oikan 0.0.2.3__py3-none-any.whl → 0.0.2.5__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
oikan/model.py CHANGED
@@ -30,7 +30,10 @@ class KANLayer(nn.Module):
30
30
  for _ in range(input_dim)
31
31
  ])
32
32
 
33
- self.combination_weights = nn.Parameter(torch.randn(input_dim, output_dim) * 0.1)
33
+ # Updated initialization using Xavier uniform initialization
34
+ self.combination_weights = nn.Parameter(
35
+ nn.init.xavier_uniform_(torch.empty(input_dim, output_dim))
36
+ )
34
37
 
35
38
  def forward(self, x):
36
39
  x_split = x.split(1, dim=1) # list of (batch, 1) tensors for each input feature
@@ -49,7 +52,8 @@ class KANLayer(nn.Module):
49
52
  for i in range(self.input_dim):
50
53
  weight = self.combination_weights[i, j].item()
51
54
  if abs(weight) > 1e-4:
52
- edge_formula = self.edges[i][j].get_symbolic_repr()
55
+ # Pass lower threshold for improved precision
56
+ edge_formula = self.edges[i][j].get_symbolic_repr(threshold=1e-6)
53
57
  if edge_formula != "0":
54
58
  terms.append(f"({weight:.4f} * ({edge_formula}))")
55
59
  formulas.append(" + ".join(terms) if terms else "0")
@@ -57,15 +61,13 @@ class KANLayer(nn.Module):
57
61
 
58
62
  class BaseOIKAN(BaseEstimator):
59
63
  """Base OIKAN model implementing common functionality"""
60
- def __init__(self, hidden_dims=[64, 32], num_basis=10, degree=3, dropout=0.1):
64
+ def __init__(self, hidden_dims=[32, 16], dropout=0.1):
61
65
  self.hidden_dims = hidden_dims
62
- self.num_basis = num_basis
63
- self.degree = degree
64
66
  self.dropout = dropout # Dropout probability for uncertainty quantification
65
67
  self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') # Auto device chooser
66
68
  self.model = None
67
69
  self._is_fitted = False
68
- self.__name = "OIKAN v0.0.2" # Version info (manually configured)
70
+ self.__name = "OIKAN v0.0.2" # Manual configured version
69
71
  self.loss_history = [] # <-- new attribute to store loss values
70
72
 
71
73
  def _build_network(self, input_dim, output_dim):
@@ -73,7 +75,9 @@ class BaseOIKAN(BaseEstimator):
73
75
  prev_dim = input_dim
74
76
  for hidden_dim in self.hidden_dims:
75
77
  layers.append(KANLayer(prev_dim, hidden_dim))
76
- layers.append(nn.Dropout(self.dropout)) # Apply dropout for uncertainty quantification
78
+ layers.append(nn.BatchNorm1d(hidden_dim)) # Added batch normalization
79
+ layers.append(nn.ReLU()) # Added activation function
80
+ layers.append(nn.Dropout(self.dropout)) # Apply dropout for uncertainty quantification
77
81
  prev_dim = hidden_dim
78
82
  layers.append(KANLayer(prev_dim, output_dim))
79
83
  return nn.Sequential(*layers).to(self.device)
@@ -85,6 +89,25 @@ class BaseOIKAN(BaseEstimator):
85
89
  y = torch.FloatTensor(y)
86
90
  return X.to(self.device), (y.to(self.device) if y is not None else None)
87
91
 
