oikan 0.0.3.6__py3-none-any.whl → 0.0.3.7__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
oikan/model.py CHANGED
@@ -319,11 +319,15 @@ class OIKAN(ABC):
319
319
 
320
320
  def _generate_augmented_data(self, X):
321
321
  """Generates augmented data by adding Gaussian noise."""
322
+ if self.augmentation_factor == 1:
323
+ return np.array([]).reshape(0, X.shape[1])
324
+
322
325
  X_aug = []
323
- for _ in range(self.augmentation_factor):
326
+ for _ in range(self.augmentation_factor - 1):
324
327
  noise = np.random.normal(0, self.sigma, X.shape)
325
328
  X_perturbed = X + noise
326
329
  X_aug.append(X_perturbed)
330
+
327
331
  return np.vstack(X_aug)
328
332
 
329
333
  def _perform_symbolic_regression(self, X, y):
@@ -445,16 +449,31 @@ class OIKANRegressor(OIKAN):
445
449
  """
446
450
  X = np.asarray(X)
447
451
  y = np.asarray(y).reshape(-1, 1)
448
- self._train_neural_net(X, y, output_size=1, loss_fn=nn.MSELoss())
449
- if self.verbose:
450
- print(f"Original data: features shape: {X.shape} | target shape: {y.shape}")
451
- X_aug = self._generate_augmented_data(X)
452
- self.neural_net.eval()
453
- with torch.no_grad():
454
- y_aug = self.neural_net(torch.tensor(X_aug, dtype=torch.float32)).detach().numpy()
455
- if self.verbose:
456
- print(f"Augmented data: features shape: {X_aug.shape} | target shape: {y_aug.shape}")
457
- self._perform_symbolic_regression(X_aug, y_aug)
452
+
453
+ if self.augmentation_factor > 1:
454
+ self._train_neural_net(X, y, output_size=1, loss_fn=nn.MSELoss())
455
+
456
+ if self.verbose:
457
+ print(f"Original data: features shape: {X.shape} | target shape: {y.shape}")
458
+
459
+ X_aug = self._generate_augmented_data(X)
460
+
461
+ self.neural_net.eval()
462
+ with torch.no_grad():
463
+ y_aug = self.neural_net(torch.tensor(X_aug, dtype=torch.float32)).detach().numpy()
464
+
465
+ if self.verbose:
466
+ print(f"Augmented data: features shape: {X_aug.shape} | target shape: {y_aug.shape}")
467
+
468
+ X_combined = np.vstack([X, X_aug])
469
+ y_combined = np.vstack([y, y_aug])
470
+ else:
471
+ if self.verbose:
472
+ print("Skipping neural network training (augmentation_factor=1)")
473
+ X_combined = X
474
+ y_combined = y
475
+
476
+ self._perform_symbolic_regression(X_combined, y_combined)
458
477
  if self.verbose:
459
478
  print("OIKANRegressor model training completed successfully!")
460
479
 
@@ -499,16 +518,31 @@ class OIKANClassifier(OIKAN):
499
518
  self.classes_ = le.classes_
500
519
  n_classes = len(self.classes_)
501
520
  y_onehot = nn.functional.one_hot(torch.tensor(y_encoded), num_classes=n_classes).float()
502
- self._train_neural_net(X, y_onehot, output_size=n_classes, loss_fn=nn.CrossEntropyLoss())
503
- if self.verbose:
504
- print(f"Original data: features shape: {X.shape} | target shape: {y.shape}")
505
- X_aug = self._generate_augmented_data(X)
506
- self.neural_net.eval()
507
- with torch.no_grad():
508
- logits_aug = self.neural_net(torch.tensor(X_aug, dtype=torch.float32)).detach().numpy()
509
- if self.verbose:
510
- print(f"Augmented data: features shape: {X_aug.shape} | target shape: {logits_aug.shape}")
511
- self._perform_symbolic_regression(X_aug, logits_aug)
521
+
522
+ if self.augmentation_factor > 1:
523
+ self._train_neural_net(X, y_onehot, output_size=n_classes, loss_fn=nn.CrossEntropyLoss())
524
+
525
+ if self.verbose:
526
+ print(f"Original data: features shape: {X.shape} | target shape: {y.shape}")
527
+
528
+ X_aug = self._generate_augmented_data(X)
529
+
530
+ self.neural_net.eval()
531
+ with torch.no_grad():
532
+ logits_aug = self.neural_net(torch.tensor(X_aug, dtype=torch.float32)).detach().numpy()
533
+
534
+ if self.verbose:
535
+ print(f"Augmented data: features shape: {X_aug.shape} | target shape: {logits_aug.shape}")
536
+
537
+ X_combined = np.vstack([X, X_aug])
538
+ y_combined = np.vstack([y_onehot.numpy(), logits_aug])
539
+ else:
540
+ if self.verbose:
541
+ print("Skipping neural network training (augmentation_factor=1)")
542
+ X_combined = X
543
+ y_combined = y_onehot.numpy()
544
+
545
+ self._perform_symbolic_regression(X_combined, y_combined)
512
546
  if self.verbose:
513
547
  print("OIKANClassifier model training completed successfully!")
514
548
 
