okb 1.1.0__py3-none-any.whl → 1.1.0a0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,369 +0,0 @@
1
- """Entity extraction from document content using LLM."""
2
-
3
- from __future__ import annotations
4
-
5
- import json
6
- import re
7
-
8
- from .base import ExtractedEntity
9
-
10
- ENTITY_SYSTEM_PROMPT = """\
11
- You are an expert at identifying named entities in text for a PERSONAL knowledge base.
12
- Extract only entities that are specific to the author's context - things an LLM wouldn't know about.
13
-
14
- Entity types to extract:
15
- - person: People the author knows, works with, or references (colleagues, contacts, clients)
16
- - project: Specific named projects/products/codebases (e.g., "Acme Dashboard", "customer-portal")
17
- NOT git branches, environments, or workflow stages
18
- - technology: ONLY obscure/niche tools or internal systems - NOT well-known technologies
19
- - organization: Specific companies, teams, clients the author works with
20
-
21
- DO NOT extract:
22
- - Well-known technologies: JSON, HTTP, SQL, Python, JavaScript, Docker, AWS, PostgreSQL, React, etc.
23
- (The LLM already knows these - they add no value to a personal knowledge base)
24
- - Code symbols: function names, method calls, variables, class names
25
- - Generic terms: "user", "data", "system", "database", "API", "server", "client"
26
- - Git branches/workflow terms: main, master, develop, release, staging, production, feature, hotfix
27
- - Generic process terms: deploy, build, test, migration, setup, config
28
- - Environment names: dev, prod, qa, uat, local
29
- - Issue or bug descriptions - those are documents, not entities
30
- - Famous people, major companies (Google, Microsoft, etc.) unless contextually relevant to author
31
-
32
- ONLY extract entities that would help answer "Who/what is X?" where X is specific to this person.
33
-
34
- For each entity found, extract:
35
- - name: The canonical name (proper noun)
36
- - entity_type: One of: person, project, technology, organization
37
- - aliases: Other names/abbreviations (optional)
38
- - description: Brief description based on context (optional)
39
- - mentions: Text snippets where entity appears (max 3)
40
- - confidence: How confident you are (0.0-1.0)
41
-
42
- Return JSON array. Return empty array [] if no context-specific entities found.
43
- """
44
-
45
- ENTITY_USER_PROMPT = """\
46
- Document title: {title}
47
- Source type: {source_type}
48
-
49
- Content:
50
- {content}
51
-
52
- Extract named entities as JSON array.
53
- """
54
-
55
-
56
- def extract_entities(
57
- content: str,
58
- title: str,
59
- source_type: str | None = None,
60
- min_confidence: float = 0.8,
61
- ) -> list[ExtractedEntity]:
62
- """Extract entities from document content using LLM.
63
-
64
- Args:
65
- content: Document content to analyze
66
- title: Document title for context
67
- source_type: Type of document (optional)
68
- min_confidence: Minimum confidence threshold (0-1)
69
-
70
- Returns:
71
- List of extracted entities
72
- """
73
- from .. import complete
74
-
75
- # Truncate content if too long
76
- if len(content) > 20000:
77
- content = content[:20000] + "\n\n[... content truncated ...]"
78
-
79
- prompt = ENTITY_USER_PROMPT.format(
80
- title=title,
81
- source_type=source_type or "unknown",
82
- content=content,
83
- )
84
-
85
- response = complete(
86
- prompt=prompt,
87
- system=ENTITY_SYSTEM_PROMPT,
88
- max_tokens=2048,
89
- use_cache=True,
90
- )
91
-
92
- if response is None:
93
- return []
94
-
95
- return _parse_entity_response(response.content, min_confidence, title)
96
-
97
-
98
- def _looks_like_code(name: str) -> bool:
99
- """Check if entity name looks like code."""
