offtracker 2.7.8__zip → 2.10.0__zip
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- offtracker-2.10.0/PKG-INFO +233 -0
- offtracker-2.10.0/README.md +221 -0
- {offtracker-2.7.8 → offtracker-2.10.0}/offtracker/X_offplot.py +37 -8
- {offtracker-2.7.8 → offtracker-2.10.0}/offtracker/X_sequence.py +113 -7
- offtracker-2.10.0/offtracker/_version.py +36 -0
- offtracker-2.10.0/offtracker/snakefile/Snakefile_QC.smk +66 -0
- offtracker-2.10.0/offtracker/snakefile/Snakefile_offtracker.smk +249 -0
- offtracker-2.7.8/offtracker/mapping/1.1_bed2fr_v4.5.py → offtracker-2.10.0/offtracker/utility/1.1_bed2fr.py +6 -4
- offtracker-2.10.0/offtracker.egg-info/PKG-INFO +233 -0
- offtracker-2.10.0/offtracker.egg-info/SOURCES.txt +28 -0
- {offtracker-2.7.8 → offtracker-2.10.0}/scripts/offtracker_analysis.py +20 -5
- offtracker-2.10.0/scripts/offtracker_candidates.py +318 -0
- {offtracker-2.7.8 → offtracker-2.10.0}/scripts/offtracker_config.py +28 -44
- offtracker-2.10.0/scripts/offtracker_plot.py +39 -0
- offtracker-2.10.0/scripts/offtracker_qc.py +62 -0
- {offtracker-2.7.8 → offtracker-2.10.0}/setup.py +8 -4
- offtracker-2.7.8/PKG-INFO +0 -146
- offtracker-2.7.8/README.md +0 -134
- offtracker-2.7.8/offtracker/_version.py +0 -28
- offtracker-2.7.8/offtracker/mapping/Snakefile_offtracker +0 -245
- offtracker-2.7.8/offtracker.egg-info/PKG-INFO +0 -146
- offtracker-2.7.8/offtracker.egg-info/SOURCES.txt +0 -25
- offtracker-2.7.8/scripts/offtracker_candidates.py +0 -307
- {offtracker-2.7.8 → offtracker-2.10.0}/LICENSE.txt +0 -0
- {offtracker-2.7.8 → offtracker-2.10.0}/MANIFEST.in +0 -0
- {offtracker-2.7.8 → offtracker-2.10.0}/offtracker/X_offtracker.py +0 -0
- {offtracker-2.7.8 → offtracker-2.10.0}/offtracker/__init__.py +0 -0
- {offtracker-2.7.8/offtracker/mapping → offtracker-2.10.0/offtracker/utility}/1.3_bdg_normalize_v4.0.py +0 -0
- {offtracker-2.7.8/offtracker/mapping → offtracker-2.10.0/offtracker/utility}/bedGraphToBigWig +0 -0
- {offtracker-2.7.8/offtracker/mapping → offtracker-2.10.0/offtracker/utility}/hg38.chrom.sizes +0 -0
- {offtracker-2.7.8/offtracker/mapping → offtracker-2.10.0/offtracker/utility}/mm10.chrom.sizes +0 -0
- {offtracker-2.7.8/offtracker/mapping → offtracker-2.10.0/offtracker/utility}/offtracker_blacklist_hg38.merged.bed +0 -0
- {offtracker-2.7.8/offtracker/mapping → offtracker-2.10.0/offtracker/utility}/offtracker_blacklist_mm10.merged.bed +0 -0
- {offtracker-2.7.8 → offtracker-2.10.0}/offtracker.egg-info/dependency_links.txt +0 -0
- {offtracker-2.7.8 → offtracker-2.10.0}/offtracker.egg-info/requires.txt +0 -0
- {offtracker-2.7.8 → offtracker-2.10.0}/offtracker.egg-info/top_level.txt +0 -0
- {offtracker-2.7.8 → offtracker-2.10.0}/setup.cfg +0 -0
@@ -0,0 +1,233 @@
|
|
1
|
+
Metadata-Version: 2.1
|
2
|
+
Name: offtracker
|
3
|
+
Version: 2.10.0
|
4
|
+
Summary: Tracking-seq data analysis
|
5
|
+
Home-page: https://github.com/Lan-lab/offtracker
|
6
|
+
Author: Runda Xu
|
7
|
+
Author-email: xrd18@tsinghua.org.cn
|
8
|
+
Requires-Python: >=3.6.0
|
9
|
+
Description-Content-Type: text/markdown
|
10
|
+
License-File: LICENSE.txt
|
11
|
+
|
12
|
+
|
13
|
+
# OFF-TRACKER
|
14
|
+
|
15
|
+
OFF-TRACKER is an end to end pipeline of Tracking-seq data analysis for detecting off-target sites of any genome editing tools that generate double-strand breaks (DSBs) or single-strand breaks (SSBs).
|
16
|
+
|
17
|
+
## System requirements
|
18
|
+
|
19
|
+
* Linux/Unix
|
20
|
+
* Python >= 3.6
|
21
|
+
|
22
|
+
## Dependency
|
23
|
+
|
24
|
+
```bash
|
25
|
+
# We recommend creating a new environment using mamba/conda to avoid compatibility problems
|
26
|
+
# If you don't use mamba, just replace the code with conda
|
27
|
+
# Windows systems may not be compatible with pybedtools.
|
28
|
+
mamba create -n offtracker -c bioconda blast snakemake pybedtools chromap
|
29
|
+
```
|
30
|
+
|
31
|
+
|
32
|
+
## Installation
|
33
|
+
|
34
|
+
```bash
|
35
|
+
# Activate the environment
|
36
|
+
conda activate offtracker
|
37
|
+
|
38
|
+
# Direct installation with pip
|
39
|
+
pip install offtracker
|
40
|
+
|
41
|
+
# (Alternative) Download the offtracker from github
|
42
|
+
git clone https://github.com/Lan-lab/offtracker.git
|
43
|
+
cd offtracker
|
44
|
+
pip install .