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: oikan
3
- Version: 0.0.3.6
3
+ Version: 0.0.3.7
4
4
  Summary: OIKAN: Neuro-Symbolic ML for Scientific Discovery
5
5
  Author: Arman Zhalgasbayev
6
6
  License: MIT
@@ -0,0 +1,10 @@
1
+ oikan/__init__.py,sha256=zEzhm1GYLT4vNaIQ4CgZcNpUk3uo8SWnoaHYtHW_XSQ,628
2
+ oikan/exceptions.py,sha256=GhHWqy2Q5LVBcteTy4ngnqxr7FOoLNyD8dNt1kfRXyw,901
3
+ oikan/model.py,sha256=TC2-R00GOjFb7ePzKTqeYkOiVlqUK7KP0mXsnJhg9ik,24736
4
+ oikan/neural.py,sha256=PZjaffSuABuCNxu-7PinU1GR6ji0Y6xRgSQ3n5HRDxI,1572
5
+ oikan/utils.py,sha256=7UCm9obO-8Q2zhetdAkukMDOZvGSBWUL_dSF04XqM7k,8808
6
+ oikan-0.0.3.7.dist-info/licenses/LICENSE,sha256=75ASVmU-XIpN-M4LbVmJ_ibgbzbvRLVti8FhnR0BTf8,1096
7
+ oikan-0.0.3.7.dist-info/METADATA,sha256=nrel6O7TXdbtJHSNCzvqPq_IELeQWx0azfrU4Jq6sps,12749
8
+ oikan-0.0.3.7.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
9
+ oikan-0.0.3.7.dist-info/top_level.txt,sha256=XwnwKwTJddZwIvtrUsAz-l-58BJRj6HjAGWrfYi_3QY,6
10
+ oikan-0.0.3.7.dist-info/RECORD,,
@@ -1,10 +0,0 @@
1
- oikan/__init__.py,sha256=zEzhm1GYLT4vNaIQ4CgZcNpUk3uo8SWnoaHYtHW_XSQ,628
2
- oikan/exceptions.py,sha256=GhHWqy2Q5LVBcteTy4ngnqxr7FOoLNyD8dNt1kfRXyw,901
3
- oikan/model.py,sha256=vnn5THWhndj5-P2Vsa78CErsT24LVmjMd8CnWeW09Kg,23663
4
- oikan/neural.py,sha256=PZjaffSuABuCNxu-7PinU1GR6ji0Y6xRgSQ3n5HRDxI,1572
5
- oikan/utils.py,sha256=7UCm9obO-8Q2zhetdAkukMDOZvGSBWUL_dSF04XqM7k,8808
6
- oikan-0.0.3.6.dist-info/licenses/LICENSE,sha256=75ASVmU-XIpN-M4LbVmJ_ibgbzbvRLVti8FhnR0BTf8,1096
7
- oikan-0.0.3.6.dist-info/METADATA,sha256=P-07jTsmYsaANnQOjh_mzmjLk1Q9rqN665CBp_FKYjU,12749
8
- oikan-0.0.3.6.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
9
- oikan-0.0.3.6.dist-info/top_level.txt,sha256=XwnwKwTJddZwIvtrUsAz-l-58BJRj6HjAGWrfYi_3QY,6
10
- oikan-0.0.3.6.dist-info/RECORD,,