omnigenome 0.3.0a0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of omnigenome might be problematic. Click here for more details.

Files changed (85) hide show
  1. omnigenome/__init__.py +281 -0
  2. omnigenome/auto/__init__.py +3 -0
  3. omnigenome/auto/auto_bench/__init__.py +12 -0
  4. omnigenome/auto/auto_bench/auto_bench.py +484 -0
  5. omnigenome/auto/auto_bench/auto_bench_cli.py +230 -0
  6. omnigenome/auto/auto_bench/auto_bench_config.py +216 -0
  7. omnigenome/auto/auto_bench/config_check.py +34 -0
  8. omnigenome/auto/auto_train/__init__.py +13 -0
  9. omnigenome/auto/auto_train/auto_train.py +430 -0
  10. omnigenome/auto/auto_train/auto_train_cli.py +222 -0
  11. omnigenome/auto/bench_hub/__init__.py +12 -0
  12. omnigenome/auto/bench_hub/bench_hub.py +25 -0
  13. omnigenome/cli/__init__.py +13 -0
  14. omnigenome/cli/commands/__init__.py +13 -0
  15. omnigenome/cli/commands/base.py +83 -0
  16. omnigenome/cli/commands/bench/__init__.py +13 -0
  17. omnigenome/cli/commands/bench/bench_cli.py +202 -0
  18. omnigenome/cli/commands/rna/__init__.py +13 -0
  19. omnigenome/cli/commands/rna/rna_design.py +178 -0
  20. omnigenome/cli/omnigenome_cli.py +128 -0
  21. omnigenome/src/__init__.py +12 -0
  22. omnigenome/src/abc/__init__.py +12 -0
  23. omnigenome/src/abc/abstract_dataset.py +622 -0
  24. omnigenome/src/abc/abstract_metric.py +114 -0
  25. omnigenome/src/abc/abstract_model.py +689 -0
  26. omnigenome/src/abc/abstract_tokenizer.py +267 -0
  27. omnigenome/src/dataset/__init__.py +16 -0
  28. omnigenome/src/dataset/omni_dataset.py +435 -0
  29. omnigenome/src/lora/__init__.py +13 -0
  30. omnigenome/src/lora/lora_model.py +294 -0
  31. omnigenome/src/metric/__init__.py +15 -0
  32. omnigenome/src/metric/classification_metric.py +184 -0
  33. omnigenome/src/metric/metric.py +199 -0
  34. omnigenome/src/metric/ranking_metric.py +142 -0
  35. omnigenome/src/metric/regression_metric.py +191 -0
  36. omnigenome/src/misc/__init__.py +3 -0
  37. omnigenome/src/misc/utils.py +439 -0
  38. omnigenome/src/model/__init__.py +19 -0
  39. omnigenome/src/model/augmentation/__init__.py +12 -0
  40. omnigenome/src/model/augmentation/model.py +219 -0
  41. omnigenome/src/model/classification/__init__.py +12 -0
  42. omnigenome/src/model/classification/model.py +642 -0
  43. omnigenome/src/model/embedding/__init__.py +12 -0
  44. omnigenome/src/model/embedding/model.py +263 -0
  45. omnigenome/src/model/mlm/__init__.py +12 -0
  46. omnigenome/src/model/mlm/model.py +177 -0
  47. omnigenome/src/model/module_utils.py +232 -0
  48. omnigenome/src/model/regression/__init__.py +12 -0
  49. omnigenome/src/model/regression/model.py +786 -0
  50. omnigenome/src/model/regression/resnet.py +483 -0
  51. omnigenome/src/model/rna_design/__init__.py +12 -0
  52. omnigenome/src/model/rna_design/model.py +426 -0
  53. omnigenome/src/model/seq2seq/__init__.py +12 -0
  54. omnigenome/src/model/seq2seq/model.py +44 -0
  55. omnigenome/src/tokenizer/__init__.py +16 -0
  56. omnigenome/src/tokenizer/bpe_tokenizer.py +226 -0