92
+ def _process_edge_formula(self, edge_formula, weight):
93
+ """Helper to scale symbolic formula terms by a given weight"""
94
+ terms = []
95
+ for term in edge_formula.split(" + "):
96
+ if term and term != "0":
97
+ if "*" in term:
98
+ coef_str, rest = term.split("*", 1)
99
+ try:
100
+ coef = float(coef_str)
101
+ terms.append(f"{(coef * weight):.4f}*{rest}")
102
+ except Exception:
103
+ terms.append(term) # fallback
104
+ else:
105
+ try:
106
+ terms.append(f"{(float(term) * weight):.4f}")
107
+ except Exception:
108
+ terms.append(term)
109
+ return " + ".join(terms) if terms else "0"
110
+
88
111
  def get_symbolic_formula(self):
89
112
  """Generate and cache symbolic formulas for production‐ready inference."""
90
113
  if not self._is_fitted:
@@ -100,17 +123,9 @@ class BaseOIKAN(BaseEstimator):
100
123
  for j in range(n_classes):
101
124
  weight = first_layer.combination_weights[i, j].item()
102
125
  if abs(weight) > 1e-4:
103
- edge_formula = first_layer.edges[i][j].get_symbolic_repr()
104
- terms = []
105
- for term in edge_formula.split(" + "):
106
- if term and term != "0":
107
- if "*" in term:
108
- coef, rest = term.split("*", 1)
109
- coef = float(coef) * weight
110
- terms.append(f"{coef:.4f}*{rest}")
111
- else:
112
- terms.append(f"{float(term)*weight:.4f}")
113
- formulas[i][j] = " + ".join(terms) if terms else "0"
126
+ # Use improved threshold for formula extraction
127
+ edge_formula = first_layer.edges[i][j].get_symbolic_repr(threshold=1e-6)
128
+ formulas[i][j] = self._process_edge_formula(edge_formula, weight)
114
129
  else:
115
130
  formulas[i][j] = "0"
116
131
  self.symbolic_formula = formulas
@@ -119,8 +134,9 @@ class BaseOIKAN(BaseEstimator):
119
134
  formulas = []
120
135
  first_layer = self.model[0]
121
136
  for i in range(first_layer.input_dim):
122
- formula = first_layer.edges[i][0].get_symbolic_repr()
123
- formulas.append(formula)
137
+ # Use improved threshold for formula extraction in regressor branch
138
+ edge_formula = first_layer.edges[i][0].get_symbolic_repr(threshold=1e-6)
139
+ formulas.append(self._process_edge_formula(edge_formula, 1.0))
124
140
  self.symbolic_formula = formulas
125
141
  return formulas
126
142
 
@@ -131,7 +147,7 @@ class BaseOIKAN(BaseEstimator):
131
147
  - A header with the version and timestamp
132
148
  - The symbolic formulas for each feature (and class for classification)
133
149
  - A general formula, including softmax for classification
134
- - Recommendations for production use.
150
+ - Recommendations and performance results.
135
151
  """
136
152
  header = f"Generated by {self.__name} | Timestamp: {dt.now()}\n\n"
137
153
  header += "Symbolic Formulas:\n"
@@ -157,8 +173,14 @@ class BaseOIKAN(BaseEstimator):
157
173
  recs = ("\nRecommendations:\n"
158
174
  "• Consider the symbolic formula for lightweight and interpretable inference.\n"
159
175
  "• Validate approximation accuracy against the neural model.\n")
176
+
177
+ # Disclaimer regarding experimental usage
178
+ disclaimer = ("\nDisclaimer:\n"
179
+ "This experimental model is intended for research purposes only and is not production-ready. "
180
+ "Feel free to fork and build your own project based on this research: "
181
+ "https://github.com/silvermete0r/oikan\n")
160
182
 
161
- output = header + formulas_text + general + recs
183
+ output = header + formulas_text + general + recs + disclaimer
162
184
  with open(filename, "w") as f:
163
185
  f.write(output)
164
186
  print(f"Symbolic formulas saved to {filename}")
@@ -174,30 +196,51 @@ class BaseOIKAN(BaseEstimator):
174
196
  def _eval_formula(self, formula, x):
175
197
  """Helper to evaluate a symbolic formula for an input vector x using ADVANCED_LIB basis functions."""
176
198
  import re
177
- total = 0
199
+ from .utils import ensure_tensor
200
+
201
+ if isinstance(x, (list, tuple)):
202
+ x = np.array(x)
203
+
204
+ total = torch.zeros_like(ensure_tensor(x))
178
205
  pattern = re.compile(r"(-?\d+\.\d+)\*?([\w\(\)\^]+)")
179
206
  matches = pattern.findall(formula)
207
+
180
208
  for coef_str, func_name in matches:
181
209
  try:
182
210
  coef = float(coef_str)
183
211
  for key, (notation, func) in ADVANCED_LIB.items():
184
212
  if notation.strip() == func_name.strip():
185
- total += coef * func(x)
213
+ result = func(x)
214
+ if isinstance(result, torch.Tensor):
215
+ total += coef * result
216
+ else:
217
+ total += coef * ensure_tensor(result)
186
218
  break
187
- except Exception:
219
+ except Exception as e:
220
+ print(f"Warning: Error evaluating term {coef_str}*{func_name}: {str(e)}")
188
221
  continue
189
- return total
222
+
223
+ return total.cpu().numpy() if isinstance(total, torch.Tensor) else total
190
224
 
