oikan 0.0.2.2__py3-none-any.whl → 0.0.2.4__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
oikan/model.py CHANGED
@@ -30,7 +30,10 @@ class KANLayer(nn.Module):
30
30
  for _ in range(input_dim)
31
31
  ])
32
32
 
33
- self.combination_weights = nn.Parameter(torch.randn(input_dim, output_dim) * 0.1)
33
+ # Updated initialization using Xavier uniform initialization
34
+ self.combination_weights = nn.Parameter(
35
+ nn.init.xavier_uniform_(torch.empty(input_dim, output_dim))
36
+ )
34
37
 
35
38
  def forward(self, x):
36
39
  x_split = x.split(1, dim=1) # list of (batch, 1) tensors for each input feature
@@ -49,7 +52,8 @@ class KANLayer(nn.Module):
49
52
  for i in range(self.input_dim):
50
53
  weight = self.combination_weights[i, j].item()
51
54
  if abs(weight) > 1e-4:
52
- edge_formula = self.edges[i][j].get_symbolic_repr()
55
+ # Pass lower threshold for improved precision
56
+ edge_formula = self.edges[i][j].get_symbolic_repr(threshold=1e-6)
53
57
  if edge_formula != "0":
54
58
  terms.append(f"({weight:.4f} * ({edge_formula}))")
55
59
  formulas.append(" + ".join(terms) if terms else "0")
@@ -57,15 +61,13 @@ class KANLayer(nn.Module):
57
61
 
58
62
  class BaseOIKAN(BaseEstimator):
59
63
  """Base OIKAN model implementing common functionality"""
60
- def __init__(self, hidden_dims=[64, 32], num_basis=10, degree=3, dropout=0.1):
64
+ def __init__(self, hidden_dims=[32, 16], dropout=0.1):
61
65
  self.hidden_dims = hidden_dims
62
- self.num_basis = num_basis
63
- self.degree = degree
64
66
  self.dropout = dropout # Dropout probability for uncertainty quantification
65
67
  self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') # Auto device chooser
66
68
  self.model = None
67
69
  self._is_fitted = False
68
- self.__name = "OIKAN v0.0.2" # Version info (manually configured)
70
+ self.__name = "OIKAN v0.0.2" # Manual configured version
69
71
  self.loss_history = [] # <-- new attribute to store loss values
70
72
 
71
73
  def _build_network(self, input_dim, output_dim):
@@ -73,7 +75,9 @@ class BaseOIKAN(BaseEstimator):
73
75
  prev_dim = input_dim
74
76
  for hidden_dim in self.hidden_dims:
75
77
  layers.append(KANLayer(prev_dim, hidden_dim))
76
- layers.append(nn.Dropout(self.dropout)) # Apply dropout for uncertainty quantification
78
+ layers.append(nn.BatchNorm1d(hidden_dim)) # Added batch normalization
79
+ layers.append(nn.ReLU()) # Added activation function
80
+ layers.append(nn.Dropout(self.dropout)) # Apply dropout for uncertainty quantification
77
81
  prev_dim = hidden_dim
78
82
  layers.append(KANLayer(prev_dim, output_dim))
79
83
  return nn.Sequential(*layers).to(self.device)
@@ -85,6 +89,25 @@ class BaseOIKAN(BaseEstimator):
85
89
  y = torch.FloatTensor(y)
86
90
  return X.to(self.device), (y.to(self.device) if y is not None else None)
87
91
 