|
45
|
+
```
|
46
|
+
|
47
|
+
|
48
|
+
## Before analyzing samples
|
49
|
+
|
50
|
+
```bash
|
51
|
+
# Build blast index (only need once for each genome)
|
52
|
+
makeblastdb -input_type fasta -title hg38 -dbtype nucl -parse_seqids \
|
53
|
+
-in /Your_Path_To_Reference/hg38_genome.fa \
|
54
|
+
-out /Your_Path_To_Reference/hg38_genome.blastdb \
|
55
|
+
-logfile /Your_Path_To_Reference/hg38_genome.blastdb.log
|
56
|
+
|
57
|
+
# Build chromap index (only need once for each genome)
|
58
|
+
chromap -i -r /Your_Path_To_Reference/hg38_genome.fa \
|
59
|
+
-o /Your_Path_To_Reference/hg38_genome.chromap.index
|
60
|
+
|
61
|
+
# Generate candidate regions by sgRNA sequence (need once for each genome and sgRNA)
|
62
|
+
# --name: a user-defined name of the sgRNA, which will be used in the following analysis.
|
63
|
+
offtracker_candidates.py -t 8 -g hg38 \
|
64
|
+
-r /Your_Path_To_Reference/hg38_genome.fa \
|
65
|
+
-b /Your_Path_To_Reference/hg38_genome.blastdb \
|
66
|
+
--name 'VEGFA2' --sgrna 'GACCCCCTCCACCCCGCCTC' --pam 'NGG' \
|
67
|
+
-o /Your_Path_To_Candidates_Folder
|
68
|
+
|
69
|
+
```
|
70
|
+
|
71
|
+
|
72
|
+
## Quality control and adapter trimming
|
73
|
+
|
74
|
+
```bash
|
75
|
+
# Generate snakemake config file for quality control and adapter trimming.
|
76
|
+
offtracker_qc.py -t 4 \
|
77
|
+
-f /Your_Path_To_Input_Folder \
|
78
|
+
--subfolder 0
|
79
|
+
|
80
|
+
cd /Your_Path_To_Input_Folder/Trimmed_data
|
81
|
+
snakemake -np # dry run to check whether everything is alright
|
82
|
+
nohup snakemake --cores 16 1>${outdir}/sm_qc.log 2>&1 &
|
83
|
+
|
84
|
+
"""
|
85
|
+
Set “--subfolder 0” if the file structure is like:
|
86
|
+
| - Input_Folder
|
87
|
+
| - sample1_R1.fastq.gz
|
88
|
+
| - sample1_R2.fastq.gz
|
89
|
+
| - sample2_R1.fastq.gz
|
90
|
+
| - sample2_R2.fastq.gz
|
91
|
+
Set “--subfolder 1” if the file structure is like:
|
92
|
+
| - Input_Folder
|
93
|
+
| - Sample1_Folder
|
94
|
+
| - sample1_R1.fastq.gz
|
95
|
+
| - sample1_R2.fastq.gz
|
96
|
+
| - Sample2_Folder
|
97
|
+
| - sample2_R1.fastq.gz
|
98
|
+
| - sample2_R2.fastq.gz
|
99
|
+
|
100
|
+
The script “offtracker_qc.py” will create a “Trimmed_data” folder under /Your_Path_To_Input_Folder.
|
101
|
+
If “-o /Your_Path_To_Output” is set, the output will be redirected to /Your_Path_To_Output.
|
102
|
+
"""
|
103
|
+
```
|
104
|
+
|
105
|
+
## Strand-specific mapping of Tracking-seq data
|
106
|
+
|
107
|
+
```bash
|
108
|
+
|
109
|
+
# Generate snakemake config file for mapping
|
110
|
+
# Results will be generated in /Your_Path_To_Output, if -o is not set, the output will be in the same folder as the fastq files
|
111
|
+
offtracker_config.py -t 8 -g hg38 --blacklist hg38 \
|
112
|
+
-r /Your_Path_To_Reference/hg38_genome.fa \
|
113
|
+
-i /Your_Path_To_Reference/hg38_genome.chromap.index \
|
114
|
+
-f /Your_Path_To_Trimmed_Data \
|
115
|
+
-o /Your_Path_To_Output \
|
116
|
+
--subfolder 0
|
117
|
+
|
118
|
+
# Warning: Do not contain "fastq" or "fq" in the folder name, otherwise the program may treat the folder as a fastq file
|
119
|
+
# This problem may be fixed in the future
|
120
|
+
|
121
|
+
# Run the snakemake program
|
122
|
+
cd /Your_Path_To_Fastq
|
123
|
+
snakemake -np # dry run
|
124
|
+
nohup snakemake --cores 16 1>sm_mapping.log 2>sm_mapping.err &
|
125
|
+
|
126
|
+
## about cores
|
127
|
+
# --cores of snakemake must be larger than -t of offtracker_config.py
|
128
|
+
# parallel number = cores/t
|
129
|
+
|
130
|
+
## about output
|
131
|
+
# This part will generate "*.fw.scaled.bw" and ".rv.scaled.bw" for IGV visualization
|
132
|
+
# "*.fw.bed" and "*.rv.bed" are used in the next part.
|
133
|
+
```
|
134
|
+
|
135
|
+
|
136
|
+
## Analyzing the genome-wide off-target sites
|
137
|
+
|
138
|
+
```bash
|
139
|
+
# In this part, multiple samples in the same condition can be analyzed in a single run by pattern recognition of sample names
|
140
|
+
|
141
|
+
offtracker_analysis.py -g hg38 --name "VEGFA2" \
|
142
|
+
--exp 'Cas9_VEGFA2' \
|
143
|
+
--control 'WT' \
|
144
|
+
--outname 'Cas9_VEGFA_293' \
|
145
|
+
-f /Your_Path_To_Output \
|
146
|
+
--seqfolder /Your_Path_To_Candidates
|
147
|
+
|
148
|
+
# --name: the same gRNA name you set when running offtracker_candidates.py
|
149
|
+
# --exp/--control: add one or multiple patterns of file name in regular expressions
|
150
|
+
# If multiple samples meet the pattern, their signals will be averaged. Thus, only samples with the same condition should be included in a single analysis.