100
- # Contains parentheses (function calls)
101
- if "(" in name or ")" in name:
102
- return True
103
- # Snake_case with underscores (likely variable/function)
104
- if "_" in name and name.islower():
105
- return True
106
- # Starts with lowercase and contains dots (method chain)
107
- if name and name[0].islower() and "." in name:
108
- return True
109
- # CamelCase starting with lowercase (variable/method name)
110
- if name and name[0].islower() and any(c.isupper() for c in name):
111
- return True
112
- return False
113
-
114
-
115
- # Well-known technologies that add no value to a personal knowledge base
116
- COMMON_TECHNOLOGIES = frozenset(
117
- s.lower()
118
- for s in [
119
- # Data formats
120
- "JSON",
121
- "XML",
122
- "YAML",
123
- "CSV",
124
- "HTML",
125
- "CSS",
126
- "Markdown",
127
- # Protocols
128
- "HTTP",
129
- "HTTPS",
130
- "REST",
131
- "GraphQL",
132
- "WebSocket",
133
- "TCP",
134
- "UDP",
135
- "SSH",
136
- "FTP",
137
- "SMTP",
138
- # Languages
139
- "Python",
140
- "JavaScript",
141
- "TypeScript",
142
- "Java",
143
- "Go",
144
- "Rust",
145
- "C",
146
- "C++",
147
- "Ruby",
148
- "PHP",
149
- "Swift",
150
- "Kotlin",
151
- "Scala",
152
- "Bash",
153
- "Shell",
154
- "SQL",
155
- "Lua",
156
- # Major frameworks/tools
157
- "React",
158
- "Vue",
159
- "Angular",
160
- "Node.js",
161
- "Django",
162
- "Flask",
163
- "FastAPI",
164
- "Rails",
165
- "Spring",
166
- "Express",
167
- "Next.js",
168
- # Databases
169
- "PostgreSQL",
170
- "MySQL",
171
- "MongoDB",
172
- "Redis",
173
- "SQLite",
174
- "Elasticsearch",
175
- "DynamoDB",
176
- # Cloud/infra
177
- "AWS",
178
- "Azure",
179
- "GCP",
180
- "Docker",
181
- "Kubernetes",
182
- "Linux",
183
- "Windows",
184
- "macOS",
185
- "Nginx",
186
- "Apache",
187
- # Tools
188
- "Git",
189
- "GitHub",
190
- "GitLab",
191
- "npm",
192
- "pip",
193
- "Webpack",
194
- "VS Code",
195
- "Vim",
196
- "Emacs",
197
- ]
198
- )
199
-
200
- # Generic git/workflow/environment terms that are not context-specific
201
- GENERIC_TERMS = frozenset(
202
- s.lower()
203
- for s in [
204
- # Git branches
205
- "main",
206
- "master",
207
- "develop",
208
- "development",
209
- "release",
210
- "staging",
211
- "production",
212
- "feature",
213
- "hotfix",
214
- "bugfix",
215
- # Environments
216
- "dev",
217
- "prod",
218
- "test",
219
- "qa",
220
- "uat",
221
- "local",
222
- "sandbox",
223
- # Workflow/process terms
224
- "deploy",
225
- "build",
226
- "migration",
227
- "setup",
228
- "config",
229
- "configuration",
230
- "rollback",
231
- "rollout",
232
- # Generic architectural terms
233
- "frontend",
234
- "backend",
235
- "api",
236
- "service",
237
- "server",
238
- "client",
239
- "app",
240
- "application",
241
- "module",
242
- "component",
243
- "library",
244
- "package",
245
- "plugin",
246
- "extension",
247
- # Generic data terms
248
- "database",
249
- "cache",
250
- "queue",
251
- "worker",
252
- "scheduler",
253
- "cron",
254
- ]
255
- )
256
-
257
-
258
- def _parse_entity_response(
259
- response_text: str, min_confidence: float, title: str = ""
260
- ) -> list[ExtractedEntity]:
261
- """Parse LLM response into ExtractedEntity objects."""