92
+ def _process_edge_formula(self, edge_formula, weight):
93
+ """Helper to scale symbolic formula terms by a given weight"""
94
+ terms = []
95
+ for term in edge_formula.split(" + "):
96
+ if term and term != "0":
97
+ if "*" in term:
98
+ coef_str, rest = term.split("*", 1)
99
+ try:
100
+ coef = float(coef_str)
101
+ terms.append(f"{(coef * weight):.4f}*{rest}")
102
+ except Exception:
103
+ terms.append(term) # fallback
104
+ else:
105
+ try:
106
+ terms.append(f"{(float(term) * weight):.4f}")
107
+ except Exception:
108
+ terms.append(term)
109
+ return " + ".join(terms) if terms else "0"
110
+
88
111
  def get_symbolic_formula(self):
89
112
  """Generate and cache symbolic formulas for production‐ready inference."""
90
113
  if not self._is_fitted:
@@ -100,17 +123,9 @@ class BaseOIKAN(BaseEstimator):
100
123
  for j in range(n_classes):
101
124
  weight = first_layer.combination_weights[i, j].item()
102
125
  if abs(weight) > 1e-4:
103
- edge_formula = first_layer.edges[i][j].get_symbolic_repr()
104
- terms = []
105
- for term in edge_formula.split(" + "):
106
- if term and term != "0":
107
- if "*" in term:
108
- coef, rest = term.split("*", 1)
109
- coef = float(coef) * weight
110
- terms.append(f"{coef:.4f}*{rest}")
111
- else:
112
- terms.append(f"{float(term)*weight:.4f}")
113
- formulas[i][j] = " + ".join(terms) if terms else "0"
126
+ # Use improved threshold for formula extraction
127
+ edge_formula = first_layer.edges[i][j].get_symbolic_repr(threshold=1e-6)
128
+ formulas[i][j] = self._process_edge_formula(edge_formula, weight)
114
129
  else:
115
130
  formulas[i][j] = "0"
116
131
  self.symbolic_formula = formulas
@@ -119,8 +134,9 @@ class BaseOIKAN(BaseEstimator):
119
134
  formulas = []
120
135
  first_layer = self.model[0]
121
136
  for i in range(first_layer.input_dim):
122
- formula = first_layer.edges[i][0].get_symbolic_repr()
123
- formulas.append(formula)
137
+ # Use improved threshold for formula extraction in regressor branch
138
+ edge_formula = first_layer.edges[i][0].get_symbolic_repr(threshold=1e-6)
139
+ formulas.append(self._process_edge_formula(edge_formula, 1.0))
124
140
  self.symbolic_formula = formulas
125
141
  return formulas
126
142
 
@@ -131,7 +147,7 @@ class BaseOIKAN(BaseEstimator):
131
147
  - A header with the version and timestamp
132
148
  - The symbolic formulas for each feature (and class for classification)
133
149
  - A general formula, including softmax for classification
134
- - Recommendations for production use.
150
+ - Recommendations and performance results.
135
151
  """
136
152
  header = f"Generated by {self.__name} | Timestamp: {dt.now()}\n\n"
137
153
  header += "Symbolic Formulas:\n"
@@ -157,8 +173,14 @@ class BaseOIKAN(BaseEstimator):
157
173
  recs = ("\nRecommendations:\n"
158
174
  "• Consider the symbolic formula for lightweight and interpretable inference.\n"
159
175
  "• Validate approximation accuracy against the neural model.\n")
176
+
177
+ # Disclaimer regarding experimental usage
178
+ disclaimer = ("\nDisclaimer:\n"
179
+ "This experimental model is intended for research purposes only and is not production-ready. "
180
+ "Feel free to fork and build your own project based on this research: "
181
+ "https://github.com/silvermete0r/oikan\n")
160
182
 
161
- output = header + formulas_text + general + recs
183
+ output = header + formulas_text + general + recs + disclaimer
162
184
  with open(filename, "w") as f:
163
185
  f.write(output)
164
186
  print(f"Symbolic formulas saved to {filename}")
@@ -263,7 +285,7 @@ class BaseOIKAN(BaseEstimator):
263
285
 
264
286
  class OIKANRegressor(BaseOIKAN, RegressorMixin):
265
287
  """OIKAN implementation for regression tasks"""
266
- def fit(self, X, y, epochs=100, lr=0.01, batch_size=32, verbose=True):
288
+ def fit(self, X, y, epochs=100, lr=0.01, verbose=True):
267
289
  X, y = self._validate_data(X, y)
268
290
  if len(y.shape) == 1:
269
291
  y = y.reshape(-1, 1)
@@ -284,7 +306,7 @@ class OIKANRegressor(BaseOIKAN, RegressorMixin):
284
306
  if torch.isnan(loss):
285
307
  print("Warning: NaN loss detected, reinitializing model...")
286
308
  self.model = None
287
- return self.fit(X, y, epochs, lr/10, batch_size, verbose)
309
+ return self.fit(X, y, epochs, lr/10, verbose)
288
310
 