|
151
|
+
|
152
|
+
# This step will generate Offtracker_result_{outname}.csv
|
153
|
+
# Default FDR is 0.05, which can be changed by --fdr. This will empirically make the threshold of Track score around 2.
|
154
|
+
# Sites with Track score >=2, which is a empirical threshold, are output regardless of FDR.
|
155
|
+
# Intermediate files are saved in ./temp folder, which can be deleted.
|
156
|
+
# Keeping the intermediate files can make the analysis faster if involving previously analyzed samples (e.g. using the same control samples for different analyses)
|
157
|
+
```
|
158
|
+
|
159
|
+
## Off-target sequences visualization
|
160
|
+
|
161
|
+
```bash
|
162
|
+
# After get the Offtracker_result_{outname}.csv, you can visualize the off-target sites with their genomic sequence with the following command:
|
163
|
+
|
164
|
+
offtracker_plot.py --result Your_Offtracker_Result_CSV \
|
165
|
+
--sgrna 'GACCCCCTCCACCCCGCCTC' --pam 'NGG'
|
166
|
+
|
167
|
+
# The default output is a pdf file with Offtracker_result_{outname}.pdf
|
168
|
+
# Assigning a specific output file with another suffix can change the format. e.g., "--output Offtracker_plot.png" will generate a png file.
|
169
|
+
# The orange dash line indicates the empirical threshold of Track score = 2
|
170
|
+
# Empirically, the off-target sites with Track score < 2 are less likely to be real off-target sites.
|
171
|
+
```
|
172
|
+
|
173
|
+
|
174
|
+
## Note1, when not using hg38 or mm10
|
175
|
+
|
176
|
+
The default setting only includes chr1-chr22, chrX, chrY, and chrM. (only suitable for human and mouse) \
|
177
|
+
If you are using reference genomes without "chr" at the beginning, or want to analyze all chromosomes or other species, you can set "--ignore_chr" when running offtracker_config.py to skip chromosome filter.
|
178
|
+
|
179
|
+
Currently, this software is only ready-to-use for mm10 and hg38. For any other genome, e.g., hg19, please add a genome size file named "hg19.chrom.sizes" to .\offtracker\utility. Besides, add "--blacklist none" or "--blacklist Your_Blacklist" (e.g., ENCODE blacklist) when running offtracker_config.py, because we only include blacklists for mm10 and hg38.
|
180
|
+
|
181
|
+
## Note2
|
182
|
+
|
183
|
+
The FDRs in the Tracking-seq result do not reflect the real off-target probability.
|
184
|
+
It is strongly recommended to observe the "fw.scaled.bw" and "rv.scaled.bw" using genome browser like IGV to visually inspect each target location from the Tracking-seq result.
|
185
|
+
|
186
|
+
|
187
|
+
|
188
|
+
# Example Data
|
189
|
+
|
190
|
+
Here are example data that contains reads of chr6 from HEK293T cells edited with Cas9 + sgRNA VEGFA2 and wild type cells:
|
191
|
+
|
192
|
+
https://figshare.com/articles/dataset/WT_HEK239T_chr6/25956034
|
193
|
+
|
194
|
+
It takes about 5-10 minutes to run the mapping (offtracker_config.py & snakemake) of example data with -t 8 and --cores 16 (2 parallel tasks)
|
195
|
+
|
196
|
+
## Signal visualization
|
197
|
+
|
198
|
+
After mapping, there will be 4 .bw files in the output folder:
|
199
|
+
```bash
|
200
|
+
Cas9_VEGFA2_chr6.fw.scaled.bw
|
201
|
+
|
202
|
+
Cas9_VEGFA2_chr6.rv.scaled.bw
|
203
|
+
|
204
|
+
WT_chr6.fw.scaled.bw
|
205
|
+
|
206
|
+
WT_chr6.rv.scaled.bw
|
207
|
+
```
|
208
|
+
These files can be visualized in genome browser like IGV:
|
209
|
+
|
210
|
+

|
211
|
+
|
212
|
+
The signal (coverage) for each sample is normalized to 1e7/total_reads. As only reads mapping to chr6 were extracted in the example data, the signal range is much higher than that of the whole genome samples.
|
213
|
+
|
214
|
+
## Whole genome off-target analysis
|
215
|
+
|
216
|
+
For analyzing the signals (offtracker_analysis.py), it takes about 3-5 minutes and outputs a file named "Offtracker_result_{outname}.csv"
|
217
|
+
|
218
|
+
After that, you can visualize the off-target sites with their genomic sequence (offtracker_plot.py) and get an image like this:
|
219
|
+
|
220
|
+

|
221
|
+
|
222
|
+
# Citation
|
223
|
+
|
224
|
+
If you use Tracking-seq or OFF-TRACKER in your research, please cite the following paper:
|
225
|
+
|
226
|
+
Zhu, M., Xu, R., Yuan, J., Wang, J. et al. Tracking-seq reveals the heterogeneity of off-target effects in CRISPR–Cas9-mediated genome editing. Nat Biotechnol (2024). https://doi.org/10.1038/s41587-024-02307-y
|
227
|
+
|
228
|
+
The signal visualization of .bw file here was generated by the Integrative Genomics Viewer (IGV) software. The signal visualization in the Tracking-seq article above was generated by either IGV or pyGenomeTracks:
|
229
|
+
|
230
|
+
Robinson, J., Thorvaldsdóttir, H., Winckler, W. et al. Integrative genomics viewer. Nat Biotechnol 29, 24–26 (2011). https://doi.org/10.1038/nbt.1754
|
231
|
+
|
232
|
+
Lopez-Delisle L, Rabbani L, Wolff J, Bhardwaj V, Backofen R, Grüning B, Ramírez F, Manke T. pyGenomeTracks: reproducible plots for multivariate genomic data sets. Bioinformatics. 2020 Aug 3:btaa692. doi: 10.1093/bioinformatics/btaa692.
