offtracker 2.13.0__zip → 2.13.2__zip
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {offtracker-2.13.0/offtracker.egg-info → offtracker-2.13.2}/PKG-INFO +1 -1
- {offtracker-2.13.0 → offtracker-2.13.2}/offtracker/X_offtracker.py +12 -0
- {offtracker-2.13.0 → offtracker-2.13.2}/offtracker/_version.py +3 -1
- {offtracker-2.13.0 → offtracker-2.13.2}/offtracker/snakefile/Snakefile_offtracker.smk +1 -1
- {offtracker-2.13.0 → offtracker-2.13.2/offtracker.egg-info}/PKG-INFO +1 -1
- {offtracker-2.13.0 → offtracker-2.13.2}/offtracker.egg-info/SOURCES.txt +1 -0
- {offtracker-2.13.0 → offtracker-2.13.2}/scripts/offtracker_analysis.py +45 -37
- offtracker-2.13.2/scripts/offtracker_correction.py +324 -0
- {offtracker-2.13.0 → offtracker-2.13.2}/setup.py +1 -0
- {offtracker-2.13.0 → offtracker-2.13.2}/LICENSE.txt +0 -0
- {offtracker-2.13.0 → offtracker-2.13.2}/MANIFEST.in +0 -0
- {offtracker-2.13.0 → offtracker-2.13.2}/README.md +0 -0
- {offtracker-2.13.0 → offtracker-2.13.2}/offtracker/X_offplot.py +0 -0
- {offtracker-2.13.0 → offtracker-2.13.2}/offtracker/X_sequence.py +0 -0
- {offtracker-2.13.0 → offtracker-2.13.2}/offtracker/__init__.py +0 -0
- {offtracker-2.13.0 → offtracker-2.13.2}/offtracker/snakefile/Snakefile_QC.smk +0 -0
- {offtracker-2.13.0 → offtracker-2.13.2}/offtracker/utility/1.1_bed2fr.py +0 -0
- {offtracker-2.13.0 → offtracker-2.13.2}/offtracker/utility/1.3_bdg_normalize_v4.0.py +0 -0
- {offtracker-2.13.0 → offtracker-2.13.2}/offtracker/utility/bedGraphToBigWig +0 -0
- {offtracker-2.13.0 → offtracker-2.13.2}/offtracker/utility/hg38.chrom.sizes +0 -0
- {offtracker-2.13.0 → offtracker-2.13.2}/offtracker/utility/mm10.chrom.sizes +0 -0
- {offtracker-2.13.0 → offtracker-2.13.2}/offtracker/utility/offtracker_blacklist_hg38.merged.bed +0 -0
- {offtracker-2.13.0 → offtracker-2.13.2}/offtracker/utility/offtracker_blacklist_mm10.merged.bed +0 -0
- {offtracker-2.13.0 → offtracker-2.13.2}/offtracker.egg-info/dependency_links.txt +0 -0
- {offtracker-2.13.0 → offtracker-2.13.2}/offtracker.egg-info/requires.txt +0 -0
- {offtracker-2.13.0 → offtracker-2.13.2}/offtracker.egg-info/top_level.txt +0 -0
- {offtracker-2.13.0 → offtracker-2.13.2}/scripts/offtracker_candidates.py +0 -0
- {offtracker-2.13.0 → offtracker-2.13.2}/scripts/offtracker_config.py +0 -0
- {offtracker-2.13.0 → offtracker-2.13.2}/scripts/offtracker_init.py +0 -0
- {offtracker-2.13.0 → offtracker-2.13.2}/scripts/offtracker_plot.py +0 -0
- {offtracker-2.13.0 → offtracker-2.13.2}/scripts/offtracker_qc.py +0 -0
- {offtracker-2.13.0 → offtracker-2.13.2}/setup.cfg +0 -0
|
@@ -608,6 +608,12 @@ def left_realign(dp_bdg_chr, loc_shift_left, ref_fasta, sgRNA_seq, PAM, PAM_loc,
|
|
|
608
608
|
flank_regions = [500]
|
|
609
609
|
signals = target_signal(dp_bdg_chr.to_pandas(), chrom, cleavage_site, flank_regions=flank_regions)
|
|
610
610
|
L_neg_1000 = signals[2]
|
|
611
|
+
R_neg_1000 = signals[5]
|
|
612
|
+
# 如果右侧范围变负数了,说明过头了
|
|
613
|
+
if R_neg_1000 < 0:
|
|
614
|
+
sr_candidate.loc['realign'] = 'fail'
|
|
615
|
+
return sr_candidate
|
|
616
|
+
|
|
611
617
|
# 计算左移后的 L_neg_1000,如果还是负数则迭代,最多迭代 10 次
|
|
612
618
|
if L_neg_1000 < 0:
|
|
613
619
|
st = sr_candidate['st']
|
|
@@ -632,7 +638,13 @@ def right_realign(dp_bdg_chr, loc_shift_right, ref_fasta, sgRNA_seq, PAM, PAM_lo
|
|
|
632
638
|
cleavage_site = sr_candidate['cleavage_site']
|
|
633
639
|
flank_regions = [500]
|
|
634
640
|
signals = target_signal(dp_bdg_chr.to_pandas(), chrom, cleavage_site, flank_regions=flank_regions)
|
|
641
|
+
L_neg_1000 = signals[2]
|
|
635
642
|
R_neg_1000 = signals[5]
|
|
643
|
+
# 如果左侧范围变负数了,说明过头了
|
|
644
|
+
if L_neg_1000 < 0:
|
|
645
|
+
sr_candidate.loc['realign'] = 'fail'
|
|
646
|
+
return sr_candidate
|
|
647
|
+
|
|
636
648
|
# 计算右移后的 R_neg_1000,如果还是负数则迭代,最多迭代 10 次
|
|
637
649
|
if R_neg_1000 < 0:
|
|
638
650
|
st = sr_candidate['st']