191
225
  def symbolic_predict(self, X):
192
226
  """Predict using only the extracted symbolic formula (regressor)."""
193
227
  if not self._is_fitted:
194
228
  raise NotFittedError("Model must be fitted before prediction")
229
+
195
230
  X = np.array(X) if not isinstance(X, np.ndarray) else X
196
- formulas = self.get_symbolic_formula() # For regressor: list of formula strings.
231
+ formulas = self.get_symbolic_formula()
197
232
  predictions = np.zeros((X.shape[0], 1))
198
- for i, formula in enumerate(formulas):
199
- x = X[:, i]
200
- predictions[:, 0] += self._eval_formula(formula, x)
233
+
234
+ try:
235
+ for i, formula in enumerate(formulas):
236
+ x = X[:, i]
237
+ pred = self._eval_formula(formula, x)
238
+ if isinstance(pred, torch.Tensor):
239
+ pred = pred.cpu().numpy()
240
+ predictions[:, 0] += pred
241
+ except Exception as e:
242
+ raise RuntimeError(f"Error in symbolic prediction: {str(e)}")
243
+
201
244
  return predictions
202
245
 
203
246
  def compile_symbolic_formula(self, filename="output/final_symbolic_formula.txt"):
@@ -263,7 +306,7 @@ class BaseOIKAN(BaseEstimator):
263
306
 
264
307
  class OIKANRegressor(BaseOIKAN, RegressorMixin):
265
308
  """OIKAN implementation for regression tasks"""
266
- def fit(self, X, y, epochs=100, lr=0.01, batch_size=32, verbose=True):
309
+ def fit(self, X, y, epochs=100, lr=0.01, verbose=True):
267
310
  X, y = self._validate_data(X, y)
268
311
  if len(y.shape) == 1:
269
312
  y = y.reshape(-1, 1)
@@ -284,7 +327,7 @@ class OIKANRegressor(BaseOIKAN, RegressorMixin):
284
327
  if torch.isnan(loss):
285
328
  print("Warning: NaN loss detected, reinitializing model...")
286
329
  self.model = None
287
- return self.fit(X, y, epochs, lr/10, batch_size, verbose)
330
+ return self.fit(X, y, epochs, lr/10, verbose)
288
331
 
289
332
  loss.backward()
290
333
 
@@ -312,7 +355,7 @@ class OIKANRegressor(BaseOIKAN, RegressorMixin):
312
355
 
313
356
  class OIKANClassifier(BaseOIKAN, ClassifierMixin):
314
357
  """OIKAN implementation for classification tasks"""
315
- def fit(self, X, y, epochs=100, lr=0.01, batch_size=32, verbose=True):
358
+ def fit(self, X, y, epochs=100, lr=0.01, verbose=True):
316
359
  X, y = self._validate_data(X, y)
317
360
  self.classes_ = torch.unique(y)
318
361
  n_classes = len(self.classes_)
@@ -414,8 +457,8 @@ class OIKANClassifier(BaseOIKAN, ClassifierMixin):
414
457
  weight = first_layer.combination_weights[i, j].item()
415
458
 
416
459
  if abs(weight) > 1e-4:
417
- # Get the edge formula and scale by the weight
418
- edge_formula = edge.get_symbolic_repr()
460
+ # Improved precision by using a lower threshold
461
+ edge_formula = edge.get_symbolic_repr(threshold=1e-6)
419
462
  terms = []
420
463
  for term in edge_formula.split(" + "):
421
464
  if term and term != "0":
oikan/utils.py CHANGED
@@ -3,41 +3,47 @@ import torch
3
3
  import torch.nn as nn
4
4
  import numpy as np
5
5
 
