oikan 0.0.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
oikan/__init__.py ADDED
File without changes
oikan/model.py ADDED
@@ -0,0 +1,28 @@
1
+ import torch
2
+ import torch.nn as nn
3
+
4
+ # EfficientKAN Layer
5
+ class EfficientKAN(nn.Module):
6
+ def __init__(self, input_dim, hidden_units=10):
7
+ super(EfficientKAN, self).__init__()
8
+ self.basis_functions = nn.ModuleList([nn.Linear(1, hidden_units) for _ in range(input_dim)])
9
+ self.activations = nn.ReLU()
10
+
11
+ def forward(self, x):
12
+ transformed_features = [self.activations(bf(x[:, i].unsqueeze(1))) for i, bf in enumerate(self.basis_functions)]
13
+ return torch.cat(transformed_features, dim=1)
14
+
15
+ # OIKAN Model
16
+ class OIKAN(nn.Module):
17
+ def __init__(self, input_dim, output_dim, hidden_units=10):
18
+ super(OIKAN, self).__init__()
19
+ self.efficientkan = EfficientKAN(input_dim, hidden_units)
20
+ self.mlp = nn.Sequential(
21
+ nn.Linear(input_dim * hidden_units, 32),
22
+ nn.ReLU(),
23
+ nn.Linear(32, output_dim)
24
+ )
25
+
26
+ def forward(self, x):
27
+ transformed_x = self.efficientkan(x)
28
+ return self.mlp(transformed_x)
oikan/symbolic.py ADDED
@@ -0,0 +1,36 @@
1
+ import torch
2
+ from sympy import symbols, simplify, Add
3
+
4
+ # Regression symbolic extraction
5
+ def extract_symbolic_formula_regression(model, input_data):
6
+ symbolic_vars = symbols([f'x{i}' for i in range(input_data.shape[1])])
7
+
8
+ with torch.no_grad():
9
+ weights = model.mlp[0].weight.cpu().numpy()
10
+ if weights.size == 0:
11
+ print("Warning: Extracted weights are empty.")
12
+ return "NaN"
13
+
14
+ formula = sum(weights[0, i] * symbolic_vars[i] for i in range(len(symbolic_vars)))
15
+ return simplify(formula)
16
+
17
+ # Classification symbolic extraction
18
+ def extract_symbolic_formula_classification(model, input_data):
19
+ """
20
+ Extracts a symbolic decision boundary for a two-class classifier.
21
+ Approximates:
22
+ decision = (w[0] - w[1]) · x + (b[0] - b[1])
23
+ where w and b are from the model's final linear layer.
24
+ """
25
+ symbolic_vars = symbols([f'x{i}' for i in range(input_data.shape[1])])
26
+ with torch.no_grad():
27
+ final_layer = model.mlp[-1]
28
+ w = final_layer.weight.cpu().numpy()
29
+ b = final_layer.bias.cpu().numpy()
30
+ if w.shape[0] < 2:
31
+ print("Classification symbolic extraction requires at least 2 classes.")