  57. omnigenome/src/tokenizer/kmers_tokenizer.py +247 -0
  58. omnigenome/src/tokenizer/single_nucleotide_tokenizer.py +249 -0
  59. omnigenome/src/trainer/__init__.py +14 -0
  60. omnigenome/src/trainer/accelerate_trainer.py +739 -0
  61. omnigenome/src/trainer/hf_trainer.py +75 -0
  62. omnigenome/src/trainer/trainer.py +579 -0
  63. omnigenome/utility/__init__.py +3 -0
  64. omnigenome/utility/dataset_hub/__init__.py +13 -0
  65. omnigenome/utility/dataset_hub/dataset_hub.py +178 -0
  66. omnigenome/utility/ensemble.py +324 -0
  67. omnigenome/utility/hub_utils.py +517 -0
  68. omnigenome/utility/model_hub/__init__.py +12 -0
  69. omnigenome/utility/model_hub/model_hub.py +231 -0
  70. omnigenome/utility/pipeline_hub/__init__.py +12 -0
  71. omnigenome/utility/pipeline_hub/pipeline.py +483 -0
  72. omnigenome/utility/pipeline_hub/pipeline_hub.py +129 -0
  73. omnigenome-0.3.0a0.dist-info/METADATA +224 -0
  74. omnigenome-0.3.0a0.dist-info/RECORD +85 -0
  75. omnigenome-0.3.0a0.dist-info/WHEEL +5 -0
  76. omnigenome-0.3.0a0.dist-info/entry_points.txt +3 -0
  77. omnigenome-0.3.0a0.dist-info/licenses/LICENSE +201 -0
  78. omnigenome-0.3.0a0.dist-info/top_level.txt +2 -0
  79. tests/__init__.py +9 -0
  80. tests/conftest.py +160 -0
  81. tests/test_dataset_patterns.py +291 -0
  82. tests/test_examples_syntax.py +83 -0
  83. tests/test_model_loading.py +183 -0
  84. tests/test_rna_functions.py +255 -0
  85. tests/test_training_patterns.py +302 -0
@@ -0,0 +1,231 @@
1
+ # -*- coding: utf-8 -*-
2
+ # file: model_hub.py
3
+ # time: 18:13 12/04/2024
4
+ # author: YANG, HENG <hy345@exeter.ac.uk> (杨恒)
5
+ # github: https://github.com/yangheng95
6
+ # huggingface: https://huggingface.co/yangheng
7
+ # google scholar: https://scholar.google.com/citations?user=NPq5a_0AAAAJ&hl=en
8
+ # Copyright (C) 2019-2024. All Rights Reserved.
9
+ import json
10
+ import os
11
+
12
+ import autocuda
13
+ import dill
14
+ import torch
15
+ from transformers import AutoConfig, AutoModel, AutoTokenizer
16
+
17
+ from omnigenome.utility.hub_utils import query_models_info, download_model
18
+ from ...src.misc.utils import env_meta_info, fprint
19
+
20
+
21
+ class ModelHub:
22
+ """
23
+ A hub for loading and managing pre-trained genomic models.
24
+
25
+ This class provides a unified interface for loading pre-trained models
26
+ from the OmniGenome hub or local paths. It handles model downloading,
27
+ tokenizer loading, and device placement automatically.
28
+
29
+ The ModelHub supports various model types and can automatically
30
+ download models from the hub if they're not available locally.
31
+
32
+ Attributes:
33
+ metadata (dict): Environment metadata information
34
+
35
+ Example:
36
+ >>> from omnigenome import ModelHub
37
+ >>> hub = ModelHub()
38
+
39
+ >>> # Load a model from the hub
40
+ >>> model, tokenizer = ModelHub.load_model_and_tokenizer("model_name")
41
+
42
+ >>> # Check available models
43
+ >>> models = hub.available_models()
44
+ >>> print(list(models.keys()))
45
+ """
46
+
47
+ def __init__(self, *args, **kwargs):
48
+ """
49
+ Initialize the ModelHub instance.
