oikan 0.0.2.2__py3-none-any.whl → 0.0.2.3__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {oikan-0.0.2.2.dist-info → oikan-0.0.2.3.dist-info}/METADATA +5 -7
- {oikan-0.0.2.2.dist-info → oikan-0.0.2.3.dist-info}/RECORD +5 -5
- {oikan-0.0.2.2.dist-info → oikan-0.0.2.3.dist-info}/WHEEL +0 -0
- {oikan-0.0.2.2.dist-info → oikan-0.0.2.3.dist-info}/licenses/LICENSE +0 -0
- {oikan-0.0.2.2.dist-info → oikan-0.0.2.3.dist-info}/top_level.txt +0 -0
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.4
|
2
2
|
Name: oikan
|
3
|
-
Version: 0.0.2.
|
3
|
+
Version: 0.0.2.3
|
4
4
|
Summary: OIKAN: Optimized Interpretable Kolmogorov-Arnold Networks
|
5
5
|
Author: Arman Zhalgasbayev
|
6
6
|
License: MIT
|
@@ -17,7 +17,7 @@ Dynamic: license-file
|
|
17
17
|
|
18
18
|
<!-- logo in the center -->
|
19
19
|
<div align="center">
|
20
|
-
<img src="docs/media/oikan_logo.png" alt="OIKAN Logo" width="200"/>
|
20
|
+
<img src="https://raw.githubusercontent.com/silvermete0r/oikan/main/docs/media/oikan_logo.png" alt="OIKAN Logo" width="200"/>
|
21
21
|
|
22
22
|
<h1>OIKAN: Optimized Interpretable Kolmogorov-Arnold Networks</h1>
|
23
23
|
</div>
|
@@ -71,13 +71,11 @@ from sklearn.model_selection import train_test_split
|
|
71
71
|
# Initialize model with optimal architecture
|
72
72
|
model = OIKANRegressor(
|
73
73
|
hidden_dims=[16, 8], # Network architecture
|
74
|
-
num_basis=10, # Number of basis functions
|
75
|
-
degree=3, # Polynomial degree
|
76
74
|
dropout=0.1 # Regularization
|
77
75
|
)
|
78
76
|
|
79
77
|
# Fit model (sklearn-style)
|
80
|
-
model.fit(X_train, y_train, epochs=
|
78
|
+
model.fit(X_train, y_train, epochs=100, lr=0.01)
|
81
79
|
|
82
80
|
# Get predictions
|
83
81
|
y_pred = model.predict(X_test)
|
@@ -99,7 +97,7 @@ from oikan.model import OIKANClassifier
|
|
99
97
|
|
100
98
|
# Similar sklearn-style interface for classification
|
101
99
|
model = OIKANClassifier(hidden_dims=[16, 8])
|
102
|
-
model.fit(X_train, y_train)
|
100
|
+
model.fit(X_train, y_train, epochs=100, lr=0.01)
|
103
101
|
probas = model.predict_proba(X_test)
|
104
102
|
|
105
103
|
# Save classification formulas with implementation guidelines
|
@@ -148,7 +146,7 @@ OIKAN implements a novel neuro-symbolic architecture based on Kolmogorov-Arnold
|
|
148
146
|
|
149
147
|
### Architecture Diagram
|
150
148
|
|
151
|
-

|
149
|
+

|
152
150
|
|
153
151
|
### Key Design Principles
|
154
152
|
|
@@ -3,8 +3,8 @@ oikan/exceptions.py,sha256=UqT3uTtfiB8QA_3AMvKdHOme9WL9HZD_d7GHIk00LJw,394
|
|
3
3
|
oikan/model.py,sha256=iHWKjk_n0Kkw47UO2XFTc0faqGYBrQBJhmmRn1Po4qw,19604
|
4
4
|
oikan/symbolic.py,sha256=TtalmSpBecf33_g7yE3q-RPuCVRWQNaXWE4LsCNZmfg,1040
|
5
5
|
oikan/utils.py,sha256=sivt_8jzATH-eUZ3-P-tsdmyIgKsayibSZeP_MtLTfU,1969
|
6
|
-
oikan-0.0.2.
|
7
|
-
oikan-0.0.2.
|
8
|
-
oikan-0.0.2.
|
9
|
-
oikan-0.0.2.
|
10
|
-
oikan-0.0.2.
|
6
|
+
oikan-0.0.2.3.dist-info/licenses/LICENSE,sha256=75ASVmU-XIpN-M4LbVmJ_ibgbzbvRLVti8FhnR0BTf8,1096
|
7
|
+
oikan-0.0.2.3.dist-info/METADATA,sha256=pr8kHktQQPBk9QA_gchl_ynHzCWWv6j9lib9dmXuYi0,8554
|
8
|
+
oikan-0.0.2.3.dist-info/WHEEL,sha256=CmyFI0kx5cdEMTLiONQRbGQwjIoR1aIYB7eCAQ4KPJ0,91
|
9
|
+
oikan-0.0.2.3.dist-info/top_level.txt,sha256=XwnwKwTJddZwIvtrUsAz-l-58BJRj6HjAGWrfYi_3QY,6
|
10
|
+
oikan-0.0.2.3.dist-info/RECORD,,
|
File without changes
|
File without changes
|
File without changes
|