|
|
@@ -1,4 +1,4 @@
|
|
|
1
|
-
__version__ = "2.13.
|
|
1
|
+
__version__ = "2.13.2"
|
|
2
2
|
# 2023.08.11. v1.1.0 adding a option for not normalizing the bw file
|
|
3
3
|
# 2023.10.26. v1.9.0 prerelease for v2.0
|
|
4
4
|
# 2023.10.27. v2.0.0 大更新,还没微调
|
|
@@ -43,3 +43,5 @@ __version__ = "2.13.0"
|
|
|
43
43
|
# 2025.07.04. v2.12.2 新增 region_index 标记区域,用于更好的去重
|
|
44
44
|
# 2025.07.18. v2.12.3 新增QC自动避免重复读取 trimmed fastq files
|
|
45
45
|
# 2025.08.08. v2.13.0 测试 local realign 功能
|
|
46
|
+
# 2025.08.09. v2.13.1 测试 correction 功能
|
|
47
|
+
# 2025.08.09. v2.13.2 chromap + trim 参数
|
|
@@ -48,7 +48,7 @@ rule chromap:
|
|
|
48
48
|
temp(os.path.join(_output_dir,"{sample}.chromapx.bed"))
|
|
49
49
|
shell:
|
|
50
50
|
"""
|
|
51
|
-
chromap -l 3000 --low-mem --BED --remove-pcr-duplicates \
|
|
51
|
+
chromap -l 3000 --low-mem --BED --remove-pcr-duplicates --trim-adapters \
|
|
52
52
|
--min-read-length 10 --allocate-multi-mappings \
|
|
53
53
|
-x {params.index} -r {params.fasta} -t {threads} -1 {input.R1} -2 {input.R2} -o {output}
|
|
54
54
|
"""
|
|
@@ -24,6 +24,7 @@ offtracker/utility/offtracker_blacklist_mm10.merged.bed
|
|
|
24
24
|
scripts/offtracker_analysis.py
|
|
25
25
|
scripts/offtracker_candidates.py
|
|
26
26
|
scripts/offtracker_config.py
|
|
27
|
+
scripts/offtracker_correction.py
|
|
27
28
|
scripts/offtracker_init.py
|
|
28
29
|
scripts/offtracker_plot.py
|
|
29
30
|
scripts/offtracker_qc.py
|
|
@@ -22,24 +22,29 @@ def main():
|
|
|
22
22
|
parser = argparse.ArgumentParser()
|
|
23
23
|
parser.description='Analyze the Tracking-seq data.'
|
|
24
24
|
parser.add_argument('-f','--folder' , type=str, required=True, nargs='+', help='Directory of the data folder.' )
|
|
25
|
-
parser.add_argument('--seqfolder' , type=str,
|
|
25
|
+
parser.add_argument('--seqfolder' , type=str, default ='none', help='folder containing df_candidate created by offtracker_cadidates.py.')
|
|
26
26
|
parser.add_argument('--name' , type=str, required=True, help='custom name of the sgRNA' )
|
|
27
27
|
parser.add_argument('--exp' , type=str, default='all', nargs='+', help='A substring mark in the name of experimental samples. The default is to use all samples other than control' )
|
|
28
28
|
parser.add_argument('--control' , type=str, default='none', nargs='+', help='A substring mark in the name of control samples. The default is no control. "others" for all samples other than --exp.' )
|
|
29
|
-
parser.add_argument('--fdr' , type=float, default=0.05,
|
|
30
|
-
parser.add_argument('--score' , type=float, default=1.9,
|
|
29
|
+
parser.add_argument('--fdr' , type=float, default=0.05, help='FDR threshold for the final result. Default is 0.05.')
|
|
30
|
+
parser.add_argument('--score' , type=float, default=1.9, help='Track score threshold for the final result. Default is 1.9.')
|
|
31
31
|
parser.add_argument('--smooth' , type=int, default=1, help='Smooth strength for the signal.')
|
|
32
32
|
parser.add_argument('--window' , type=int, default=3, help='Window size for smoothing the signal.')
|
|
33
33
|
parser.add_argument('--binsize' , type=int, default=100, help='Window size for smoothing the signal.')