6
- # Core basis functions with explicit variable notation
6
+ def ensure_tensor(x):
7
+ """Helper function to ensure input is a PyTorch tensor."""
8
+ if isinstance(x, np.ndarray):
9
+ return torch.from_numpy(x).float()
10
+ elif isinstance(x, (int, float)):
11
+ return torch.tensor([x], dtype=torch.float32)
12
+ elif isinstance(x, torch.Tensor):
13
+ return x.float()
14
+ else:
15
+ raise ValueError(f"Unsupported input type: {type(x)}")
16
+
17
+ # Updated to handle numpy arrays and scalars
7
18
  ADVANCED_LIB = {
8
- 'x': ('x', lambda x: x),
9
- 'x^2': ('x^2', lambda x: np.clip(x**2, -100, 100)),
10
- 'x^3': ('x^3', lambda x: np.clip(x**3, -100, 100)),
11
- 'exp': ('exp(x)', lambda x: np.exp(np.clip(x, -10, 10))),
12
- 'log': ('log(x)', lambda x: np.log(np.abs(x) + 1)),
13
- 'sqrt': ('sqrt(x)', lambda x: np.sqrt(np.abs(x))),
14
- 'tanh': ('tanh(x)', lambda x: np.tanh(x)),
15
- 'sin': ('sin(x)', lambda x: np.sin(np.clip(x, -10*np.pi, 10*np.pi))),
16
- 'abs': ('abs(x)', lambda x: np.abs(x))
19
+ 'x': ('x', lambda x: ensure_tensor(x)),
20
+ 'x^2': ('x^2', lambda x: torch.pow(ensure_tensor(x), 2)),
21
+ 'sin': ('sin(x)', lambda x: torch.sin(ensure_tensor(x))),
22
+ 'tanh': ('tanh(x)', lambda x: torch.tanh(ensure_tensor(x)))
17
23
  }
18
24
 
19
25
  class EdgeActivation(nn.Module):
20
- """Learnable edge-based activation function."""
26
+ """Learnable edge-based activation function with improved gradient flow."""
21
27
  def __init__(self):
22
28
  super().__init__()
23
29
  self.weights = nn.Parameter(torch.randn(len(ADVANCED_LIB)))
24
30
  self.bias = nn.Parameter(torch.zeros(1))
25
31
 
26
32
  def forward(self, x):
33
+ x_tensor = ensure_tensor(x)
27
34
  features = []
28
35
  for _, func in ADVANCED_LIB.values():
29
- feat = torch.tensor(func(x.detach().cpu().numpy()),
30
- dtype=torch.float32).to(x.device)
36
+ feat = func(x_tensor)
31
37
  features.append(feat)
32
38
  features = torch.stack(features, dim=-1)
33
39
  return torch.matmul(features, self.weights.unsqueeze(0).T) + self.bias
34
40
 
35
41
  def get_symbolic_repr(self, threshold=1e-4):
36
42
  """Get symbolic representation of the activation function."""
43
+ weights_np = self.weights.detach().cpu().numpy()
37
44
  significant_terms = []
38
45
 
39
- for (notation, _), weight in zip(ADVANCED_LIB.values(),
40
- self.weights.detach().cpu().numpy()):
46
+ for (notation, _), weight in zip(ADVANCED_LIB.values(), weights_np):
41
47
  if abs(weight) > threshold:
42
48
  significant_terms.append(f"{weight:.4f}*{notation}")
43
49
 
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: oikan
3
- Version: 0.0.2.3
3
+ Version: 0.0.2.5
4
4
  Summary: OIKAN: Optimized Interpretable Kolmogorov-Arnold Networks
5
5
  Author: Arman Zhalgasbayev
6
6
  License: MIT
@@ -32,20 +32,50 @@ OIKAN (Optimized Interpretable Kolmogorov-Arnold Networks) is a neuro-symbolic M
32
32
  [![GitHub issues](https://img.shields.io/github/issues/silvermete0r/OIKAN.svg)](https://github.com/silvermete0r/oikan/issues)
33
33
  [![Docs](https://img.shields.io/badge/docs-passing-brightgreen)](https://silvermete0r.github.io/oikan/)
34
34
 
35
+ > **Important Disclaimer**: OIKAN is an experimental research project. It is not intended for production use or real-world applications. This framework is designed for research purposes, experimentation, and academic exploration of neuro-symbolic machine learning concepts.
36
+
35
37
  ## Key Features
36
38
  - 🧠 **Neuro-Symbolic ML**: Combines neural network learning with symbolic mathematics
37
39
  - 📊 **Automatic Formula Extraction**: Generates human-readable mathematical expressions
38
40
  - 🎯 **Scikit-learn Compatible**: Familiar `.fit()` and `.predict()` interface
39
- - 🚀 **Production-Ready**: Export symbolic formulas for lightweight deployment
41
+ - 🔬 **Research-Focused**: Designed for academic exploration and experimentation
40
42
  - 📈 **Multi-Task**: Supports both regression and classification problems
41
43
 