|
233
|
+
|
@@ -0,0 +1,28 @@
|
|
1
|
+
LICENSE.txt
|
2
|
+
MANIFEST.in
|
3
|
+
README.md
|
4
|
+
setup.py
|
5
|
+
offtracker/X_offplot.py
|
6
|
+
offtracker/X_offtracker.py
|
7
|
+
offtracker/X_sequence.py
|
8
|
+
offtracker/__init__.py
|
9
|
+
offtracker/_version.py
|
10
|
+
offtracker.egg-info/PKG-INFO
|
11
|
+
offtracker.egg-info/SOURCES.txt
|
12
|
+
offtracker.egg-info/dependency_links.txt
|
13
|
+
offtracker.egg-info/requires.txt
|
14
|
+
offtracker.egg-info/top_level.txt
|
15
|
+
offtracker/snakefile/Snakefile_QC.smk
|
16
|
+
offtracker/snakefile/Snakefile_offtracker.smk
|
17
|
+
offtracker/utility/1.1_bed2fr.py
|
18
|
+
offtracker/utility/1.3_bdg_normalize_v4.0.py
|
19
|
+
offtracker/utility/bedGraphToBigWig
|
20
|
+
offtracker/utility/hg38.chrom.sizes
|
21
|
+
offtracker/utility/mm10.chrom.sizes
|
22
|
+
offtracker/utility/offtracker_blacklist_hg38.merged.bed
|
23
|
+
offtracker/utility/offtracker_blacklist_mm10.merged.bed
|
24
|
+
scripts/offtracker_analysis.py
|
25
|
+
scripts/offtracker_candidates.py
|
26
|
+
scripts/offtracker_config.py
|
27
|
+
scripts/offtracker_plot.py
|
28
|
+
scripts/offtracker_qc.py
|
@@ -26,6 +26,8 @@ def main():
|
|
26
26
|
parser.add_argument('--name' , type=str, required=True, help='custom name of the sgRNA' )
|
27
27
|
parser.add_argument('--exp' , type=str, default='all', nargs='+', help='A substring mark in the name of experimental samples. The default is to use all samples other than control' )
|
28
28
|
parser.add_argument('--control' , type=str, default='none', nargs='+', help='A substring mark in the name of control samples. The default is no control. "others" for all samples other than --exp.' )
|
29
|
+
parser.add_argument('--fdr' , type=int, default=0.05, help='FDR threshold for the final result. Default is 0.05.')
|
30
|
+
parser.add_argument('--score' , type=int, default=2, help='Track score threshold for the final result. Default is 2.')
|
29
31
|
parser.add_argument('--smooth' , type=int, default=1, help='Smooth strength for the signal.')
|
30
32
|
parser.add_argument('--window' , type=int, default=3, help='Window size for smoothing the signal.')
|
31
33
|
parser.add_argument('--binsize' , type=int, default=100, help='Window size for smoothing the signal.')
|
@@ -41,6 +43,7 @@ def main():
|
|
41
43
|
parser.add_argument('--overwrite' , action='store_true', help='Whether to overwrite existed dataframes.' )
|
42
44
|
parser.add_argument('--clean' , action='store_true', help='Whether to remove temp files')
|
43
45
|
|
46
|
+
|
44
47
|
args = parser.parse_args()
|
45
48
|
|
46
49
|
print(f'Runing offtracker verision: {offtracker.__version__}')
|
@@ -49,6 +52,8 @@ def main():
|
|
49
52
|
sgRNA_name = args.name
|
50
53
|
pattern_exp = args.exp
|
51
54
|
pattern_ctr = args.control
|
55
|
+
fdr_thresh = args.fdr
|
56
|
+
score_thresh = args.score
|
52
57
|
binsize = args.binsize
|
53
58
|
flank_max = args.flank_max
|
54
59
|
flank_regions = args.flank_regions
|
@@ -93,6 +98,8 @@ def main():
|
|
93
98
|
all_sample_files.extend( bdg_files )
|
94
99
|
all_sample_files = pd.Series(all_sample_files)
|
95
100
|
all_sample_names = pd.Series(all_sample_names)
|
101
|
+
print('all sample names in the folders:')
|
102
|
+
print(all_sample_names)
|
96
103
|
print('your string pattern for experimental groups: ', pattern_exp)
|
97
104
|
ctr_samples = []
|
98
105
|
if pattern_ctr == 'none':
|
@@ -155,8 +162,11 @@ def main():
|
|
155
162
|
df_bdg.columns = ['chr','start','end','residual']
|
156
163
|
# 将 df_bdg 按照染色体分组
|
157
164
|
sample_groups = df_bdg.groupby('chr')
|
165
|
+
# 2024.06.03. fix a bug that df_bdg has less chr than df_candidate
|
166
|
+
total_chr = df_bdg['chr'].unique()
|
167
|
+
df_candidate_sub_temp = df_candidate_sub[df_candidate_sub['chr'].isin(total_chr)]
|
158
168
|
# 将 df_candidate_sub 按照染色体分组
|
159
|
-
candidate_groups =
|
169
|
+
candidate_groups = df_candidate_sub_temp.groupby('chr')
|
160
170
|
|
161
171
|
# 定义一个空的列表,用于存储每个染色体的数据
|
162
172
|
chrom_list = []
|
@@ -234,7 +244,8 @@ def main():
|
|
234
244
|
df_score = pd.concat([df_score, df_exp, df_ctr], axis=1)
|
235
245
|
else:
|
236
246
|
df_score = pd.concat([df_score, df_exp], axis=1)
|
237
|
-
|
247
|
+
# 2024.06.03. 跑样例数据时,只有一个 chr6, 其他都是 nan, 不删除会导致后续计算出错
|
248
|
+
df_score = df_score.dropna().copy()
|
238
249
|
df_score.to_csv(output)
|
239
250
|
|
240
251
|
##########################