|
|
34
34
|
parser.add_argument('--flank_max' , type=int, default=100000, help='Maximun flanking distance from the candidate site.')
|
|
35
35
|
parser.add_argument('--flank_regions', type=int, default=[1000,2000,3000,5000], nargs='+',help='flanking regions for calculating signal.')
|
|
36
36
|
parser.add_argument('--SeqScorePower', type=float, default=4, help='The seq score power' )
|
|
37
|
-
parser.add_argument('--CtrClip' , type=float, default=-0.5,
|
|
37
|
+
parser.add_argument('--CtrClip' , type=float, default=-0.5, help='The lower clip for control samples' )
|
|
38
38
|
parser.add_argument('-t','--thread' , type=int, default=4, help='Number of threads for parallel computing')
|
|
39
39
|
parser.add_argument('-g','--genome' , type=str, default='hg38', help='File of chromosome sizes, or "hg38", "mm10" ')
|
|
40
40
|
parser.add_argument('-o','--outdir' , type=str, default='first', help='The output folder. Default is the first folder of --folder' )
|
|
41
41
|
parser.add_argument('--outname' , type=str, default='same', help='The suffix of output files. Default is the same --exp' )
|
|
42
42
|
parser.add_argument('--signal_only' , action='store_true', help='A developer option: stop before group analysis. ' )
|
|
43
|
+
# for offtracker_correction
|
|
44
|
+
parser.add_argument('--check_loc' , action='store_true', help='New in v2.13, for other scripts. Do not use this option. ' )
|
|
45
|
+
parser.add_argument('--seqfile' , type=str, default='none', help='Assign a specific df_candidate file.')
|
|
46
|
+
|
|
47
|
+
# other parameters
|
|
43
48
|
# parser.add_argument('--individual_results', action='store_true', help='When multiple samples meet the exp pattern, only one merged result is generated.\n' \
|
|
44
49
|
# 'Set --individual_results to additionally output the individual result of each exp sample. ' )
|
|
45
50
|
parser.add_argument('--overwrite' , action='store_true', help='Whether to overwrite existed dataframes.' )
|
|
@@ -79,7 +84,12 @@ def main():
|
|
|
79
84
|
|
|
80
85
|
# load df_candidate
|
|
81
86
|
try:
|
|
82
|
-
|
|
87
|
+
if args.seqfile != 'none':
|
|
88
|
+
df_candidate = pl.read_csv(args.seqfile).to_pandas()
|
|
89
|
+
elif args.seqfolder != 'none':
|
|
90
|
+
df_candidate = pl.read_csv(os.path.join(args.seqfolder,f'df_candidate_{sgRNA_name}.csv')).to_pandas()
|
|
91
|
+
else:
|
|
92
|
+
raise ValueError('Please provide --seqfolder or --seqfile')
|
|
83
93
|
df_candidate.index = df_candidate['target_location']
|
|
84
94
|
df_candidate_brief = df_candidate[['chr','st','ed','best_strand','best_target','best_seq_score',
|
|
85
95
|
'deletion', 'insertion','mismatch', 'GG',
|
|
@@ -160,8 +170,11 @@ def main():
|
|
|
160
170
|
if (os.path.isfile(output))&(not args.overwrite):
|
|
161
171
|
print(output, 'exists, skipped')
|
|
162
172
|
continue
|
|
163
|
-
|
|
164
|
-
df_bdg
|
|
173
|
+
# 2025.08.09. 改用 pl 读取加速
|
|
174
|
+
df_bdg = pl.read_csv(a_file, separator='\t', has_header=False,
|
|
175
|
+
schema_overrides={'chr':pl.String,'start':pl.Int32,
|
|
176
|
+
'end':pl.Int32,'residual':pl.Float32}).to_pandas() # xseq.read_bed(a_file)
|
|
177
|
+
# df_bdg.columns = ['chr','start','end','residual']
|
|
165
178
|
# 将 df_bdg 按照染色体分组
|
|
166
179
|
sample_groups = df_bdg.groupby('chr')
|
|
167
180
|
# 2024.06.03. fix a bug that df_bdg has less chr than df_candidate
|
|
@@ -308,7 +321,7 @@ def main():
|
|
|
308
321
|
# 2025.07.06 更新去重方式
|
|
309
322
|
df_result = df_score.drop_duplicates(subset=['region_index'], keep='first').copy()
|
|
310
323
|
|
|
311
|
-
#
|
|
324
|
+
# 标准化分布,2025.08.09
|
|
312
325
|
target_std=0.15
|
|
313
326