289
311
  loss.backward()
290
312
 
@@ -312,7 +334,7 @@ class OIKANRegressor(BaseOIKAN, RegressorMixin):
312
334
 
313
335
  class OIKANClassifier(BaseOIKAN, ClassifierMixin):
314
336
  """OIKAN implementation for classification tasks"""
315
- def fit(self, X, y, epochs=100, lr=0.01, batch_size=32, verbose=True):
337
+ def fit(self, X, y, epochs=100, lr=0.01, verbose=True):
316
338
  X, y = self._validate_data(X, y)
317
339
  self.classes_ = torch.unique(y)
318
340
  n_classes = len(self.classes_)
@@ -414,8 +436,8 @@ class OIKANClassifier(BaseOIKAN, ClassifierMixin):
414
436
  weight = first_layer.combination_weights[i, j].item()
415
437
 
416
438
  if abs(weight) > 1e-4:
417
- # Get the edge formula and scale by the weight
418
- edge_formula = edge.get_symbolic_repr()
439
+ # Improved precision by using a lower threshold
440
+ edge_formula = edge.get_symbolic_repr(threshold=1e-6)
419
441
  terms = []
420
442
  for term in edge_formula.split(" + "):
421
443
  if term and term != "0":
oikan/utils.py CHANGED
@@ -3,17 +3,11 @@ import torch
3
3
  import torch.nn as nn
4
4
  import numpy as np
5
5
 
6
- # Core basis functions with explicit variable notation
7
6
  ADVANCED_LIB = {
8
7
  'x': ('x', lambda x: x),
9
- 'x^2': ('x^2', lambda x: np.clip(x**2, -100, 100)),
10
- 'x^3': ('x^3', lambda x: np.clip(x**3, -100, 100)),
11
- 'exp': ('exp(x)', lambda x: np.exp(np.clip(x, -10, 10))),
12
- 'log': ('log(x)', lambda x: np.log(np.abs(x) + 1)),
13
- 'sqrt': ('sqrt(x)', lambda x: np.sqrt(np.abs(x))),
14
- 'tanh': ('tanh(x)', lambda x: np.tanh(x)),
15
- 'sin': ('sin(x)', lambda x: np.sin(np.clip(x, -10*np.pi, 10*np.pi))),
16
- 'abs': ('abs(x)', lambda x: np.abs(x))
8
+ 'x^2': ('x^2', lambda x: x**2),
9
+ 'sin': ('sin(x)', lambda x: np.sin(x)),
10
+ 'tanh': ('tanh(x)', lambda x: np.tanh(x))
17
11
  }
18
12
 
19
13
  class EdgeActivation(nn.Module):
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: oikan
3
- Version: 0.0.2.2
3
+ Version: 0.0.2.4
4
4
  Summary: OIKAN: Optimized Interpretable Kolmogorov-Arnold Networks
5
5
  Author: Arman Zhalgasbayev
6
6
  License: MIT
@@ -17,7 +17,7 @@ Dynamic: license-file
17
17
 
18
18
  <!-- logo in the center -->
19
19
  <div align="center">
20
- <img src="docs/media/oikan_logo.png" alt="OIKAN Logo" width="200"/>
20
+ <img src="https://raw.githubusercontent.com/silvermete0r/oikan/main/docs/media/oikan_logo.png" alt="OIKAN Logo" width="200"/>
21
21
 
22
22
  <h1>OIKAN: Optimized Interpretable Kolmogorov-Arnold Networks</h1>
23
23
  </div>
@@ -32,20 +32,39 @@ OIKAN (Optimized Interpretable Kolmogorov-Arnold Networks) is a neuro-symbolic M
32
32
  [![GitHub issues](https://img.shields.io/github/issues/silvermete0r/OIKAN.svg)](https://github.com/silvermete0r/oikan/issues)
33
33
  [![Docs](https://img.shields.io/badge/docs-passing-brightgreen)](https://silvermete0r.github.io/oikan/)
34
34
 
35
+ > **Important Disclaimer**: OIKAN is an experimental research project. It is not intended for production use or real-world applications. This framework is designed for research purposes, experimentation, and academic exploration of neuro-symbolic machine learning concepts.
36
+
35
37
  ## Key Features
36
38
  - 🧠 **Neuro-Symbolic ML**: Combines neural network learning with symbolic mathematics
37
39
  - 📊 **Automatic Formula Extraction**: Generates human-readable mathematical expressions
38
40
  - 🎯 **Scikit-learn Compatible**: Familiar `.fit()` and `.predict()` interface
39
- - 🚀 **Production-Ready**: Export symbolic formulas for lightweight deployment
41
+ - 🔬 **Research-Focused**: Designed for academic exploration and experimentation
40
42
  - 📈 **Multi-Task**: Supports both regression and classification problems
41
43
 