|
@@ -335,12 +346,16 @@ def main():
|
|
335
346
|
print('mean_score:{:.3f};std:{:.3f}'.format(mu,std))
|
336
347
|
# pv and fdr
|
337
348
|
df_result['pv'] = df_result[f'log2_track_score'].apply( lambda x: norm.sf(x,loc=mu,scale=std) )
|
338
|
-
df_result['pv'].clip(lower=1e-320
|
349
|
+
df_result['pv'] = df_result['pv'].clip(lower=1e-320)
|
339
350
|
df_result['fdr'] = offtracker.fdr(df_result['pv'])
|
340
351
|
df_result['rank'] = range(1,len(df_result)+1)
|
341
352
|
df_result.to_csv(output)
|
342
|
-
|
343
|
-
|
353
|
+
# 2024.06.03. 以防 fdr<=fdr_thresh 滤掉了 track_score>=2 的位点
|
354
|
+
bool_fdr = df_result['fdr']<=fdr_thresh
|
355
|
+
bool_score = df_result['track_score']>=score_thresh
|
356
|
+
# 2025.06.05. BE可能会形成单边信号,导致 track_score 为负数,也保留
|
357
|
+
bool_neg_score = df_result['track_score']<0
|
358
|
+
df_output = df_result[bool_fdr|bool_score|bool_neg_score].copy()
|
344
359
|
if pattern_ctr != 'none':
|
345
360
|
df_output = df_output[['target_location', 'best_strand','best_target','deletion','insertion','mismatch',
|
346
361
|
'exp_L_length', 'exp_R_length','ctr_L_length','ctr_R_length','L_length','R_length','signal_length',
|
@@ -0,0 +1,318 @@
|
|
1
|
+
#!/usr/bin/env python
|
2
|
+
# -*- coding: utf-8 -*-
|
3
|
+
|
4
|
+
# 2023.10.27. v2.0: 2.0以target_location midpoint为中心,因此取消 pct 计算
|
5
|
+
# 2023.12.06. v2.1: 2.1增加 cleavage_site 推测, 修正 deletion 错位, 以 cleavage_site 为中心
|
6
|
+
# 2025.04.25. 修正大小写问题
|
7
|
+
# 2025.06.11. 调整跳过已存在的candidates的代码顺序
|
8
|
+
|
9
|
+
import os,sys,re,time
|
10
|
+
from itertools import product, permutations
|
11
|
+
|
12
|
+
if sys.version_info < (3,0):
|
13
|
+
import platform
|
14
|
+
raise Exception(f'python3 is needed, while running {platform.python_version()} now')
|
15
|
+
|
16
|
+
import offtracker
|
17
|
+
import offtracker.X_sequence as xseq
|
18
|
+
script_dir = os.path.abspath(os.path.dirname(offtracker.__file__))
|
19
|
+
script_folder= os.path.join(script_dir, 'mapping')
|
20
|
+
|
21
|
+
import argparse
|
22
|
+
import pandas as pd
|
23
|
+
import pybedtools
|
24
|
+
import multiprocessing as mp
|
25
|
+
from Bio.Blast.Applications import NcbiblastnCommandline
|
26
|
+
|
27
|
+
def main():
|
28
|
+
parser = argparse.ArgumentParser()
|
29
|
+
parser.description='Generate candidate regions by sgRNA sequence'
|
30
|
+
parser.add_argument('--sgrna' , type=str, required=True, help='One sgRNA sequence without PAM' )
|
31
|
+
parser.add_argument('--pam' , type=str, required=True, help='The protospacer adjacent motif' )
|
32
|
+
parser.add_argument('--pam_location', type=str, default='downstream', help='Upstream or downstream, default is downstream (Cas9)' )
|
33
|
+
parser.add_argument('--name' , type=str, required=True, help='custom name of the sgRNA' )
|
34
|
+
parser.add_argument('-r','--ref' , type=str, required=True, help='The fasta file of reference genome')
|
35
|
+
parser.add_argument('-b','--blastdb', type=str, required=True, help='blast database')
|
36
|
+
parser.add_argument('-o','--outdir' , type=str, required=True, help='The output folder')
|
37
|
+
parser.add_argument('-g','--genome' , type=str, default='hg38', help='File of chromosome sizes, or "hg38", "mm10" ')
|
38
|
+
parser.add_argument('-t','--thread' , type=int, default=4, help='Number of threads for parallel computing')
|
39
|
+
parser.add_argument('--quick_mode' , action='store_true', help='BLAST faster but less candidates.')
|
40
|
+
|
41
|
+
args = parser.parse_args()
|
42
|
+
|
43
|
+
|
44
|
+
if (args.genome == 'hg38') or (args.genome == 'mm10'):
|
45
|
+
dir_chrom_sizes = os.path.join(script_folder, f'{args.genome}.chrom.sizes')
|
46
|
+
else:
|
47
|
+
dir_chrom_sizes = args.genome
|
48
|
+
|
49
|
+
sgRNA_name = args.name
|
50
|
+
sgRNA_seq = args.sgrna
|
51
|
+
PAM = args.pam
|
52
|
+
PAM_loc = args.pam_location.lower()
|
53
|
+
n_threads = args.thread
|
54
|
+
dir_output = args.outdir
|
55
|
+
if not os.path.exists(dir_output):
|
56
|
+
os.makedirs(dir_output)
|
57
|
+
dir_ref_fa = args.ref
|
58
|
+
blast_db = args.blastdb
|
59
|
+
quick_mode = args.quick_mode
|
60
|
+
|
61
|
+
# parameters for alignment
|
62
|
+
half_width = 100
|
63
|
+
pct_params = 1.0
|
64
|
+
frag_len= half_width*2
|
65
|
+
dir_df_candidate = os.path.join(dir_output, f'df_candidate_{sgRNA_name}.csv')
|
66
|
+
if os.path.isfile(dir_df_candidate):
|
67
|
+
print(f'{dir_df_candidate} exists, skipped.')
