25
- omnigenome/src/abc/abstract_model.py,sha256=E_YuhScqBi8Qt_-wEbTtP0c_dxv0oz7fe7NfyFNszwk,28670
26
- omnigenome/src/abc/abstract_tokenizer.py,sha256=tfiYddutKIuUZiQJ3ujiakehWINiGOYbrKV-tUwtF5U,9894
27
- omnigenome/src/dataset/__init__.py,sha256=2Lz3xfGaiP5hl2Pf1eW0eenpzrDk3zDyyi63CXbC4hE,628
28
- omnigenome/src/dataset/omni_dataset.py,sha256=1ryp9TZu7Josv3ua_8GZJbA6BOOIeQ3Ty_kBtj9FgRc,17633
29
- omnigenome/src/lora/__init__.py,sha256=VRNwSjziZywM4bRegcho4y1zGNF-kvBgxYXyATSgRL0,458
30
- omnigenome/src/lora/lora_model.py,sha256=cFE2SW-KW9G64tu8mb94ymwtZsg4N0Ykmj3p8V6fh1k,10293
31
- omnigenome/src/metric/__init__.py,sha256=lZr6uiL44G8ujmCz98wTH_anHRv9QUdO3tUiBHriZXA,543
32
- omnigenome/src/metric/classification_metric.py,sha256=ndv2MPx6xv0k0CaHVQoeWyUW5HkMCqqZ0okeUUsXtgs,8109
33
- omnigenome/src/metric/metric.py,sha256=mDd-8huMv9PiyWSaVWiIqNIaXQC5yI-zc_5WOTXWAxY,7912
34
- omnigenome/src/metric/ranking_metric.py,sha256=DTyNyhleDPDPEyg5HlDjlUpLS5uYne17SdDUejpXmCs,5826
35
- omnigenome/src/metric/regression_metric.py,sha256=J_XOZ1jXSdqzkOgw4adHA-YLA4A_QcGlW8g0lgIm9xs,7753
36
- omnigenome/src/misc/__init__.py,sha256=Dpa-uCQdwKVKkprqy26Np71mRobcWglCjgtITjU6yw0,63
37
- omnigenome/src/misc/utils.py,sha256=U8wk7-F2YhODKfSWhzkP8aJuoWIm49H5pAt3jHoJmVE,17241
38
- omnigenome/src/model/__init__.py,sha256=vu1vJVYp8FR9BgF7X2msKkwMfa6jbzsfAsUHduTB21w,621
39
- omnigenome/src/model/module_utils.py,sha256=rPJJfAcA4C8KumxSBJRCrCRxUSrwiRvLdbilIYIPS5U,9286
40
- omnigenome/src/model/augmentation/__init__.py,sha256=JEZ1rszRUq7NBzwyu02eyNb_TTph2K3lXnXOCbHTtJc,396
41
- omnigenome/src/model/augmentation/model.py,sha256=VHfi4z1LX5mDKrjHqg_B7kCvykc-E-YZd-TMSSn8yV0,8318
42
- omnigenome/src/model/classification/__init__.py,sha256=6LxPh0ROdvzxMRLyLiksuX32H3F72vIbm1N3VCPnz4A,400
43
- omnigenome/src/model/classification/model.py,sha256=_XPiVhoF-7QD_VV9shG5c95F_XD6t8E-czg3Eb2xDdQ,25184
44
- omnigenome/src/model/embedding/__init__.py,sha256=pxrepPcVIp5ZmkEC5M3vRnmBJJTB1qXII5Zot_WSA3k,395
45
- omnigenome/src/model/embedding/model.py,sha256=H3XyIJ-HxgYDPFqnfd1XsWO3JYV5DnDAbMqgz6oe3g0,10355
46
- omnigenome/src/model/mlm/__init__.py,sha256=_rVEdL3nec_7hze2nTG0jgoupDJYMyl8EVcb02ZNwRs,407
47
- omnigenome/src/model/mlm/model.py,sha256=RaUiX66Kzinn6vE1Rp23paJSOJP78EpxS0a9QJinQn0,6547
48
- omnigenome/src/model/regression/__init__.py,sha256=Qdd4ctbc6jqTJDxHLe5MzSA3eDvW4vdypJm28bMQkco,396
49
- omnigenome/src/model/regression/model.py,sha256=sgFqZ00J_gmeP9eRt1JYlbNN_KZhWLP1m4bEKKzV1Z8,28177
50
- omnigenome/src/model/regression/resnet.py,sha256=YgzUAhGdXG_pAmvjQOpEjjzwxtm7sOb-a4et0CPJ09Y,17093
51
- omnigenome/src/model/rna_design/__init__.py,sha256=jHAhyxuJScz1h1HY1UfZ3_fSVmwJOwsSACQkTItAl38,396