50
+
51
+ Args:
52
+ *args: Additional positional arguments
53
+ **kwargs: Additional keyword arguments
54
+ """
55
+ super(ModelHub, self).__init__(*args, **kwargs)
56
+
57
+ self.metadata = env_meta_info()
58
+
59
+ @staticmethod
60
+ def load_model_and_tokenizer(
61
+ model_name_or_path,
62
+ local_only=False,
63
+ device=None,
64
+ dtype=torch.float16,
65
+ **kwargs,
66
+ ):
67
+ """
68
+ Load a model and its tokenizer from the hub or local path.
69
+
70
+ This method loads both the model and tokenizer, places them on the
71
+ specified device, and returns them as a tuple. It handles automatic
72
+ device selection if none is specified.
73
+
74
+ Args:
75
+ model_name_or_path (str): Name or path of the model to load
76
+ local_only (bool, optional): Whether to use only local cache. Defaults to False
77
+ device (str, optional): Device to load the model on. If None, uses auto-detection
78
+ dtype (torch.dtype, optional): Data type for the model. Defaults to torch.float16
79
+ **kwargs: Additional keyword arguments passed to the model loading functions
80
+
81
+ Returns:
82
+ tuple: A tuple containing (model, tokenizer)
83
+
84
+ Example:
85
+ >>> model, tokenizer = ModelHub.load_model_and_tokenizer("yangheng/OmniGenome-186M")
86
+ >>> print(f"Model loaded on device: {next(model.parameters()).device}")
87
+ """
88
+ model = ModelHub.load(model_name_or_path, local_only=local_only, **kwargs)
89
+ fprint(f"The model and tokenizer has been loaded from {model_name_or_path}.")
90
+ model.to(dtype)
91
+ if device is None:
92
+ device = autocuda.auto_cuda()
93
+ fprint(
94
+ f"No device is specified, the model will be loaded to the default device: {device}"
95
+ )
96
+ model.to(device)
97
+ else:
98
+ model.to(device)
99
+ return model, model.tokenizer
100
+
101
+ @staticmethod
102
+ def load(
103
+ model_name_or_path,
104
+ local_only=False,
105
+ device=None,
106
+ dtype=torch.float16,
107
+ **kwargs,
108
+ ):
109
+ """
110
+ Load a model from the hub or local path.
111
+
112
+ This method handles model loading from various sources including
113
+ local paths and the OmniGenome hub. It automatically downloads
114
+ models if they're not available locally.
115
+
116
+ Args:
117
+ model_name_or_path (str): Name or path of the model to load
118
+ local_only (bool, optional): Whether to use only local cache. Defaults to False
119
+ device (str, optional): Device to load the model on. If None, uses auto-detection
120
+ dtype (torch.dtype, optional): Data type for the model. Defaults to torch.float16
121
+ **kwargs: Additional keyword arguments passed to the model loading functions
122
+
123
+ Returns:
124
+ torch.nn.Module: The loaded model
125
+
126
+ Raises:
127
+ ValueError: If model_name_or_path is not a string
128
+
129
+ Example:
130
+ >>> model = ModelHub.load("yangheng/OmniGenome-186M")
131
+ >>> print(f"Model type: {type(model)}")
132
+ """
133
+ if isinstance(model_name_or_path, str) and os.path.exists(model_name_or_path):
134
+ path = model_name_or_path
135
+ elif isinstance(model_name_or_path, str) and not os.path.exists(
136
+ model_name_or_path
137
+ ):
138
+ path = download_model(model_name_or_path, local_only=local_only, **kwargs)
139
+ else:
140
+ raise ValueError("model_name_or_path must be a string.")