|
68
|
+
return 'skipped'
|
69
|
+
|
70
|
+
sgRNA_seq = sgRNA_seq.upper()
|
71
|
+
PAM = PAM.upper()
|
72
|
+
dir_sgRNA_fasta = os.path.join(dir_output, f'{sgRNA_name}_PAM.fasta')
|
73
|
+
dir_sgRNA_blast = os.path.join(dir_output, f'{sgRNA_name}_PAM.blast')
|
74
|
+
dir_sgRNA_bed = os.path.join(dir_output, f'{sgRNA_name}_PAM.bed')
|
75
|
+
|
76
|
+
if PAM_loc == 'downstream':
|
77
|
+
possible_sgRNA_PAM = list(product([sgRNA_seq],xseq.possible_seq(PAM)))
|
78
|
+
elif PAM_loc == 'upstream':
|
79
|
+
possible_sgRNA_PAM = list(product(xseq.possible_seq(PAM),[sgRNA_seq]))
|
80
|
+
else:
|
81
|
+
raise Exception(f'PAM_location should be "upstream" or "downstream", while {PAM_loc} is given.')
|
82
|
+
possible_sgRNA_PAM = [''.join(combination) for combination in possible_sgRNA_PAM]
|
83
|
+
n_seq = len(possible_sgRNA_PAM)
|
84
|
+
|
85
|
+
ID = pd.Series(['seq']*n_seq) + pd.Series(range(1,n_seq+1)).astype(str)
|
86
|
+
df_sgRNA_PAM = pd.DataFrame({'ID':ID,'sequence':possible_sgRNA_PAM})
|
87
|
+
xseq.write_fasta(df_sgRNA_PAM, dir_sgRNA_fasta)
|
88
|
+
|
89
|
+
#########
|
90
|
+
# BLAST #
|
91
|
+
#########
|
92
|
+
if os.path.isfile(dir_sgRNA_blast):
|
93
|
+
print(f'{dir_sgRNA_blast} exists, skipped.')
|
94
|
+
else:
|
95
|
+
if quick_mode:
|
96
|
+
print('Using quick mode for BLAST')
|
97
|
+
blastx_cline = NcbiblastnCommandline(query=dir_sgRNA_fasta, task='blastn-short',out=dir_sgRNA_blast,
|
98
|
+
db=blast_db, evalue=10000,outfmt=6, num_threads=n_threads,
|
99
|
+
gapopen=4, gapextend=2, reward=2, word_size=5, dust='no', soft_masking=False)
|
100
|
+
else:
|
101
|
+
blastx_cline = NcbiblastnCommandline(query=dir_sgRNA_fasta, task='blastn-short',out=dir_sgRNA_blast,
|
102
|
+
db=blast_db, evalue=10000,outfmt=6, num_threads=n_threads,
|
103
|
+
gapopen=4, gapextend=2, reward=2, word_size=4, dust='no', soft_masking=False)
|
104
|
+
print(f'BLAST for candidate off-target sites of {sgRNA_name}.')
|
105
|
+
blastx_cline()
|
106
|
+
print(f'BLAST finished.')
|
107
|
+
|
108
|
+
##############
|
109
|
+
# Output bed #
|
110
|
+
##############
|
111
|
+
|
112
|
+
blast_regions = pd.read_csv(dir_sgRNA_blast, sep='\t',header=None)
|
113
|
+
blast_regions.columns = ['query acc.','chr','% identity','alignment length','mismatches','gap opens','q. start','q. end','st','ed','evalue','bit score']
|
114
|
+
blast_regions = blast_regions[blast_regions.evalue<10000]
|
115
|
+
|
116
|
+
# reverse strand
|
117
|
+
blast_regions['reverse'] = (blast_regions['st']>blast_regions['ed']).astype(int)
|
118
|
+
blast_regions_f = blast_regions[blast_regions.reverse==0].copy()
|
119
|
+
blast_regions_r = blast_regions[blast_regions.reverse==1].copy()
|
120
|
+
temp = blast_regions_r['st'].copy()
|
121
|
+
blast_regions_r['st'] = blast_regions_r['ed']
|
122
|
+
blast_regions_r['ed'] = temp
|
123
|
+
blast_regions = pd.concat([blast_regions_f, blast_regions_r])
|
124
|
+
# sort and add location
|
125
|
+
blast_regions = blast_regions.sort_values('evalue').reset_index(drop=True)
|
126
|
+
blast_regions['location']=blast_regions['chr'].str[:] + ':' + blast_regions['st'].astype(str).str[:] + '-' + blast_regions['ed'].astype(str).str[:]
|
127
|
+
blast_regions = blast_regions.drop_duplicates(subset='location').copy()
|
128
|
+
|
129
|
+
# alignment length 筛选
|
130
|
+
len_sgRNA=len(sgRNA_seq)
|
131
|
+
min_len = len_sgRNA-8
|
132
|
+
blast_regions = blast_regions[blast_regions['alignment length']>=min_len].copy().reset_index(drop=True)
|
133
|
+
blast_regions = blast_regions.reindex(columns = ['chr', 'st', 'ed' , 'query acc.', '% identity', 'alignment length', 'mismatches',
|
134
|
+
'gap opens', 'q. start', 'q. end', 'evalue', 'bit score', 'reverse', 'location'] )
|
135
|
+
|
136
|
+
# 输出 bed 用于后续 alignment score 计算
|
137
|
+
blast_regions_bed = blast_regions[['chr','st','ed']]
|
138
|
+
xseq.write_bed(blast_regions_bed, dir_sgRNA_bed)
|
139
|
+
# 对 bed 进行排序但不合并
|
140
|
+
a = pybedtools.BedTool(dir_sgRNA_bed)
|
141
|
+
a.sort(g=dir_chrom_sizes).saveas( dir_sgRNA_bed )
|
142
|
+
print(f'Output {sgRNA_name}_PAM.bed')
|
143
|
+
|
144
|
+
|
145
|
+
###################
|
146
|
+
# alignment score #
|
147
|
+
###################
|
148
|
+
|