262
- # Try to extract JSON from response
263
- json_match = re.search(r"\[.*\]", response_text, re.DOTALL)
264
- if not json_match:
265
- return []
266
-
267
- try:
268
- entities_data = json.loads(json_match.group())
269
- except json.JSONDecodeError:
270
- return []
271
-
272
- if not isinstance(entities_data, list):
273
- return []
274
-
275
- valid_types = {"person", "project", "technology", "organization"}
276
- entities = []
277
-
278
- for item in entities_data:
279
- if not isinstance(item, dict):
280
- continue
281
-
282
- name = item.get("name", "").strip()
283
- entity_type = item.get("entity_type")
284
-
285
- if not name or not isinstance(name, str):
286
- continue
287
- if not entity_type or entity_type not in valid_types:
288
- continue
289
-
290
- # Filter: too short or too long
291
- if len(name) < 3 or len(name) > 80:
292
- continue
293
-
294
- # Filter: looks like code
295
- if _looks_like_code(name):
296
- continue
297
-
298
- # Filter: well-known technologies (LLM already knows these)
299
- if name.lower() in COMMON_TECHNOLOGIES:
300
- continue
301
-
302
- # Filter: generic git/workflow/environment terms
303
- if name.lower() in GENERIC_TERMS:
304
- continue
305
-
306
- # Filter: matches document title (source shouldn't be extracted as entity)
307
- if title and name.lower() == title.lower():
308
- continue
309
-
310
- # Get confidence (default to 0.85 if not specified)
311
- confidence = item.get("confidence", 0.85)
312
- if not isinstance(confidence, int | float):
313
- confidence = 0.85
314
-
315
- if confidence < min_confidence:
316
- continue
317
-
318
- # Parse aliases
319
- aliases = item.get("aliases", [])
320
- if not isinstance(aliases, list):
321
- aliases = []
322
- aliases = [a for a in aliases if isinstance(a, str)]
323
-
324
- # Parse mentions
325
- mentions = item.get("mentions", [])
326
- if not isinstance(mentions, list):
327
- mentions = []
328
- mentions = [m for m in mentions if isinstance(m, str)][:3]
329
-
330
- entities.append(
331
- ExtractedEntity(
332
- name=name,
333
- entity_type=entity_type,
334
- aliases=aliases,
335
- description=item.get("description"),
336
- mentions=mentions,
337
- confidence=float(confidence),
338
- )
339
- )
340
-
341
- return entities
342
-
343
-
344
- def normalize_entity_name(name: str) -> str:
345
- """Normalize entity name for deduplication and URL generation.
346
-
347
- Examples:
348
- "John Smith" -> "john-smith"
349
- "AWS (Amazon Web Services)" -> "aws-amazon-web-services"
350
- "React.js" -> "react-js"
351
- """
352
- # Lowercase
353
- normalized = name.lower()
354
- # Replace non-alphanumeric with spaces
355
- normalized = re.sub(r"[^a-z0-9\s]", " ", normalized)
356
- # Collapse whitespace and replace with hyphens
357
- normalized = re.sub(r"\s+", "-", normalized.strip())
358
- # Remove leading/trailing hyphens
359
- normalized = normalized.strip("-")
360
- return normalized
361
-
362
-
363
- def entity_source_path(entity_type: str, name: str) -> str:
364
- """Generate source_path for an entity document.
365
-
366
- Format: okb://entity/{type}/{normalized-name}
367
- """
368
- normalized = normalize_entity_name(name)
369
- return f"okb://entity/{entity_type}/{normalized}"
@@ -1,149 +0,0 @@
1
- """TODO extraction from document content using LLM."""
2
-
3
- from __future__ import annotations
4
-
5
- import json
6
- import re
7
- from datetime import UTC, datetime
8
-
9
- from .base import ExtractedTodo
10
-
11
- TODO_SYSTEM_PROMPT = """\
12
- You are an expert at identifying action items and tasks in text.
13
- Extract TODO items from the given document content.