|
n_outliers = int(np.ceil(len(df_result)*0.01))
|
|
314
327
|
score_bkg = df_result['raw_score'][n_outliers:-n_outliers]
|
|
@@ -317,7 +330,7 @@ def main():
|
|
|
317
330
|
df_result['track_score'] = (df_result['raw_score'] - mean_score_bkg) / std_score_bkg
|
|
318
331
|
df_result['track_score'] = df_result['track_score']*target_std + 1
|
|
319
332
|
df_result = df_result.sort_values(by='track_score', ascending=False)
|
|
320
|
-
df_result['log2_track_score'] = np.log2(df_result['track_score'].clip(lower=0.5))
|
|
333
|
+
df_result['log2_track_score'] = np.log2(df_result['track_score'].clip(lower=0.5))
|
|
321
334
|
|
|
322
335
|
# 单边信号周围有更高分的,去掉
|
|
323
336
|
# v2.1 后 cols_L, cols_R 要手动
|
|
@@ -362,35 +375,30 @@ def main():
|
|
|
362
375
|
df_result['rank'] = range(1,len(df_result)+1)
|
|
363
376
|
df_result.to_csv(output)
|
|
364
377
|
|
|
365
|
-
|
|
366
|
-
|
|
367
|
-
|
|
368
|
-
|
|
369
|
-
|
|
370
|
-
|
|
371
|
-
|
|
372
|
-
|
|
373
|
-
|
|
374
|
-
|
|
375
|
-
|
|
376
|
-
|
|
377
|
-
|
|
378
|
-
|
|
379
|
-
|
|
380
|
-
|
|
381
|
-
|
|
382
|
-
|
|
383
|
-
|
|
384
|
-
|
|
385
|
-
|
|
386
|
-
|
|
387
|
-
|
|
388
|
-
# 2025.08.08. 增加对阳性位点的 target_location 重比对功能,避免 blast 比对后的 realign 在更大范围内的存在不准确的情况
|
|
389
|
-
|
|
390
|
-
|
|
391
|
-
|
|
378
|
+
if not args.check_loc:
|
|
379
|
+
output = f'Offtracker_result_{outname}.csv'
|
|
380
|
+
# 2024.06.03. 以防 fdr<=fdr_thresh 滤掉了 track_score>=2 的位点
|
|
381
|
+
bool_fdr = df_result['fdr']<=fdr_thresh
|
|
382
|
+
bool_score = df_result['track_score']>=score_thresh
|
|
383
|
+
# 2025.06.05. BE可能会形成单边信号,但是很少见,如果 control 用的是别的 sgRNA 的样本,对应脱靶位置附近一般就是负数
|
|
384
|
+
# bool_neg_score = df_result['track_score']< -1
|
|
385
|
+
df_output = df_result[bool_fdr|bool_score].copy()
|
|
386
|
+
if pattern_ctr != 'none':
|
|
387
|
+
df_output = df_output[['target_location', 'best_strand','best_target','deletion','insertion','mismatch',
|
|
388
|
+
'exp_L_length', 'exp_R_length','ctr_L_length','ctr_R_length','L_length','R_length','signal_length',
|
|
389
|
+
'norm_best_seq_score','track_score', 'log2_track_score','fdr','rank']]
|
|
390
|
+
df_output.columns = ['target_location', 'strand', 'target', 'deletion', 'insertion', 'mismatch',
|
|
391
|
+
'exp_L_length', 'exp_R_length','ctr_L_length','ctr_R_length','L_length','R_length','signal_length',
|
|
392
|
+
'seq_score', 'track_score', 'log2_track_score','FDR', 'rank']
|
|
393
|
+
else:
|
|
394
|
+
df_output = df_output[['target_location', 'best_strand','best_target','deletion','insertion','mismatch',
|
|
395
|
+
'L_length', 'R_length','signal_length',
|
|
396
|
+
'norm_best_seq_score','track_score', 'log2_track_score','fdr','rank']]
|
|
397
|
+
df_output.columns = ['target_location', 'strand', 'target', 'deletion', 'insertion', 'mismatch',
|
|
398
|
+
'L_length', 'R_length','signal_length',
|
|
399
|
+
'seq_score', 'track_score', 'log2_track_score','FDR', 'rank']
|
|
392
400
|
|
|
393
|
-
|
|
401
|
+
df_output.to_csv(f'Offtracker_result_{outname}.csv', index=False)
|
|
394
402
|
|
|
395
403
|
if args.clean:
|
|
396
404
|
shutil.rmtree('./temp')
|
|
@@ -0,0 +1,324 @@
|
|
|
1
|
+
#!/usr/bin/env python
|
|
2
|
+
# -*- coding: utf-8 -*-
|
|
3
|
+
|
|
4
|
+
import polars as pl
|
|
5
|
+
import pandas as pd
|
|
6
|
+
import numpy as np
|
|
7
|
+
import offtracker
|
|
8
|
+
import argparse
|
|
9
|
+
import os, glob
|
|
10
|
+
import shlex, subprocess
|
|
11
|
+
from scipy.stats import norm
|
|
12
|
+
|
|
13
|
+
def main():
|
|
14
|
+
parser = argparse.ArgumentParser()
|
|
15
|
+
parser.description='New function in 2026. Check and correct potential incorrect target locations.'