42
44
  ## Scientific Foundation
43
45
 
44
- OIKAN is based on Kolmogorov's superposition theorem, which states that any multivariate continuous function can be represented as a composition of single-variable functions. We leverage this theory by:
46
+ OIKAN implements the Kolmogorov-Arnold Representation Theorem through a novel neural architecture:
47
+
48
+ 1. **Theorem Background**: Any continuous multivariate function f(x1,...,xn) can be represented as:
49
+ ```
50
+ f(x1,...,xn) = ∑(j=0 to 2n){ φj( ∑(i=1 to n) ψij(xi) ) }
51
+ ```
52
+ where φj and ψij are continuous single-variable functions.
45
53
 
46
- 1. Using neural networks to learn optimal basis functions through interpretable edge transformations
47
- 2. Combining transformed features using learnable weights
48
- 3. Automatically extracting human-readable symbolic formulas
54
+ 2. **Neural Implementation**:
55
+ ```python
56
+ # Pseudo-implementation of KAN architecture
57
+ class KANLayer:
58
+ def __init__(self, input_dim, output_dim):
59
+ self.edges = [SymbolicEdge() for _ in range(input_dim * output_dim)]
60
+ self.weights = initialize_weights(input_dim, output_dim)
61
+
62
+ def forward(self, x):
63
+ # Transform each input through basis functions
64
+ edge_outputs = [edge(x_i) for x_i, edge in zip(x, self.edges)]
65
+ # Combine using learned weights
66
+ return combine_weighted_outputs(edge_outputs, self.weights)
67
+ ```
49
68
 
50
69
  ## Quick Start
51
70
 
@@ -68,16 +87,11 @@ pip install -e . # Install in development mode
68
87
  from oikan.model import OIKANRegressor
69
88
  from sklearn.model_selection import train_test_split
70
89
 
71
- # Initialize model with optimal architecture
72
- model = OIKANRegressor(
73
- hidden_dims=[16, 8], # Network architecture
74
- num_basis=10, # Number of basis functions
75
- degree=3, # Polynomial degree
76
- dropout=0.1 # Regularization
77
- )
90
+ # Initialize model
91
+ model = OIKANRegressor()
78
92
 
79
93
  # Fit model (sklearn-style)
80
- model.fit(X_train, y_train, epochs=200, lr=0.01)
94
+ model.fit(X_train, y_train, epochs=100, lr=0.01)
81
95
 
82
96
  # Get predictions
83
97
  y_pred = model.predict(X_test)
@@ -86,7 +100,7 @@ y_pred = model.predict(X_test)
86
100
  # The output file will contain:
87
101
  # - Detailed symbolic formulas for each feature
88
102
  # - Instructions for practical implementation
89
- # - Recommendations for production deployment
103
+ # - Recommendations for testing and validation
90
104
  model.save_symbolic_formula("regression_formula.txt")
91
105
  ```
92
106
 
@@ -98,101 +112,78 @@ model.save_symbolic_formula("regression_formula.txt")
98
112
  from oikan.model import OIKANClassifier
99
113
 
100
114
  # Similar sklearn-style interface for classification
101
- model = OIKANClassifier(hidden_dims=[16, 8])
102
- model.fit(X_train, y_train)
115
+ model = OIKANClassifier()
116
+ model.fit(X_train, y_train, epochs=100, lr=0.01)
103
117
  probas = model.predict_proba(X_test)
104
118
 
105
119
  # Save classification formulas with implementation guidelines
106
120
  # The output file will contain:
107
121
  # - Decision boundary formulas for each class
108
122
  # - Softmax application instructions
109
- # - Production deployment recommendations
123
+ # - Recommendations for testing and validation
110
124
  model.save_symbolic_formula("classification_formula.txt")
111
125
  ```
112
126
 
113
127
  *Example of the saved symbolic formula instructions: [outputs/classification_symbolic_formula.txt](outputs/classification_symbolic_formula.txt)*
114
128
 