14
-
15
- Look for:
16
- - Explicit markers: TODO, FIXME, HACK, XXX, ACTION
17
- - Action phrases: "need to", "should", "must", "have to", "action item"
18
- - Deadlines and commitments: "by Friday", "before the meeting", "this week"
19
- - Questions implying needed work: "What about X?", "How do we handle Y?"
20
- - Incomplete items marked for follow-up
21
-
22
- For each TODO found, extract:
23
- - title: A concise description of the task (imperative form: "Fix the bug", not "The bug needs fixing")
24
- - content: Additional context or details (optional)
25
- - due_date: If a deadline is mentioned, in ISO format YYYY-MM-DD (optional)
26
- - priority: 1=urgent, 2=high, 3=normal, 4=low, 5=someday (optional)
27
- - assignee: Person responsible if mentioned (optional)
28
- - source_context: The exact text snippet where this TODO was found
29
-
30
- Return JSON array of extracted TODOs. Return empty array [] if none found.
31
- Be conservative - only extract clear action items, not vague mentions.
32
- """
33
-
34
- TODO_USER_PROMPT = """\
35
- Document title: {title}
36
- Source type: {source_type}
37
-
38
- Content:
39
- {content}
40
-
41
- Extract all TODO items from this content as JSON array.
42
- """
43
-
44
-
45
- def extract_todos(
46
- content: str,
47
- title: str,
48
- source_type: str,
49
- min_confidence: float = 0.7,
50
- ) -> list[ExtractedTodo]:
51
- """Extract TODO items from document content using LLM.
52
-
53
- Args:
54
- content: Document content to analyze
55
- title: Document title for context
56
- source_type: Type of document (markdown, code, org, etc.)
57
- min_confidence: Minimum confidence threshold (0-1)
58
-
59
- Returns:
60
- List of extracted TODO items
61
- """
62
- from .. import complete
63
-
64
- # Truncate content if too long (keep first ~20k chars for context)
65
- if len(content) > 20000:
66
- content = content[:20000] + "\n\n[... content truncated ...]"
67
-
68
- prompt = TODO_USER_PROMPT.format(
69
- title=title,
70
- source_type=source_type,
71
- content=content,
72
- )
73
-
74
- response = complete(
75
- prompt=prompt,
76
- system=TODO_SYSTEM_PROMPT,
77
- max_tokens=2048,
78
- use_cache=True,
79
- )
80
-
81
- if response is None:
82
- return []
83
-
84
- return _parse_todo_response(response.content, min_confidence)
85
-
86
-
87
- def _parse_todo_response(response_text: str, min_confidence: float) -> list[ExtractedTodo]:
88
- """Parse LLM response into ExtractedTodo objects."""
89
- # Try to extract JSON from response
90
- json_match = re.search(r"\[.*\]", response_text, re.DOTALL)
91
- if not json_match:
92
- return []
93
-
94
- try:
95
- todos_data = json.loads(json_match.group())
96
- except json.JSONDecodeError:
97
- return []
98
-
99
- if not isinstance(todos_data, list):
100
- return []
101
-
102
- todos = []
103
- for item in todos_data:
104
- if not isinstance(item, dict):
105
- continue
106
-
107
- title = item.get("title")
108
- if not title or not isinstance(title, str):
109
- continue
110
-
111
- # Parse due_date if present
112
- due_date = None
113
- if due_str := item.get("due_date"):
114
- try:
115
- due_date = datetime.fromisoformat(due_str).replace(tzinfo=UTC)
116