141
+
142
+ import importlib
143
+
144
+ config = AutoConfig.from_pretrained(path, trust_remote_code=True, **kwargs)
145
+
146
+ with open(f"{path}/metadata.json", "r", encoding="utf8") as f:
147
+ metadata = json.load(f)
148
+
149
+ if "Omni" in metadata["tokenizer_cls"]:
150
+ lib = importlib.import_module(metadata["library_name"].lower())
151
+ tokenizer_cls = getattr(lib, metadata["tokenizer_cls"])
152
+ tokenizer = tokenizer_cls.from_pretrained(path, **kwargs)
153
+ else:
154
+ from multimolecule import RnaTokenizer
155
+ tokenizer = RnaTokenizer.from_pretrained(path, **kwargs)
156
+
157
+ config.metadata = metadata
158
+
159
+ base_model = AutoModel.from_config(config, trust_remote_code=True, **kwargs)
160
+ model_lib = importlib.import_module(metadata["library_name"].lower()).model
161
+ model_cls = getattr(model_lib, metadata["model_cls"])
162
+ model = model_cls(
163
+ base_model,
164
+ tokenizer,
165
+ label2id=config.label2id,
166
+ num_labels=config.num_labels,
167
+ **kwargs,
168
+ )
169
+
170
+ with open(f"{path}/pytorch_model.bin", "rb") as f:
171
+ model.load_state_dict(
172
+ torch.load(f, map_location=kwargs.get("device", "cpu")), strict=False
173
+ )
174
+ model.to(dtype)
175
+ if device is None:
176
+ device = autocuda.auto_cuda()
177
+ fprint(
178
+ f"No device is specified, the model will be loaded to the default device: {device}"
179
+ )
180
+ model.to(device)
181
+ else:
182
+ model.to(device)
183
+ return model
184
+
185
+ def available_models(
186
+ self, model_name_or_path=None, local_only=False, repo="", **kwargs
187
+ ):
188
+ """
189
+ Get information about available models in the hub.
190
+
191
+ This method queries the OmniGenome hub to retrieve information about
192
+ available models. It can filter models by name and supports both
193
+ local and remote queries.
194
+
195
+ Args:
196
+ model_name_or_path (str, optional): Filter models by name. Defaults to None
197
+ local_only (bool, optional): Whether to use only local cache. Defaults to False
198
+ repo (str, optional): Repository URL to query. Defaults to ""
199
+ **kwargs: Additional keyword arguments
200
+
201
+ Returns:
202
+ dict: Dictionary containing information about available models
203
+
204
+ Example:
205
+ >>> hub = ModelHub()
206
+ >>> models = hub.available_models()
207
+ >>> print(f"Available models: {len(models)}")
208
+
209
+ >>> # Filter models by name
210
+ >>> dna_models = hub.available_models("DNA")
211
+ >>> print(f"DNA models: {list(dna_models.keys())}")
212
+ """
213
+ models_info = query_models_info(
214
+ model_name_or_path, local_only=local_only, repo=repo, **kwargs
215
+ )
216
+ return models_info
217
+
218
+ def push(self, model, **kwargs):
219
+ """
220
+ Push a model to the hub.
221
+
222
+ This method is not yet implemented and will raise a NotImplementedError.
223
+
224
+ Args:
225
+ model: The model to push to the hub
226
+ **kwargs: Additional keyword arguments
227
+
228
+ Raises:
229
+ NotImplementedError: This method has not been implemented yet
230
+ """
231
+ raise NotImplementedError("This method has not implemented yet.")
@@ -0,0 +1,12 @@
1
+ # -*- coding: utf-8 -*-
2
+ # file: __init__.py
3
+ # time: 14:09 06/04/2024
4
+ # author: YANG, HENG <hy345@exeter.ac.uk> (杨恒)
5
+ # github: https://github.com/yangheng95
6
+ # huggingface: https://huggingface.co/yangheng
7
+ # google scholar: https://scholar.google.com/citations?user=NPq5a_0AAAAJ&hl=en
8
+ # Copyright (C) 2019-2024. All Rights Reserved.
9
+ """
10
+ This package contains modules for the pipeline hub.
11
+ """
12
+