|
|
16
|
+
parser.add_argument('-f','--folder' , type=str, required=True, nargs='+', help='Directory of the data folder.' )
|
|
17
|
+
parser.add_argument('--name' , type=str, required=True, help='custom name of the sgRNA' )
|
|
18
|
+
parser.add_argument('--exp' , type=str, default='all', nargs='+', help='A substring mark in the name of experimental samples. The default is to use all samples other than control' )
|
|
19
|
+
parser.add_argument('--control' , type=str, default='none', nargs='+', help='A substring mark in the name of control samples. The default is no control. "others" for all samples other than --exp.' )
|
|
20
|
+
parser.add_argument('--fdr' , type=float, default=0.05, help='FDR threshold for the final result. Default is 0.05.')
|
|
21
|
+
parser.add_argument('--score' , type=float, default=1.9, help='Track score threshold for the final result. Default is 1.9.')
|
|
22
|
+
parser.add_argument('--smooth' , type=int, default=1, help='Smooth strength for the signal.')
|
|
23
|
+
parser.add_argument('--window' , type=int, default=3, help='Window size for smoothing the signal.')
|
|
24
|
+
parser.add_argument('--binsize' , type=int, default=100, help='Window size for smoothing the signal.')
|
|
25
|
+
parser.add_argument('--flank_max' , type=int, default=100000, help='Maximun flanking distance from the candidate site.')
|
|
26
|
+
parser.add_argument('--flank_regions', type=int, default=[1000,2000,3000,5000], nargs='+',help='flanking regions for calculating signal.')
|
|
27
|
+
parser.add_argument('--SeqScorePower', type=float, default=4, help='The seq score power' )
|
|
28
|
+
parser.add_argument('--CtrClip' , type=float, default=-0.5, help='The lower clip for control samples' )
|
|
29
|
+
parser.add_argument('-t','--thread' , type=int, default=4, help='Number of threads for parallel computing')
|
|
30
|
+
parser.add_argument('-g','--genome' , type=str, default='hg38', help='File of chromosome sizes, or "hg38", "mm10" ')
|
|
31
|
+
parser.add_argument('-o','--outdir' , type=str, default='first', help='The output folder. Default is the first folder of --folder' )
|
|
32
|
+
parser.add_argument('--outname' , type=str, default='same', help='The suffix of output files. Default is the same --exp' )
|
|
33
|
+
# new argument
|
|
34
|
+
parser.add_argument('-r','--ref' , type=str, required=True, help='The fasta file of reference genome')
|
|
35
|
+
parser.add_argument('--sgrna' , type=str, required=True, help='One sgRNA sequence without PAM' )
|
|
36
|
+
parser.add_argument('--pam' , type=str, required=True, help='The protospacer adjacent motif' )
|
|
37
|
+
parser.add_argument('--pam_location', type=str, default='downstream', help='Upstream or downstream, default is downstream (Cas9)' )
|
|
38
|
+
# not used
|
|
39
|
+
parser.add_argument('--seqfolder' , type=str, default='none', help='Actually not used in this script.Only in case you forget to remove this argument.')
|
|
40
|
+
|
|
41
|
+
args = parser.parse_args()
|
|
42
|
+
# 2025.08.08. 增加对阳性位点的 target_location 重比对功能,避免 blast 比对后的 realign 在更大范围内的存在不准确的情况
|
|
43
|
+
# 实验性功能,如果 exp 有多个样本的话目前只取第一个 bdg 来分析
|
|
44
|
+
|
|
45
|
+
##########################
|
|
46
|
+
## parameter initiation ##
|
|
47
|
+
##########################
|
|
48
|
+
|
|
49
|
+
folders = args.folder
|
|
50
|
+
sgRNA_name = args.name + '_loc_correction'
|
|
51
|
+
pattern_exp = args.exp
|
|
52
|
+
pattern_ctr = args.control
|
|
53
|
+
fdr_thresh = args.fdr
|
|
54
|
+
score_thresh = args.score
|
|
55
|
+
binsize = args.binsize
|
|
56
|
