oikan 0.0.1.9__py3-none-any.whl → 0.0.1.10__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- oikan/trainer.py +6 -6
- {oikan-0.0.1.9.dist-info → oikan-0.0.1.10.dist-info}/METADATA +1 -1
- {oikan-0.0.1.9.dist-info → oikan-0.0.1.10.dist-info}/RECORD +6 -6
- {oikan-0.0.1.9.dist-info → oikan-0.0.1.10.dist-info}/LICENSE +0 -0
- {oikan-0.0.1.9.dist-info → oikan-0.0.1.10.dist-info}/WHEEL +0 -0
- {oikan-0.0.1.9.dist-info → oikan-0.0.1.10.dist-info}/top_level.txt +0 -0
oikan/trainer.py
CHANGED
@@ -2,7 +2,7 @@ import torch
|
|
2
2
|
import torch.nn as nn
|
3
3
|
from .regularization import RegularizedLoss
|
4
4
|
|
5
|
-
def train(model, train_data, epochs=100, lr=0.01, save_path=None):
|
5
|
+
def train(model, train_data, epochs=100, lr=0.01, save_path=None, verbose=True):
|
6
6
|
'''Train regression model using MSE loss with regularization.
|
7
7
|
Optionally save the model when training is finished if save_path is provided.
|
8
8
|
'''
|
@@ -19,13 +19,13 @@ def train(model, train_data, epochs=100, lr=0.01, save_path=None):
|
|
19
19
|
loss.backward() # Backpropagate errors
|
20
20
|
optimizer.step() # Update parameters
|
21
21
|
|
22
|
-
if (epoch + 1) % 10 == 0:
|
22
|
+
if (epoch + 1) % 10 == 0 and verbose:
|
23
23
|
print(f'Epoch [{epoch+1}/{epochs}], Loss: {loss.item():.4f}')
|
24
|
-
if save_path:
|
24
|
+
if save_path is not None:
|
25
25
|
torch.save(model.state_dict(), save_path)
|
26
26
|
print(f"Model saved to {save_path}")
|
27
27
|
|
28
|
-
def train_classification(model, train_data, epochs=100, lr=0.01, save_path=None):
|
28
|
+
def train_classification(model, train_data, epochs=100, lr=0.01, save_path=None, verbose=True):
|
29
29
|
'''Train classification model using CrossEntropy loss with regularization.
|
30
30
|
Optionally save the model when training is finished if save_path is provided.
|
31
31
|
'''
|
@@ -42,8 +42,8 @@ def train_classification(model, train_data, epochs=100, lr=0.01, save_path=None)
|
|
42
42
|
loss.backward() # Backpropagation
|
43
43
|
optimizer.step() # Parameter update
|
44
44
|
|
45
|
-
if (epoch + 1) % 10 == 0:
|
45
|
+
if (epoch + 1) % 10 == 0 and verbose:
|
46
46
|
print(f'Epoch [{epoch+1}/{epochs}], Loss: {loss.item():.4f}')
|
47
|
-
if save_path:
|
47
|
+
if save_path is not None:
|
48
48
|
torch.save(model.state_dict(), save_path)
|
49
49
|
print(f"Model saved to {save_path}")
|
@@ -3,11 +3,11 @@ oikan/metrics.py,sha256=65txPbjhTz7lCXCLtTAJTS4E5Hx42wzZ3jKar3lH_bY,860
|
|
3
3
|
oikan/model.py,sha256=zlw_4HbSK3IiQhE8M4NitvrXa7vffBWsOR-HLRSJADA,3944
|
4
4
|
oikan/regularization.py,sha256=xt8JNnPdHRAQgzF_vnyme005hWLunz9Vo2qw6m08NMM,1145
|
5
5
|
oikan/symbolic.py,sha256=RRYHOCOCJr5KXRhdcCPvT_OqyNcCnWCWt7fOtos8rRI,5765
|
6
|
-
oikan/trainer.py,sha256=
|
6
|
+
oikan/trainer.py,sha256=PwA8PnVUiv5wYlQqj3DTplCAUZljZ4iWJUKUDvmIvX0,2062
|
7
7
|
oikan/utils.py,sha256=xbVgrbhXYj57RdD3uNPchjyfmP6Kur7tngoZPa3qWOw,2094
|
8
8
|
oikan/visualize.py,sha256=sA__nLB35y6tuWDAM3aoC7VezxJAvdSlwzmoPfrnFhQ,2249
|
9
|
-
oikan-0.0.1.
|
10
|
-
oikan-0.0.1.
|
11
|
-
oikan-0.0.1.
|
12
|
-
oikan-0.0.1.
|
13
|
-
oikan-0.0.1.
|
9
|
+
oikan-0.0.1.10.dist-info/LICENSE,sha256=75ASVmU-XIpN-M4LbVmJ_ibgbzbvRLVti8FhnR0BTf8,1096
|
10
|
+
oikan-0.0.1.10.dist-info/METADATA,sha256=Mzmf6JP3taLsxytaSz8TI30M-uvmaq7jcEkZORGCatw,3848
|
11
|
+
oikan-0.0.1.10.dist-info/WHEEL,sha256=In9FTNxeP60KnTkGw7wk6mJPYd_dQSjEZmXdBdMCI-8,91
|
12
|
+
oikan-0.0.1.10.dist-info/top_level.txt,sha256=XwnwKwTJddZwIvtrUsAz-l-58BJRj6HjAGWrfYi_3QY,6
|
13
|
+
oikan-0.0.1.10.dist-info/RECORD,,
|
File without changes
|
File without changes
|
File without changes
|