115
- ## Architecture Details
116
-
117
- OIKAN implements a novel neuro-symbolic architecture based on Kolmogorov-Arnold representation theory through three specialized components:
118
-
119
- 1. **Edge Symbolic Layer**: Learns interpretable single-variable transformations
120
- - Adaptive basis function composition using 9 core functions:
121
- ```python
122
- ADVANCED_LIB = {
123
- 'x': ('x', lambda x: x),
124
- 'x^2': ('x^2', lambda x: x**2),
125
- 'x^3': ('x^3', lambda x: x**3),
126
- 'exp': ('exp(x)', lambda x: np.exp(x)),
127
- 'log': ('log(x)', lambda x: np.log(abs(x) + 1)),
128
- 'sqrt': ('sqrt(x)', lambda x: np.sqrt(abs(x))),
129
- 'tanh': ('tanh(x)', lambda x: np.tanh(x)),
130
- 'sin': ('sin(x)', lambda x: np.sin(x)),
131
- 'abs': ('abs(x)', lambda x: np.abs(x))
132
- }
133
- ```
134
- - Each input feature is transformed through these basis functions
135
- - Learnable weights determine the optimal combination
136
-
137
- 2. **Neural Composition Layer**: Multi-layer feature aggregation
138
- - Direct feature-to-feature connections through KAN layers
139
- - Dropout regularization (p=0.1 default) for robust learning
140
- - Gradient clipping (max_norm=1.0) for stable training
141
- - User-configurable hidden layer dimensions
142
-
143
- 3. **Symbolic Extraction Layer**: Generates production-ready formulas
144
- - Weight-based term pruning (threshold=1e-4)
145
- - Automatic coefficient optimization
146
- - Human-readable mathematical expressions
147
- - Exportable to lightweight production code
148
-
149
- ### Architecture Diagram
150
-
151
- ![Architecture Diagram](docs/media/oikan_model_architecture_v0.0.2.2.png)
152
129
 
153
130
  ### Key Design Principles
154
131
 
155
- 1. **Interpretability First**: All transformations maintain clear mathematical meaning
156
- 2. **Scikit-learn Compatibility**: Familiar `.fit()` and `.predict()` interface
157
- 3. **Production Ready**: Export formulas as lightweight mathematical expressions
158
- 4. **Automatic Simplification**: Remove insignificant terms (|w| < 1e-4)
159
-
160
- ## Model Components
161
-
162
- 1. **Symbolic Edge Functions**
132
+ 1. **Interpretability by Design**
163
133
  ```python
164
- class EdgeActivation(nn.Module):
165
- """Learnable edge activation with basis functions"""
166
- def forward(self, x):
167
- return sum(self.weights[i] * basis[i](x) for i in range(self.num_basis))
134
+ # Edge activation contains interpretable basis functions
135
+ ADVANCED_LIB = {
136
+ 'x': (lambda x: x), # Linear
137
+ 'x^2': (lambda x: x**2), # Quadratic
138
+ 'sin(x)': np.sin, # Periodic
139
+ 'tanh(x)': np.tanh # Bounded
140
+ }
168
141
  ```
169
142
 
170
- 2. **KAN Layer Implementation**
143
+ 2. **Automatic Simplification**
171
144
  ```python
172
- class KANLayer(nn.Module):
173
- """Kolmogorov-Arnold Network layer"""
174
- def forward(self, x):
175
- edge_outputs = [self.edges[i](x[:,i]) for i in range(self.input_dim)]
176
- return self.combine(edge_outputs)
145
+ def simplify_formula(terms, threshold=1e-4):
146
+ return [term for term in terms if abs(term.coefficient) > threshold]
177
147
  ```
178
148
 
179
- 3. **Formula Extraction**
149
+ 3. **Research-Oriented Architecture**
180
150
  ```python
181
- def get_symbolic_formula(self):
182
- """Extract interpretable mathematical expression"""
183
- terms = []
184
- for i, edge in enumerate(self.edges):
185
- if abs(self.weights[i]) > threshold:
186
- terms.append(f"{self.weights[i]:.4f} * {edge.formula}")
187
- return " + ".join(terms)
151
+ class SymbolicEdge:
152
+ def forward(self, x):
153
+ return sum(w * f(x) for w, f in zip(self.weights, self.basis_functions))
154
+
155
+ def get_formula(self):
156
+ return format_symbolic_terms(self.weights, self.basis_functions)
188
157
  ```
189
158
 
159
+ ### Architecture Diagram
160
+
161
+ ![Architecture Diagram](https://raw.githubusercontent.com/silvermete0r/oikan/main/docs/media/oikan_model_architecture_v0.0.2.2.png)
162
+
190
163
  ### Key Design Principles
191
164
 