52
- omnigenome/src/model/rna_design/model.py,sha256=HW5KcJiN-SWCvLalYS3w5ZprDK3GXR1sGr_15OybRlM,17343
53
- omnigenome/src/model/seq2seq/__init__.py,sha256=OAi4RVSwCbFOIvEwQZCDTImBOFrLkHs1JXwipL_4fqs,406
54
- omnigenome/src/model/seq2seq/model.py,sha256=-dGUjg7uRmnbR4rPH_lF8SgpR-U5lCoVJm4oNqzCOGg,1715
55
- omnigenome/src/tokenizer/__init__.py,sha256=zYUgX-FJ-fw0GNJuuW8ovo9kflDmGDd8Z0F3AMDFXF4,556
56
- omnigenome/src/tokenizer/bpe_tokenizer.py,sha256=5_qIuTYOWkhZH4O1jRf-hm4C130SjyVQP6avQkAkUr4,7898
57
- omnigenome/src/tokenizer/kmers_tokenizer.py,sha256=KqyoY3xxllhl2Ij3YZk_zuW16dtH96I0hU5OMvO-EtA,9359
58
- omnigenome/src/tokenizer/single_nucleotide_tokenizer.py,sha256=MAIeTtqQUDn6LYbYMy8RTzIU6S40rM5IE-imyM2MgFE,9794
59
- omnigenome/src/trainer/__init__.py,sha256=adib_MJlED-EXXkNCt9MhV1U9mPPoOrLReA-dxhgdT0,453
60
- omnigenome/src/trainer/accelerate_trainer.py,sha256=d5xtBdxtNWFyPYtodGkmnUi8t9ex3qlD4YFNOy3hvaY,28393
61
- omnigenome/src/trainer/hf_trainer.py,sha256=FdWU7g7iH0s-pmbTDOqYBwVMr6TKSKGUyrcfhum39Nk,2631
62
- omnigenome/src/trainer/trainer.py,sha256=NByvYdcazND_c9Ot2RSxoFjOV-Wc6kReu099BZbk13A,21179
63
- omnigenome/utility/__init__.py,sha256=UvgBH3hsW2JoXfGG6dHJeQLHVF7rXdzK39wGCoJOEKI,101
64
- omnigenome/utility/ensemble.py,sha256=2xSDvGULKJwE5LfLWfnNjsWo2DFf_TFmvqyhrYFlC90,13413
65
- omnigenome/utility/hub_utils.py,sha256=yJF5RVICFbWy9JQU2P0lM3NXumu7HxNLCjpTKAudZf4,20313
66
- omnigenome/utility/dataset_hub/__init__.py,sha256=6OTdqTWgKkuPQRBCGycpS1BboBoyT8rF3jY1EBSSAmE,434
67
- omnigenome/utility/dataset_hub/dataset_hub.py,sha256=OW0XE27nCbuVD18UatFwi1w4UEfKxnv77R61D7bd0Vg,7008
68
- omnigenome/utility/model_hub/__init__.py,sha256=N0xf5urzb6MxR8g-xF1CTzX0OFpHjngfETk6cmn92sc,392
69
- omnigenome/utility/model_hub/model_hub.py,sha256=kgyjrU9qUb_pflIKqOQOUrk3zlF5pM8JazBxJyiBTck,8792
70
- omnigenome/utility/pipeline_hub/__init__.py,sha256=rm7k6GDXyrYGQyLO3ZFpYLnjAYf6s8xmJuOPypDNQ-g,395
71
- omnigenome/utility/pipeline_hub/pipeline.py,sha256=F_pDC_JKJF3b8OZtqzKzl99Q1FLMRQdBaGURi8CjZzg,20121
72
- omnigenome/utility/pipeline_hub/pipeline_hub.py,sha256=9HB5xZTr8HZtsuC6MrWWNbR4cg_5BW0CVXKQk2AwcWA,5384
73
- omnigenome-0.3.0a1.dist-info/licenses/LICENSE,sha256=oQoefBV6siHctF0ET-OO3EaSZgtqGtf-wdIAmokS8iY,11560
74
- omnigenome-0.3.0a1.dist-info/METADATA,sha256=yT37KTD8T7iMB8nrqAasko3IxhpVR5L3QIkRdT6Qf3o,10318
75
- omnigenome-0.3.0a1.dist-info/WHEEL,sha256=lTU6B6eIfYoiQJTZNc-fyaR6BpL6ehTzU3xGYxn2n8k,91
76
- omnigenome-0.3.0a1.dist-info/entry_points.txt,sha256=uu40UgMPxY65ASdRbrhkwH94r7CIYgyG_iDBmqFQbD8,84
77
- omnigenome-0.3.0a1.dist-info/top_level.txt,sha256=LVFxm_WPaxjj9KnAqdW94W4D4lbOk30gdsaKlJiSzTo,11
78
- omnigenome-0.3.0a1.dist-info/RECORD,,