42
44
  ## Scientific Foundation
43
45
 
44
- OIKAN is based on Kolmogorov's superposition theorem, which states that any multivariate continuous function can be represented as a composition of single-variable functions. We leverage this theory by:
46
+ OIKAN implements the Kolmogorov-Arnold Representation Theorem through a novel neural architecture:
47
+
48
+ 1. **Theorem Background**: Any continuous multivariate function f(x1,...,xn) can be represented as:
49
+ ```
50
+ f(x1,...,xn) = ∑(j=0 to 2n){ φj( ∑(i=1 to n) ψij(xi) ) }
51
+ ```
52
+ where φj and ψij are continuous single-variable functions.
45
53
 
46
- 1. Using neural networks to learn optimal basis functions through interpretable edge transformations
47
- 2. Combining transformed features using learnable weights
48
- 3. Automatically extracting human-readable symbolic formulas
54
+ 2. **Neural Implementation**:
55
+ ```python
56
+ # Pseudo-implementation of KAN architecture
57
+ class KANLayer:
58
+ def __init__(self, input_dim, output_dim):
59
+ self.edges = [SymbolicEdge() for _ in range(input_dim * output_dim)]
60
+ self.weights = initialize_weights(input_dim, output_dim)
61
+
62
+ def forward(self, x):
63
+ # Transform each input through basis functions
64
+ edge_outputs = [edge(x_i) for x_i, edge in zip(x, self.edges)]
65
+ # Combine using learned weights
66
+ return combine_weighted_outputs(edge_outputs, self.weights)
67
+ ```
68
+
69
+ 3. **Basis functions**
70
+ ```python
71
+ # Edge activation contains interpretable basis functions
72
+ ADVANCED_LIB = {
73
+ 'x': (lambda x: x), # Linear
74
+ 'x^2': (lambda x: x**2), # Quadratic
75
+ 'sin(x)': np.sin, # Periodic
76
+ 'tanh(x)': np.tanh # Bounded
77
+ }
78
+ ```
49
79
 
50
80
  ## Quick Start
51
81
 
@@ -68,11 +98,8 @@ pip install -e . # Install in development mode
68
98
  from oikan.model import OIKANRegressor
69
99
  from sklearn.model_selection import train_test_split
70
100
 
71
- # Initialize model with optimal architecture
72
- model = OIKANRegressor(
73
- hidden_dims=[16, 8], # Network architecture
74
- dropout=0.1 # Regularization
75
- )
101
+ # Initialize model
102
+ model = OIKANRegressor()
76
103
 
77
104
  # Fit model (sklearn-style)
78
105
  model.fit(X_train, y_train, epochs=100, lr=0.01)
@@ -84,7 +111,7 @@ y_pred = model.predict(X_test)
84
111
  # The output file will contain:
85
112
  # - Detailed symbolic formulas for each feature
86
113
  # - Instructions for practical implementation
87
- # - Recommendations for production deployment
114
+ # - Recommendations for testing and validation
88
115
  model.save_symbolic_formula("regression_formula.txt")
89
116
  ```
90
117
 
@@ -96,7 +123,7 @@ model.save_symbolic_formula("regression_formula.txt")
96
123
  from oikan.model import OIKANClassifier
97
124
 
98
125
  # Similar sklearn-style interface for classification
99
- model = OIKANClassifier(hidden_dims=[16, 8])
126
+ model = OIKANClassifier()
100
127
  model.fit(X_train, y_train, epochs=100, lr=0.01)
101
128
  probas = model.predict_proba(X_test)
102
129
 
@@ -104,46 +131,12 @@ probas = model.predict_proba(X_test)
104
131
  # The output file will contain:
105
132
  # - Decision boundary formulas for each class
106
133
  # - Softmax application instructions
107
- # - Production deployment recommendations
134
+ # - Recommendations for testing and validation
108
135
  model.save_symbolic_formula("classification_formula.txt")
109
136
  ```
110
137
 
111
138
  *Example of the saved symbolic formula instructions: [outputs/classification_symbolic_formula.txt](outputs/classification_symbolic_formula.txt)*
112
139
 