+
flank_max = args.flank_max
|
|
57
|
+
flank_regions = args.flank_regions # 如果 analysis 时修改了这个参数没有写 1000 的话会出bug,暂时懒得改了
|
|
58
|
+
smooth_times = args.smooth
|
|
59
|
+
window_size = args.window
|
|
60
|
+
seq_score_power = args.SeqScorePower
|
|
61
|
+
ctr_clip = args.CtrClip
|
|
62
|
+
|
|
63
|
+
|
|
64
|
+
if args.outname == 'same':
|
|
65
|
+
if isinstance(pattern_exp, list):
|
|
66
|
+
outname = '_'.join(pattern_exp)
|
|
67
|
+
else:
|
|
68
|
+
outname = pattern_exp
|
|
69
|
+
else:
|
|
70
|
+
outname = args.outname
|
|
71
|
+
|
|
72
|
+
outdir = args.outdir
|
|
73
|
+
if outdir == 'first':
|
|
74
|
+
outdir = folders[0]
|
|
75
|
+
os.chdir(outdir)
|
|
76
|
+
# out temp folder
|
|
77
|
+
if not os.path.exists( os.path.join(outdir,'temp') ):
|
|
78
|
+
os.makedirs(os.path.join(outdir,'temp'))
|
|
79
|
+
# data temp folder
|
|
80
|
+
for a_folder in folders:
|
|
81
|
+
temp_dir = os.path.join(a_folder, 'temp')
|
|
82
|
+
if not os.path.exists( temp_dir ):
|
|
83
|
+
os.makedirs(temp_dir)
|
|
84
|
+
|
|
85
|
+
##################
|
|
86
|
+
## glob samples ##
|
|
87
|
+
##################
|
|
88
|
+
all_sample_names = []
|
|
89
|
+
all_sample_files = []
|
|
90
|
+
for a_folder in folders:
|
|
91
|
+
bdg_files = pd.Series(glob.glob(os.path.join( a_folder, '*.add.bdg' ))).sort_values().reset_index(drop=True)
|
|
92
|
+
sample_names = bdg_files.apply(os.path.basename).str.extract(r'(.*)\.\d+\.add\.bdg',expand=False)
|
|
93
|
+
all_sample_names.extend( sample_names )
|
|
94
|
+
all_sample_files.extend( bdg_files )
|
|
95
|
+
all_sample_files = pd.Series(all_sample_files)
|
|
96
|
+
all_sample_names = pd.Series(all_sample_names)
|
|
97
|
+
print('all sample names in the folders:')
|
|
98
|
+
print(all_sample_names)
|
|
99
|
+
print('your string pattern for experimental groups: ', pattern_exp)
|
|
100
|
+
ctr_samples = []
|
|
101
|
+
if pattern_ctr == 'none':
|
|
102
|
+
if pattern_exp == 'all':
|
|
103
|
+
exp_samples = list( all_sample_names )
|
|
104
|
+
else:
|
|
105
|
+
exp_samples = []
|
|
106
|
+
for a_mark in pattern_exp:
|
|
107
|
+
exp_samples.extend( list( all_sample_names[all_sample_names.str.contains(a_mark)] ) )
|
|
108
|
+
elif pattern_ctr == 'others':
|
|
109
|
+
if pattern_exp == 'all':
|
|
110
|
+
exp_samples = list( all_sample_names )
|
|
111
|
+
else:
|
|
112
|
+
exp_samples = []
|
|
113
|
+
for a_mark in pattern_exp:
|
|
114
|
+
exp_samples.extend( list( all_sample_names[all_sample_names.str.contains(a_mark)] ) )
|
|
115
|
+
ctr_samples = list( all_sample_names[~all_sample_names.isin(exp_samples)] )
|
|
116
|
+
else:
|
|
117
|
+
for a_mark in pattern_ctr:
|
|
118
|
+
ctr_samples.extend( list( all_sample_names[all_sample_names.str.contains(a_mark)] ) )
|
|
119
|
+
if pattern_exp == 'all':
|
|
120
|
+
exp_samples = list( all_sample_names[~all_sample_names.isin(ctr_samples)] )
|
|
121
|
+
else:
|
|
122
|
+
exp_samples = []
|
|
123
|
+
for a_mark in pattern_exp:
|
|
124
|
+
exp_samples.extend( list( all_sample_names[all_sample_names.str.contains(a_mark)] ) )
|
|
125
|
+
n_exp = len(exp_samples)
|
|
126
|
+
n_ctr = len(ctr_samples)
|
|
127
|
+
print(f'Experimental group has {n_exp} samples:\n{exp_samples}')
|
|
128
|
+
print(f'Control group has {n_ctr} samples:\n{ctr_samples}')
|
|
129
|
+
|
|
130
|
+
# mark 错误时
|
|
131
|
+
assert n_exp > 0, 'No experimental sample is found. Please check the name pattern.'
|
|
132
|
+
if (n_ctr==0)&(pattern_ctr != 'none'):
|
|
133
|
+
print('Name pattern for control sample(s) was given, but no file meet the pattern.')