192
- - **Modular Architecture**: Each component is independent and replaceable
193
- - **Interpretability First**: All transformations maintain symbolic representations
194
- - **Automatic Simplification**: Removes insignificant terms and combines similar expressions
195
- - **Production Ready**: Export formulas for lightweight deployment
165
+ 1. **Interpretability First**: All transformations maintain clear mathematical meaning
166
+ 2. **Scikit-learn Compatibility**: Familiar `.fit()` and `.predict()` interface
167
+ 3. **Symbolic Formula Exporting**: Export formulas as lightweight mathematical expressions
168
+ 4. **Automatic Simplification**: Remove insignificant terms (|w| < 1e-4)
169
+
170
+
171
+ ### Key Model Components
172
+
173
+ 1. **EdgeActivation Layer**:
174
+ - Implements interpretable basis function transformations
175
+ - Automatically prunes insignificant terms
176
+ - Maintains mathematical transparency
177
+
178
+ 2. **Formula Extraction**:
179
+ - Combines edge transformations with learned weights
180
+ - Applies symbolic simplification
181
+ - Generates human-readable expressions
182
+
183
+ 3. **Training Process**:
184
+ - Gradient-based optimization of edge weights
185
+ - Automatic feature importance detection
186
+ - Complexity control through regularization
196
187
 
197
188
  ## Contributing
198
189
 
@@ -0,0 +1,10 @@
1
+ oikan/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
2
+ oikan/exceptions.py,sha256=UqT3uTtfiB8QA_3AMvKdHOme9WL9HZD_d7GHIk00LJw,394
3
+ oikan/model.py,sha256=nPQcP5TYeuL29pjc9nIKd1tak-Bmh0d0LdRZz6LwcTo,20779
4
+ oikan/symbolic.py,sha256=TtalmSpBecf33_g7yE3q-RPuCVRWQNaXWE4LsCNZmfg,1040
5
+ oikan/utils.py,sha256=GpwAHjPpq3lHvUIS0sKSxJzaLBIkyDxe0aiYRrOqL90,1581
6
+ oikan-0.0.2.4.dist-info/licenses/LICENSE,sha256=75ASVmU-XIpN-M4LbVmJ_ibgbzbvRLVti8FhnR0BTf8,1096
7
+ oikan-0.0.2.4.dist-info/METADATA,sha256=DXQFc4HCNY7hVk_UGXLN43qwmEf0OZFIredbEE6Uq5I,7850
8
+ oikan-0.0.2.4.dist-info/WHEEL,sha256=CmyFI0kx5cdEMTLiONQRbGQwjIoR1aIYB7eCAQ4KPJ0,91
9
+ oikan-0.0.2.4.dist-info/top_level.txt,sha256=XwnwKwTJddZwIvtrUsAz-l-58BJRj6HjAGWrfYi_3QY,6
10
+ oikan-0.0.2.4.dist-info/RECORD,,
@@ -1,10 +0,0 @@
1
- oikan/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
2
- oikan/exceptions.py,sha256=UqT3uTtfiB8QA_3AMvKdHOme9WL9HZD_d7GHIk00LJw,394
3
- oikan/model.py,sha256=iHWKjk_n0Kkw47UO2XFTc0faqGYBrQBJhmmRn1Po4qw,19604
4
- oikan/symbolic.py,sha256=TtalmSpBecf33_g7yE3q-RPuCVRWQNaXWE4LsCNZmfg,1040
5
- oikan/utils.py,sha256=sivt_8jzATH-eUZ3-P-tsdmyIgKsayibSZeP_MtLTfU,1969
6
- oikan-0.0.2.2.dist-info/licenses/LICENSE,sha256=75ASVmU-XIpN-M4LbVmJ_ibgbzbvRLVti8FhnR0BTf8,1096
7
- oikan-0.0.2.2.dist-info/METADATA,sha256=VvxfL5IWijk6RJObJL5fORZQFAY55X_oZf00Qk5ATTU,8519
8
- oikan-0.0.2.2.dist-info/WHEEL,sha256=CmyFI0kx5cdEMTLiONQRbGQwjIoR1aIYB7eCAQ4KPJ0,91
9
- oikan-0.0.2.2.dist-info/top_level.txt,sha256=XwnwKwTJddZwIvtrUsAz-l-58BJRj6HjAGWrfYi_3QY,6
10
- oikan-0.0.2.2.dist-info/RECORD,,