32
+ return "NaN"
33
+ w_diff = w[0] - w[1]
34
+ b_diff = b[0] - b[1]
35
+ formula = sum(w_diff[i] * symbolic_vars[i] for i in range(len(symbolic_vars))) + b_diff
36
+ return simplify(formula)
oikan/trainer.py ADDED
@@ -0,0 +1,34 @@
1
+ import torch.optim as optim
2
+ import torch.nn as nn
3
+
4
+ # Regression training
5
+ def train(model, train_loader, epochs=100, lr=0.01):
6
+ criterion = nn.MSELoss()
7
+ optimizer = optim.LBFGS(model.parameters(), lr=lr)
8
+
9
+ def closure():
10
+ optimizer.zero_grad()
11
+ outputs = model(train_loader[0])
12
+ loss = criterion(outputs, train_loader[1])
13
+ loss.backward()
14
+ print(f"Loss: {loss.item()}")
15
+ return loss
16
+
17
+ for epoch in range(epochs):
18
+ optimizer.step(closure)
19
+ if epoch % 10 == 0:
20
+ print(f"Epoch {epoch+1}/{epochs}")
21
+
22
+ # Classification training
23
+ def train_classification(model, train_loader, epochs=100, lr=0.01):
24
+ criterion = nn.CrossEntropyLoss()
25
+ optimizer = optim.Adam(model.parameters(), lr=lr)
26
+
27
+ for epoch in range(epochs):
28
+ optimizer.zero_grad()
29
+ outputs = model(train_loader[0])
30
+ loss = criterion(outputs, train_loader[1])
31
+ loss.backward()
32
+ optimizer.step()
33
+ if (epoch + 1) % 10 == 0:
34
+ print(f"Epoch {epoch+1}/{epochs}, Loss: {loss.item()}")
oikan/visualize.py ADDED
@@ -0,0 +1,20 @@
1
+ import matplotlib.pyplot as plt
2
+ import torch
3
+
4
+ # Regression Visualization Function
5
+ def visualize_regression(model, X, y):
6
+ with torch.no_grad():
7
+ y_pred = model(torch.tensor(X, dtype=torch.float32)).numpy()
8
+ plt.scatter(X[:, 0], y, label='True Data')
9
+ plt.scatter(X[:, 0], y_pred, label='OIKAN Predictions', color='r')
10
+ plt.legend()
11
+ plt.show()
12
+
13
+ # Classification visualization
14
+ def visualize_classification(model, X, y):
15
+ with torch.no_grad():
16
+ outputs = model(torch.tensor(X, dtype=torch.float32))
17
+ preds = torch.argmax(outputs, dim=1).numpy()
18
+ plt.scatter(X[:, 0], X[:, 1], c=preds, cmap='viridis', edgecolor='k')
19
+ plt.title("Classification Results")
20
+ plt.show()
@@ -0,0 +1,10 @@
1
+ Metadata-Version: 2.2
2
+ Name: oikan
3
+ Version: 0.0.1
4
+ Summary: OIKAN: Optimized Interpretable Kolmogorov-Arnold Networks
5
+ Author: Arman Zhalgasbayev
6
+ Requires-Dist: torch
7
+ Requires-Dist: numpy
8
+ Requires-Dist: sympy
9
+ Requires-Dist: scipy
10
+ Requires-Dist: matplotlib
@@ -0,0 +1,9 @@
1
+ oikan/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
2
+ oikan/model.py,sha256=LTWlXTlmeTwNe70Q7vjGOG6MUukCuWoHryvHB_yPzjc,1035
3
+ oikan/symbolic.py,sha256=QjNGWU6LpPzZ35b-WYmSEYPM5FH9tKMS5pKgCujFd64,1431
4
+ oikan/trainer.py,sha256=4CWcBCRLhMXEtnEevVt2qe3lNXzoS0HUH6weHE2GwUw,1111
5
+ oikan/visualize.py,sha256=J58pbWYaqV5vWkkRNUem0Jse5gHjQ-rRDKQDPIJouW0,729
6
+ oikan-0.0.1.dist-info/METADATA,sha256=zNk3LtgHe5TIYBy49l4t5tYDgQdUOHu0Jh1a56bTym4,263
7
+ oikan-0.0.1.dist-info/WHEEL,sha256=In9FTNxeP60KnTkGw7wk6mJPYd_dQSjEZmXdBdMCI-8,91
8
+ oikan-0.0.1.dist-info/top_level.txt,sha256=XwnwKwTJddZwIvtrUsAz-l-58BJRj6HjAGWrfYi_3QY,6
9
+ oikan-0.0.1.dist-info/RECORD,,
@@ -0,0 +1,5 @@
1
+ Wheel-Version: 1.0
2
+ Generator: setuptools (75.8.0)
3
+ Root-Is-Purelib: true
4
+ Tag: py3-none-any
5
+
@@ -0,0 +1 @@
1
+ oikan