|
|
134
|
+
return 'Program terminated'
|
|
135
|
+
|
|
136
|
+
# summarize samples
|
|
137
|
+
bool_exp = all_sample_names.isin(exp_samples)
|
|
138
|
+
bool_ctr = all_sample_names.isin(ctr_samples)
|
|
139
|
+
exp_sample_files = all_sample_files[bool_exp]
|
|
140
|
+
ctr_sample_files = all_sample_files[bool_ctr]
|
|
141
|
+
exp_sample_names = all_sample_names[bool_exp]
|
|
142
|
+
ctr_sample_names = all_sample_names[bool_ctr]
|
|
143
|
+
# selected_sample_files = pd.concat([exp_sample_files,ctr_sample_files])
|
|
144
|
+
# selected_sample_names = pd.concat([exp_sample_names,ctr_sample_names]) # no use
|
|
145
|
+
|
|
146
|
+
|
|
147
|
+
|
|
148
|
+
####################
|
|
149
|
+
## run correction ##
|
|
150
|
+
####################
|
|
151
|
+
|
|
152
|
+
# new parameters
|
|
153
|
+
ref_fasta = args.ref
|
|
154
|
+
sgRNA_seq = args.sgrna
|
|
155
|
+
PAM = args.pam
|
|
156
|
+
PAM_loc = args.pam_location
|
|
157
|
+
# read result
|
|
158
|
+
dp_result = pl.read_csv(f'./temp/df_result_{outname}.csv')
|
|
159
|
+
# negative for next section
|
|
160
|
+
bool_fdr_bkg = dp_result['fdr']>fdr_thresh
|
|
161
|
+
bool_score_bkg = dp_result['track_score']<score_thresh
|
|
162
|
+
dp_result_bkg = dp_result.filter(bool_fdr_bkg & bool_score_bkg)
|
|
163
|
+
# positive
|
|
164
|
+
bool_fdr = pl.col('fdr')<=fdr_thresh
|
|
165
|
+
bool_score = pl.col('track_score')>=score_thresh
|
|
166
|
+
dp_result = dp_result.filter(bool_fdr & bool_score)
|
|
167
|
+
# bdg
|
|
168
|
+
dp_bdg = pl.read_csv(exp_sample_files.iloc[0], separator='\t', has_header=False,
|
|
169
|
+
schema_overrides={'chr':pl.String,'start':pl.Int32,'end':pl.Int32,'residual':pl.Float32})
|
|
170
|
+
# check and realign
|
|
171
|
+
bool_left_neg=(dp_result['exp_L_neg_1000']<-5)&(dp_result['exp_R_neg_1000']==0)
|
|
172
|
+
bool_right_neg=(dp_result['exp_R_neg_1000']<-5)&(dp_result['exp_L_neg_1000']==0)
|
|
173
|
+
list_good_result = []
|
|
174
|
+
list_bad_left = []
|
|
175
|
+
list_bad_right = []
|
|
176
|
+
n_left_for_correct = 0
|
|
177
|
+
n_right_for_correct = 0
|
|
178
|
+
for a_left_bool, a_right_bool, a_row in zip(bool_left_neg, bool_right_neg, dp_result.iter_rows(named=True)):
|
|
179
|
+
if a_left_bool & a_right_bool:
|
|
180
|
+
raise ValueError('abnormal on both left and right')
|
|
181
|
+
if a_left_bool:
|
|
182
|
+
n_left_for_correct += 1
|
|
183
|
+
loc_shift_left = a_row['chr'] + ':' + str(a_row['st']-1000) + '-' + str(a_row['ed']-20)
|
|
184
|
+
region_index = a_row['region_index']
|
|
185
|
+
dp_bdg_chr = dp_bdg.filter(pl.col('chr') == a_row['chr'])
|
|
186
|
+
sr_candidate = offtracker.left_realign(dp_bdg_chr, loc_shift_left, ref_fasta, sgRNA_seq, PAM, PAM_loc, n_iter=0)
|
|
187
|
+
sr_candidate.loc['region_index'] = region_index
|
|
188
|
+
list_bad_left.append(sr_candidate)
|
|
189
|
+
elif a_right_bool:
|
|
190
|
+
n_right_for_correct += 1
|
|
191
|
+
loc_shift_right = a_row['chr'] + ':' + str(a_row['st']+20) + '-' + str(a_row['ed']+1000)
|
|
192
|
+
region_index = a_row['region_index']
|
|
193
|
+
dp_bdg_chr = dp_bdg.filter(pl.col('chr') == a_row['chr'])
|
|
194
|
+
sr_candidate = offtracker.right_realign(dp_bdg_chr, loc_shift_right, ref_fasta, sgRNA_seq, PAM, PAM_loc, n_iter=0)
|
|
195
|
+
sr_candidate.loc['region_index'] = region_index
|
|
196
|
+
list_bad_right.append(sr_candidate)
|
|
197
|
+
else:
|
|
198
|
+
list_good_result.append(a_row)
|
|
199
|
+
dp_result_good = pl.DataFrame(list_good_result)
|
|
200
|
+
df_cand_left = pd.DataFrame(list_bad_left)
|
|
201
|
+
df_cand_right = pd.DataFrame(list_bad_right)
|
|
202
|
+
df_cand_realign = pd.concat([df_cand_left, df_cand_right])
|
|
203
|
+
if len(df_cand_realign) == 0:
|
|
204
|
+
print('No candidate is found for realignment.')
|
|
205
|
+
return 'finished'
|
|
206
|
+
|
|
207
|
+
# 情况判断
|
|
208
|
+
n_success_realign = sum(df_cand_realign['realign']=='success')
|
|
209
|
+
n_fail_realign = sum(df_cand_realign['realign']!='success')
|
|
210
|
+
if (n_success_realign == 0) and (n_fail_realign > 0):
|
|
211
|
+
print(f'{n_fail_realign} candidates are found for realignment, but all failed.')
|
|
212
|
+
return 'finished'
|
|
213
|
+
elif (n_success_realign > 0) and (n_fail_realign > 0):
|
|
214
|
+
print(f'{n_success_realign} candidates succeeded, and {n_fail_realign} candidates failed.')
|
|
215
|
+
else:
|
|
216
|
+
print(f'{n_success_realign} candidates succeeded.')