149
|
+
#########
|
150
|
+
# 读取 blast bed
|
151
|
+
#########
|
152
|
+
common_chr = pd.Series(['chr']*23).str[:] + pd.Series(range(23)).astype(str).str[:]
|
153
|
+
common_chr = pd.concat([common_chr, pd.Series(['chrX','chrY'])]).to_numpy()
|
154
|
+
|
155
|
+
bed_short = xseq.X_readbed(dir_sgRNA_bed)
|
156
|
+
bed_short = bed_short[bed_short['chr'].isin(common_chr)].copy()
|
157
|
+
bed_short['midpoint'] = ((bed_short['st'] + bed_short['ed'])/2).astype(int)
|
158
|
+
bed_short['st'] = bed_short['midpoint'] - half_width
|
159
|
+
bed_short['ed'] = bed_short['midpoint'] + half_width
|
160
|
+
bed_short.loc[bed_short['st']<0,'st']=0
|
161
|
+
bed_short = bed_short.drop_duplicates()
|
162
|
+
|
163
|
+
#########
|
164
|
+
# 根据 bed_f 位点 ed 前后 half_width 取基因组序列
|
165
|
+
#########
|
166
|
+
|
167
|
+
temp_bed = os.path.join(dir_output, 'temp.bed')
|
168
|
+
xseq.write_bed(bed_short.iloc[:,:3], temp_bed)
|
169
|
+
a = pybedtools.BedTool(temp_bed)
|
170
|
+
fasta = pybedtools.example_filename(dir_ref_fa)
|
171
|
+
a = a.sequence(fi=fasta)
|
172
|
+
with open(a.seqfn) as f:
|
173
|
+
fasta = {}
|
174
|
+
for line in f:
|
175
|
+
line = line.strip() # 去除末尾换行符
|
176
|
+
if line[0] == '>':
|
177
|
+
header = line[1:]
|
178
|
+
else:
|
179
|
+
sequence = line
|
180
|
+
fasta[header] = fasta.get(header,'') + sequence
|
181
|
+
|
182
|
+
# pybedtools 得到位置 chrA:X-Y 时,X数字会往左多1bp
|
183
|
+
|
184
|
+
#########
|
185
|
+
# local alignment
|
186
|
+
#########
|
187
|
+
# 生成 DNA_matrix
|
188
|
+
mismatch_score = 0.01
|
189
|
+
base_codes = list(xseq.ambiguous_nt.keys())
|
190
|
+
all_base_pairs = list(permutations(base_codes,2)) + [(x,x) for x in base_codes]
|
191
|
+
DNA_matrix = {x : xseq.get_base_score(*x, mismatch_score=mismatch_score) for x in all_base_pairs}
|
192
|
+
# 添加 PAM
|
193
|
+
if PAM_loc == 'downstream':
|
194
|
+
sgRNA_PAM_fw = sgRNA_seq + PAM
|
195
|
+
else:
|
196
|
+
sgRNA_PAM_fw = PAM + sgRNA_seq
|
197
|
+
|
198
|
+
sgRNA_PAM_rv = xseq.reverse_complement(sgRNA_PAM_fw)
|
199
|
+
|
200
|
+
list_args_fw=[]
|
201
|
+
list_args_rv=[]
|
202
|
+
for a_key, a_seq in fasta.items():
|
203
|
+
# 2025.04.25 修正大小写问题
|
204
|
+
a_seq = re.sub('[^ATCG]','N',a_seq.upper())
|
205
|
+
list_args_fw.append( [a_key, sgRNA_PAM_fw, a_seq, frag_len, DNA_matrix, mismatch_score] )
|
206
|
+
list_args_rv.append( [a_key, sgRNA_PAM_rv, a_seq, frag_len, DNA_matrix, mismatch_score] )
|
207
|
+
st = time.time()
|
208
|
+
with mp.Pool(n_threads) as p:
|
209
|
+
list_align_forward = p.starmap(xseq.sgRNA_alignment, list_args_fw)
|
210
|
+
ed = time.time()
|
211
|
+
print('align_forward:{:.2f}'.format(ed-st))
|
212
|
+
st = time.time()
|
213
|
+
with mp.Pool(n_threads) as p:
|
214
|
+
list_align_reverse = p.starmap(xseq.sgRNA_alignment, list_args_rv)
|
215
|
+
ed = time.time()
|
216
|
+
print('align_reverse:{:.2f}'.format(ed-st))
|
217
|
+
#
|
218
|
+
df_align_forward = pd.DataFrame(list_align_forward, columns= ['fw_score','fw_pct','fw_target','fw_location','fw_deletion','fw_insertion','fw_mismatch'])
|
219
|
+
df_align_reverse = pd.DataFrame(list_align_reverse, columns= ['rv_score','rv_pct','rv_target','rv_location','rv_deletion','rv_insertion','rv_mismatch'])
|
220
|
+
df_align_reverse['rv_target'] = df_align_reverse['rv_target'].apply(xseq.reverse_complement)
|
221
|
+
df_candidate = pd.concat([df_align_forward,df_align_reverse],axis=1)
|
222
|
+
df_candidate['location'] = fasta.keys()
|
223
|
+
df_candidate['alignment_score'] = df_candidate[['fw_score','rv_score']].max(axis=1)
|
224
|
+
#df_candidate['fw_score_2'] = df_candidate['fw_score']*(pct_params-df_candidate['fw_pct'].abs())
|
225
|
+
#df_candidate['rv_score_2'] = df_candidate['rv_score']*(pct_params-df_candidate['rv_pct'].abs())
|
226
|
+
#df_candidate['best_seq_score'] = df_candidate[['fw_score_2', 'rv_score_2']].max(axis=1)
|
227
|
+
#df_candidate['best_strand'] = df_candidate[['fw_score_2', 'rv_score_2']].idxmax(axis='columns').replace({'fw_score_2':'+', 'rv_score_2':'-'})
|
228
|
+
#df_candidate.loc[df_candidate['fw_score_2']==df_candidate['rv_score_2'],'best_strand']='equal_score'
|
229
|
+
df_candidate['best_seq_score'] = df_candidate[['fw_score', 'rv_score']].max(axis=1)