- except (ValueError, TypeError):
117
- pass
118
-
119
- # Parse priority
120
- priority = None
121
- if p := item.get("priority"):
122
- try:
123
- priority = int(p)
124
- if priority < 1 or priority > 5:
125
- priority = None
126
- except (ValueError, TypeError):
127
- pass
128
-
129
- # Get confidence (default to 0.8 if not specified)
130
- confidence = item.get("confidence", 0.8)
131
- if not isinstance(confidence, (int, float)):
132
- confidence = 0.8
133
-
134
- if confidence < min_confidence:
135
- continue
136
-
137
- todos.append(
138
- ExtractedTodo(
139
- title=title.strip(),
140
- content=item.get("content"),
141
- due_date=due_date,
142
- priority=priority,
143
- assignee=item.get("assignee"),
144
- confidence=float(confidence),
145
- source_context=item.get("source_context"),
146
- )
147
- )
148
-
149
- return todos
@@ -1,46 +0,0 @@
1
- -- LLM enrichment for document annotation (TODOs and entities)
2
- -- depends: 0006.llm-cache
3
-
4
- -- Track enrichment state on documents
5
- ALTER TABLE documents ADD COLUMN IF NOT EXISTS enriched_at TIMESTAMPTZ;
6
- ALTER TABLE documents ADD COLUMN IF NOT EXISTS enrichment_version INTEGER;
7
-
8
- -- Index for "needs enrichment" queries
9
- CREATE INDEX IF NOT EXISTS idx_documents_needs_enrichment
10
- ON documents(enriched_at) WHERE enriched_at IS NULL;
11
-
12
- -- Pending entity suggestions (before approval)
13
- CREATE TABLE IF NOT EXISTS pending_entities (
14
- id UUID PRIMARY KEY DEFAULT gen_random_uuid(),
15
- source_document_id UUID NOT NULL REFERENCES documents(id) ON DELETE CASCADE,
16
- entity_name TEXT NOT NULL,
17
- entity_type TEXT NOT NULL, -- person, project, technology, concept, organization
18
- aliases JSONB DEFAULT '[]',
19
- description TEXT,
20
- mentions JSONB DEFAULT '[]', -- Context snippets from source document
21
- confidence REAL,
22
- status TEXT DEFAULT 'pending', -- pending, approved, rejected
23
- created_at TIMESTAMPTZ DEFAULT NOW(),
24
- reviewed_at TIMESTAMPTZ
25
- );
26
-
27
- CREATE INDEX IF NOT EXISTS idx_pending_entities_status ON pending_entities(status);
28
- CREATE INDEX IF NOT EXISTS idx_pending_entities_source ON pending_entities(source_document_id);
29
- CREATE INDEX IF NOT EXISTS idx_pending_entities_type ON pending_entities(entity_type);
30
-
31
- -- Entity references (links entity documents to source documents)
32
- -- When an entity is approved, it becomes a document with source_path like okb://entity/person/john-smith
33
- -- This table tracks which documents mention each entity
34
- CREATE TABLE IF NOT EXISTS entity_refs (
35
- id UUID PRIMARY KEY DEFAULT gen_random_uuid(),
36
- entity_id UUID NOT NULL REFERENCES documents(id) ON DELETE CASCADE,
37
- document_id UUID NOT NULL REFERENCES documents(id) ON DELETE CASCADE,
38
- mention_text TEXT NOT NULL,
39
- context TEXT, -- Surrounding text for context
40
- confidence REAL,
41
- created_at TIMESTAMPTZ DEFAULT NOW(),
42
- UNIQUE(entity_id, document_id, mention_text)
43
- );
44
-
45
- CREATE INDEX IF NOT EXISTS idx_entity_refs_entity ON entity_refs(entity_id);
46
- CREATE INDEX IF NOT EXISTS idx_entity_refs_document ON entity_refs(document_id);
@@ -1,120 +0,0 @@
1