113
- ## Architecture Details
114
-
115
- OIKAN implements a novel neuro-symbolic architecture based on Kolmogorov-Arnold representation theory through three specialized components:
116
-
117
- 1. **Edge Symbolic Layer**: Learns interpretable single-variable transformations
118
- - Adaptive basis function composition using 9 core functions:
119
- ```python
120
- ADVANCED_LIB = {
121
- 'x': ('x', lambda x: x),
122
- 'x^2': ('x^2', lambda x: x**2),
123
- 'x^3': ('x^3', lambda x: x**3),
124
- 'exp': ('exp(x)', lambda x: np.exp(x)),
125
- 'log': ('log(x)', lambda x: np.log(abs(x) + 1)),
126
- 'sqrt': ('sqrt(x)', lambda x: np.sqrt(abs(x))),
127
- 'tanh': ('tanh(x)', lambda x: np.tanh(x)),
128
- 'sin': ('sin(x)', lambda x: np.sin(x)),
129
- 'abs': ('abs(x)', lambda x: np.abs(x))
130
- }
131
- ```
132
- - Each input feature is transformed through these basis functions
133
- - Learnable weights determine the optimal combination
134
-
135
- 2. **Neural Composition Layer**: Multi-layer feature aggregation
136
- - Direct feature-to-feature connections through KAN layers
137
- - Dropout regularization (p=0.1 default) for robust learning
138
- - Gradient clipping (max_norm=1.0) for stable training
139
- - User-configurable hidden layer dimensions
140
-
141
- 3. **Symbolic Extraction Layer**: Generates production-ready formulas
142
- - Weight-based term pruning (threshold=1e-4)
143
- - Automatic coefficient optimization
144
- - Human-readable mathematical expressions
145
- - Exportable to lightweight production code
146
-
147
140
  ### Architecture Diagram
148
141
 
149
142
  ![Architecture Diagram](https://raw.githubusercontent.com/silvermete0r/oikan/main/docs/media/oikan_model_architecture_v0.0.2.2.png)
@@ -152,45 +145,26 @@ OIKAN implements a novel neuro-symbolic architecture based on Kolmogorov-Arnold
152
145
 
153
146
  1. **Interpretability First**: All transformations maintain clear mathematical meaning
154
147
  2. **Scikit-learn Compatibility**: Familiar `.fit()` and `.predict()` interface
155
- 3. **Production Ready**: Export formulas as lightweight mathematical expressions
148
+ 3. **Symbolic Formula Exporting**: Export formulas as lightweight mathematical expressions
156
149
  4. **Automatic Simplification**: Remove insignificant terms (|w| < 1e-4)
157
150
 
158
- ## Model Components
159
151
 
160
- 1. **Symbolic Edge Functions**
161
- ```python
162
- class EdgeActivation(nn.Module):
163
- """Learnable edge activation with basis functions"""
164
- def forward(self, x):
165
- return sum(self.weights[i] * basis[i](x) for i in range(self.num_basis))
166
- ```
152
+ ### Key Model Components
167
153
 
168
- 2. **KAN Layer Implementation**
169
- ```python
170
- class KANLayer(nn.Module):
171
- """Kolmogorov-Arnold Network layer"""
172
- def forward(self, x):
173
- edge_outputs = [self.edges[i](x[:,i]) for i in range(self.input_dim)]
174
- return self.combine(edge_outputs)
175
- ```
154
+ 1. **EdgeActivation Layer**:
155
+ - Implements interpretable basis function transformations
156
+ - Automatically prunes insignificant terms
157
+ - Maintains mathematical transparency
176
158
 
177
- 3. **Formula Extraction**
178
- ```python
179
- def get_symbolic_formula(self):
180
- """Extract interpretable mathematical expression"""
181
- terms = []
182
- for i, edge in enumerate(self.edges):
183
- if abs(self.weights[i]) > threshold:
184
- terms.append(f"{self.weights[i]:.4f} * {edge.formula}")
185
- return " + ".join(terms)
186
- ```
187
-
188
- ### Key Design Principles
159
+ 2. **Formula Extraction**:
160
+ - Combines edge transformations with learned weights
161
+ - Applies symbolic simplification
162
+ - Generates human-readable expressions
189
163
 
190
- - **Modular Architecture**: Each component is independent and replaceable
191
- - **Interpretability First**: All transformations maintain symbolic representations
192
- - **Automatic Simplification**: Removes insignificant terms and combines similar expressions
193
- - **Production Ready**: Export formulas for lightweight deployment
164
+ 3. **Training Process**:
165
+ - Gradient-based optimization of edge weights
166
+ - Automatic feature importance detection
167
+ - Complexity control through regularization
194
168
 