|
230
|
+
df_candidate['best_strand'] = df_candidate[['fw_score', 'rv_score']].idxmax(axis='columns').replace({'fw_score':'+', 'rv_score':'-'})
|
231
|
+
df_candidate.loc[df_candidate['fw_score']==df_candidate['rv_score'],'best_strand']='equal_score'
|
232
|
+
|
233
|
+
# GG check
|
234
|
+
# 2023.12.05 增加 cleavage_site 推测
|
235
|
+
list_best_target = []
|
236
|
+
list_best_location = []
|
237
|
+
list_cleavage_site = []
|
238
|
+
list_delete = []
|
239
|
+
list_insert = []
|
240
|
+
list_mismat = []
|
241
|
+
list_GG = []
|
242
|
+
for a_row in df_candidate.iterrows():
|
243
|
+
if a_row[1]['best_strand']=='+':
|
244
|
+
list_best_target.append(a_row[1]['fw_target'])
|
245
|
+
list_best_location.append(a_row[1]['fw_location'])
|
246
|
+
list_cleavage_site.append(int(a_row[1]['fw_location'].split('-')[1]) - 6)
|
247
|
+
list_delete.append(a_row[1]['fw_deletion'])
|
248
|
+
list_insert.append(a_row[1]['fw_insertion'])
|
249
|
+
list_mismat.append(a_row[1]['fw_mismatch'])
|
250
|
+
if a_row[1]['fw_target'][-2:]=='GG':
|
251
|
+
list_GG.append('OK')
|
252
|
+
else:
|
253
|
+
list_GG.append('NO')
|
254
|
+
elif a_row[1]['best_strand']=='-':
|
255
|
+
list_best_target.append(a_row[1]['rv_target'])
|
256
|
+
list_best_location.append(a_row[1]['rv_location'])
|
257
|
+
list_cleavage_site.append(int(a_row[1]['rv_location'].split('-')[0].split(':')[1]) + 5)
|
258
|
+
list_delete.append(a_row[1]['rv_deletion'])
|
259
|
+
list_insert.append(a_row[1]['rv_insertion'])
|
260
|
+
list_mismat.append(a_row[1]['rv_mismatch'])
|
261
|
+
if a_row[1]['rv_target'][-2:]=='GG':
|
262
|
+
list_GG.append('OK')
|
263
|
+
else:
|
264
|
+
list_GG.append('NO')
|
265
|
+
else:
|
266
|
+
if a_row[1]['fw_target'][-2:]=='GG':
|
267
|
+
list_best_target.append(a_row[1]['fw_target'])
|
268
|
+
list_best_location.append(a_row[1]['fw_location'])
|
269
|
+
list_cleavage_site.append(int(a_row[1]['fw_location'].split('-')[1]) - 6)
|
270
|
+
list_delete.append(a_row[1]['fw_deletion'])
|
271
|
+
list_insert.append(a_row[1]['fw_insertion'])
|
272
|
+
list_mismat.append(a_row[1]['fw_mismatch'])
|
273
|
+
list_GG.append('OK_same_score')
|
274
|
+
# 发现没有 GG 则看 RC
|
275
|
+
elif a_row[1]['rv_target'][-2:]=='GG':
|
276
|
+
list_best_target.append(a_row[1]['rv_target'])
|
277
|
+
list_best_location.append(a_row[1]['rv_location'])
|
278
|
+
list_cleavage_site.append(int(a_row[1]['rv_location'].split('-')[0].split(':')[1]) + 5)
|
279
|
+
list_delete.append(a_row[1]['rv_deletion'])
|
280
|
+
list_insert.append(a_row[1]['rv_insertion'])
|
281
|
+
list_mismat.append(a_row[1]['rv_mismatch'])
|
282
|
+
list_GG.append('OK_same_score')
|
283
|
+
else:
|
284
|
+
list_best_target.append(a_row[1]['fw_target'])
|
285
|
+
list_best_location.append(a_row[1]['fw_location'])
|
286
|
+
list_cleavage_site.append(int(a_row[1]['fw_location'].split('-')[1]) - 6)
|
287
|
+
list_delete.append(a_row[1]['fw_deletion'])
|
288
|
+
list_insert.append(a_row[1]['fw_insertion'])
|
289
|
+
list_mismat.append(a_row[1]['fw_mismatch'])
|
290
|
+
list_GG.append('NO_same_score')
|
291
|
+
# 记入 df_candidate
|
292
|
+
df_candidate['deletion'] = list_delete
|
293
|
+
df_candidate['insertion'] = list_insert
|
294
|
+
df_candidate['mismatch'] = list_mismat
|
295
|
+
df_candidate['GG'] = list_GG
|
296
|
+
df_candidate['best_target'] = list_best_target
|
297
|
+
df_candidate['target_location'] = list_best_location
|
298
|
+
df_candidate['cleavage_site'] = list_cleavage_site
|
299
|
+
|
300
|
+
# 2.0 更新一下格式
|
301
|
+
df_candidate = df_candidate.drop_duplicates(subset=['target_location']).reset_index(drop=True)
|
302
|
+
df_candidate = pd.concat([xseq.bedfmt(df_candidate['target_location']), df_candidate],axis=1)
|
303
|
+
# df_candidate['midpoint'] = ((df_candidate['ed'] + df_candidate['st'])/2).astype(int)
|
304
|
+
df_candidate = xseq.add_ID(df_candidate, midpoint='cleavage_site')
|
305
|
+
|
306
|
+
df_candidate.to_csv(dir_df_candidate)
|
307
|
+
print(f'Output df_candidate_{sgRNA_name}.csv')
|
308
|
+
os.remove(temp_bed)
|
309
|
+
|
310
|
+
return 'Done!'
|
311
|
+
|
312
|
+
|
313
|
+
if __name__ == '__main__' :
|
314
|
+
result = main()
|
315
|
+
print(result)
|
316
|
+
|
317
|
+
|
318
|
+
|