- -- Entity consolidation: deduplication, cross-doc detection, clustering, relationships
2
- -- depends: 0008.enrichment
3
-
4
- -- Canonical mappings: alias text -> entity document
5
- -- Used for deduplication and alias resolution
6
- CREATE TABLE IF NOT EXISTS entity_aliases (
7
- id UUID PRIMARY KEY DEFAULT gen_random_uuid(),
8
- alias_text TEXT NOT NULL,
9
- entity_id UUID NOT NULL REFERENCES documents(id) ON DELETE CASCADE,
10
- confidence REAL, -- How confident we are this alias belongs to entity
11
- source TEXT DEFAULT 'manual', -- 'manual', 'merge', 'extraction'
12
- created_at TIMESTAMPTZ DEFAULT NOW(),
13
- UNIQUE(alias_text, entity_id)
14
- );
15
-
16
- CREATE INDEX IF NOT EXISTS idx_entity_aliases_text ON entity_aliases(LOWER(alias_text));
17
- CREATE INDEX IF NOT EXISTS idx_entity_aliases_entity ON entity_aliases(entity_id);
18
-
19
- -- Proposed entity merges awaiting user confirmation
20
- CREATE TABLE IF NOT EXISTS pending_entity_merges (
21
- id UUID PRIMARY KEY DEFAULT gen_random_uuid(),
22
- canonical_id UUID NOT NULL REFERENCES documents(id) ON DELETE CASCADE,
23
- duplicate_id UUID NOT NULL REFERENCES documents(id) ON DELETE CASCADE,
24
- confidence REAL NOT NULL, -- How confident we are these are the same
25
- reason TEXT, -- Why we think they're the same ("embedding_similarity", "alias_match", "llm")
26
- detected_at TIMESTAMPTZ DEFAULT NOW(),
27
- status TEXT DEFAULT 'pending', -- 'pending', 'approved', 'rejected'
28
- reviewed_at TIMESTAMPTZ,
29
- UNIQUE(canonical_id, duplicate_id)
30
- );
31
-
32
- CREATE INDEX IF NOT EXISTS idx_pending_merges_status ON pending_entity_merges(status);
33
- CREATE INDEX IF NOT EXISTS idx_pending_merges_confidence ON pending_entity_merges(confidence DESC);
34
-
35
- -- Entity-to-entity relationships
36
- CREATE TABLE IF NOT EXISTS entity_relationships (
37
- id UUID PRIMARY KEY DEFAULT gen_random_uuid(),
38
- source_entity_id UUID NOT NULL REFERENCES documents(id) ON DELETE CASCADE,
39
- target_entity_id UUID NOT NULL REFERENCES documents(id) ON DELETE CASCADE,
40
- relationship_type TEXT NOT NULL, -- 'works_for', 'uses', 'belongs_to', 'related_to'
41
- confidence REAL,
42
- source TEXT DEFAULT 'extraction', -- 'extraction', 'manual'
43
- context TEXT, -- Supporting context for the relationship
44
- created_at TIMESTAMPTZ DEFAULT NOW(),
45
- UNIQUE(source_entity_id, target_entity_id, relationship_type)
46
- );
47
-
48
- CREATE INDEX IF NOT EXISTS idx_entity_rel_source ON entity_relationships(source_entity_id);
49
- CREATE INDEX IF NOT EXISTS idx_entity_rel_target ON entity_relationships(target_entity_id);
50
- CREATE INDEX IF NOT EXISTS idx_entity_rel_type ON entity_relationships(relationship_type);
51
-
52
- -- Topic clusters group related entities and documents
53
- CREATE TABLE IF NOT EXISTS topic_clusters (
54
- id UUID PRIMARY KEY DEFAULT gen_random_uuid(),
55
- name TEXT NOT NULL,
56
- description TEXT,
57
- centroid vector(768), -- Cluster centroid embedding
58
- member_count INTEGER DEFAULT 0,
59
- created_at TIMESTAMPTZ DEFAULT NOW(),
60
- updated_at TIMESTAMPTZ DEFAULT NOW()
61
- );
62
-
63
- CREATE INDEX IF NOT EXISTS idx_topic_clusters_centroid ON topic_clusters
64
- USING hnsw (centroid vector_cosine_ops);