195
169
  ## Contributing
196
170
 
@@ -0,0 +1,9 @@
1
+ oikan/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
2
+ oikan/exceptions.py,sha256=UqT3uTtfiB8QA_3AMvKdHOme9WL9HZD_d7GHIk00LJw,394
3
+ oikan/model.py,sha256=O5ozMUNCG-d7y5du1uG96psEgwMsN6H9CLQDtCg-AmM,21580
4
+ oikan/utils.py,sha256=nLbzycmtNCj8806delPsLcKMaBuFhTHtrKXCf1NDMb0,2062
5
+ oikan-0.0.2.5.dist-info/licenses/LICENSE,sha256=75ASVmU-XIpN-M4LbVmJ_ibgbzbvRLVti8FhnR0BTf8,1096
6
+ oikan-0.0.2.5.dist-info/METADATA,sha256=3AgQFr8-ihylBaSKlYBDbRnU8yAajf_fRW8fJVOAGCM,7283
7
+ oikan-0.0.2.5.dist-info/WHEEL,sha256=CmyFI0kx5cdEMTLiONQRbGQwjIoR1aIYB7eCAQ4KPJ0,91
8
+ oikan-0.0.2.5.dist-info/top_level.txt,sha256=XwnwKwTJddZwIvtrUsAz-l-58BJRj6HjAGWrfYi_3QY,6
9
+ oikan-0.0.2.5.dist-info/RECORD,,
oikan/symbolic.py DELETED
@@ -1,28 +0,0 @@
1
- from .utils import ADVANCED_LIB
2
-
3
- def symbolic_edge_repr(weights, bias=None, threshold=1e-4):
4
- """
5
- Given a list of weights (floats) and an optional bias,
6
- returns a list of structured terms (coefficient, basis function string).
7
- """
8
- terms = []
9
- # weights should be in the same order as ADVANCED_LIB.items()
10
- for (_, (notation, _)), w in zip(ADVANCED_LIB.items(), weights):
11
- if abs(w) > threshold:
12
- terms.append((w, notation))
13
- if bias is not None and abs(bias) > threshold:
14
- # use "1" to represent the constant term
15
- terms.append((bias, "1"))
16
- return terms
17
-
18
- def format_symbolic_terms(terms):
19
- """
20
- Formats a list of structured symbolic terms (coef, basis) to a string.
21
- """
22
- formatted_terms = []
23
- for coef, basis in terms:
24
- if basis == "1":
25
- formatted_terms.append(f"{coef:.4f}")
26
- else:
27
- formatted_terms.append(f"{coef:.4f}*{basis}")
28
- return " + ".join(formatted_terms) if formatted_terms else "0"
@@ -1,10 +0,0 @@
1
- oikan/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
2
- oikan/exceptions.py,sha256=UqT3uTtfiB8QA_3AMvKdHOme9WL9HZD_d7GHIk00LJw,394
3
- oikan/model.py,sha256=iHWKjk_n0Kkw47UO2XFTc0faqGYBrQBJhmmRn1Po4qw,19604
4
- oikan/symbolic.py,sha256=TtalmSpBecf33_g7yE3q-RPuCVRWQNaXWE4LsCNZmfg,1040
5
- oikan/utils.py,sha256=sivt_8jzATH-eUZ3-P-tsdmyIgKsayibSZeP_MtLTfU,1969
6
- oikan-0.0.2.3.dist-info/licenses/LICENSE,sha256=75ASVmU-XIpN-M4LbVmJ_ibgbzbvRLVti8FhnR0BTf8,1096
7
- oikan-0.0.2.3.dist-info/METADATA,sha256=pr8kHktQQPBk9QA_gchl_ynHzCWWv6j9lib9dmXuYi0,8554
8
- oikan-0.0.2.3.dist-info/WHEEL,sha256=CmyFI0kx5cdEMTLiONQRbGQwjIoR1aIYB7eCAQ4KPJ0,91
9
- oikan-0.0.2.3.dist-info/top_level.txt,sha256=XwnwKwTJddZwIvtrUsAz-l-58BJRj6HjAGWrfYi_3QY,6
10
- oikan-0.0.2.3.dist-info/RECORD,,