65
-
66
- -- Cluster membership: entities and documents can belong to clusters
67
- CREATE TABLE IF NOT EXISTS topic_cluster_members (
68
- id UUID PRIMARY KEY DEFAULT gen_random_uuid(),
69
- cluster_id UUID NOT NULL REFERENCES topic_clusters(id) ON DELETE CASCADE,
70
- document_id UUID NOT NULL REFERENCES documents(id) ON DELETE CASCADE,
71
- distance REAL, -- Distance from cluster centroid
72
- is_entity BOOLEAN DEFAULT FALSE, -- True if document is an entity
73
- added_at TIMESTAMPTZ DEFAULT NOW(),
74
- UNIQUE(cluster_id, document_id)
75
- );
76
-
77
- CREATE INDEX IF NOT EXISTS idx_cluster_members_cluster ON topic_cluster_members(cluster_id);
78
- CREATE INDEX IF NOT EXISTS idx_cluster_members_document ON topic_cluster_members(document_id);
79
-
80
- -- Proposed cluster merges awaiting confirmation
81
- CREATE TABLE IF NOT EXISTS pending_cluster_merges (
82
- id UUID PRIMARY KEY DEFAULT gen_random_uuid(),
83
- primary_cluster_id UUID NOT NULL REFERENCES topic_clusters(id) ON DELETE CASCADE,
84
- secondary_cluster_id UUID NOT NULL REFERENCES topic_clusters(id) ON DELETE CASCADE,
85
- similarity REAL NOT NULL, -- How similar the clusters are
86
- status TEXT DEFAULT 'pending', -- 'pending', 'approved', 'rejected'
87
- detected_at TIMESTAMPTZ DEFAULT NOW(),
88
- reviewed_at TIMESTAMPTZ,
89
- UNIQUE(primary_cluster_id, secondary_cluster_id)
90
- );
91
-
92
- CREATE INDEX IF NOT EXISTS idx_pending_cluster_merges_status ON pending_cluster_merges(status);
93
-
94
- -- Cross-document entity candidates: detected mentions not yet extracted as entities
95
- CREATE TABLE IF NOT EXISTS cross_doc_entity_candidates (
96
- id UUID PRIMARY KEY DEFAULT gen_random_uuid(),
97
- text TEXT NOT NULL, -- The mention text (normalized)
98
- document_ids UUID[] NOT NULL, -- Array of document IDs containing this mention
99
- document_count INTEGER NOT NULL, -- Number of documents (for quick filtering)
100
- sample_contexts JSONB DEFAULT '[]', -- Sample text contexts where it appears
101
- suggested_type TEXT, -- Suggested entity type
102
- confidence REAL,
103
- status TEXT DEFAULT 'pending', -- 'pending', 'approved', 'rejected', 'exists'
104
- created_at TIMESTAMPTZ DEFAULT NOW(),
105
- reviewed_at TIMESTAMPTZ,
106
- UNIQUE(text)
107
- );
108
-
109
- CREATE INDEX IF NOT EXISTS idx_cross_doc_status ON cross_doc_entity_candidates(status);
110
- CREATE INDEX IF NOT EXISTS idx_cross_doc_count ON cross_doc_entity_candidates(document_count DESC);
111
-
112
- -- Track consolidation runs
113
- CREATE TABLE IF NOT EXISTS consolidation_runs (
114
- id UUID PRIMARY KEY DEFAULT gen_random_uuid(),
115
- run_type TEXT NOT NULL, -- 'dedup', 'cross_doc', 'cluster', 'relationship', 'full'
116
- started_at TIMESTAMPTZ DEFAULT NOW(),
117
- completed_at TIMESTAMPTZ,
118
- stats JSONB DEFAULT '{}', -- Run statistics
119
- error TEXT -- Error message if failed
120
- );
@@ -1,7 +0,0 @@
1
- -- Add ID column to tokens for easier revocation
2
- -- depends: 0009.entity-consolidation
3
-
4
- ALTER TABLE tokens ADD COLUMN IF NOT EXISTS id SERIAL;
5
-
6
- -- Create index for ID lookups
7
- CREATE INDEX IF NOT EXISTS tokens_id_idx ON tokens(id);
File without changes