|
|
217
|
+
|
|
218
|
+
df_cand_realign = df_cand_realign[df_cand_realign['realign']=='success']
|
|
219
|
+
seqfile = rf'correction_df_candidate_{outname}_realign.csv'
|
|
220
|
+
df_cand_realign.to_csv(seqfile)
|
|
221
|
+
|
|
222
|
+
# run offtracker_analysis with check_loc mode
|
|
223
|
+
running_log = rf'correction_analysis_{outname}.log'
|
|
224
|
+
# list 转空格分割参数
|
|
225
|
+
if isinstance(pattern_exp, list):
|
|
226
|
+
param_pattern_exp = ' '.join(pattern_exp)
|
|
227
|
+
else:
|
|
228
|
+
param_pattern_exp = pattern_exp
|
|
229
|
+
if isinstance(pattern_ctr, list):
|
|
230
|
+
param_pattern_ctr = ' '.join(pattern_ctr)
|
|
231
|
+
else:
|
|
232
|
+
param_pattern_ctr = pattern_ctr
|
|
233
|
+
if isinstance(flank_regions, list):
|
|
234
|
+
param_flank_regions = ' '.join([str(x) for x in flank_regions])
|
|
235
|
+
else:
|
|
236
|
+
param_flank_regions = flank_regions
|
|
237
|
+
if isinstance(folders, list):
|
|
238
|
+
param_folders = ' '.join([str(x) for x in folders])
|
|
239
|
+
else:
|
|
240
|
+
param_folders = folders
|
|
241
|
+
|
|
242
|
+
with open(running_log, "w+") as running_log:
|
|
243
|
+
command = f'offtracker_analysis.py -t {args.thread} -g {args.genome} --seqfile {seqfile} --name {sgRNA_name} \
|
|
244
|
+
--exp {param_pattern_exp} --control {param_pattern_ctr} --outname {outname}_loc_correction -f {param_folders} -o {outdir} \
|
|
245
|
+
--fdr {fdr_thresh} --window {window_size} --smooth {smooth_times} --SeqScorePower {seq_score_power} \
|
|
246
|
+
--score {score_thresh} --binsize {binsize} --flank_max {flank_max} --flank_regions {param_flank_regions} --CtrClip {ctr_clip} \
|
|
247
|
+
--check_loc'
|
|
248
|
+
command2 = shlex.split('bash -c "{}"'.format(command))
|
|
249
|
+
process_1 = subprocess.Popen(command2, stdout=running_log, stderr=subprocess.STDOUT )
|
|
250
|
+
process_1.wait(timeout=100000)
|
|
251
|
+
retc = process_1.returncode
|
|
252
|
+
if retc==0:
|
|
253
|
+
print((f'correction_analysis {outname} is done!'))
|
|
254
|
+
else:
|
|
255
|
+
print((f'correction_analysis {outname} is failed!'))
|
|
256
|
+
|
|
257
|
+
|
|
258
|
+
#######################
|
|
259
|
+
## recalculate score ##
|
|
260
|
+
#######################
|
|
261
|
+
|
|
262
|
+
dp_result_realign = pl.read_csv(f'./temp/df_result_{outname}_loc_correction.csv')
|
|
263
|
+
|
|
264
|
+
# 兼容旧版输出列名
|
|
265
|
+
list_col = dp_result_realign.columns[:-5]
|
|
266
|
+
dp_result_new = pl.concat([dp_result_realign[list_col], dp_result_good[list_col], dp_result_bkg[list_col]])
|
|
267
|
+
|
|
268
|
+
# 标准化分布, polars 版
|
|
269
|
+
target_std=0.15
|
|
270
|
+
n_outliers = int(np.ceil(len(dp_result_new)*0.01))
|
|
271
|
+
score_bkg = dp_result_new['raw_score'][n_outliers:-n_outliers]
|
|
272
|
+
mean_score_bkg = score_bkg.mean()
|
|
273
|
+
std_score_bkg = score_bkg.std()
|
|
274
|
+
dp_result_new = dp_result_new.with_columns(
|
|
275
|
+
(pl.col('raw_score').sub(mean_score_bkg)/std_score_bkg).alias('track_score')
|
|
276
|
+
)
|
|
277
|
+
dp_result_new = dp_result_new.with_columns(
|
|
278
|
+
pl.col('track_score').mul(target_std).add(1).alias('track_score')
|
|
279
|
+
)
|
|
280
|
+
dp_result_new = dp_result_new.with_columns(
|
|
281
|
+
pl.col('track_score').clip(lower_bound=0.5).log(base=2).alias('log2_track_score')
|
|
282
|
+
)
|
|
283
|
+
dp_result_new = dp_result_new.sort('track_score', descending=True)
|
|
284
|
+
|
|
285
|
+
# pv and fdr
|
|
286
|
+
score_for_fitting = dp_result_new['log2_track_score'][n_outliers:-n_outliers]
|
|
287
|
+
mu, std = norm.fit(score_for_fitting)
|
|
288
|
+
print('mean_score:{:.3f};std:{:.3f}'.format(mu,std))
|
|
289
|
+
dp_result_new = dp_result_new.with_columns(
|
|
290
|
+
pl.col('log2_track_score').map_elements( lambda x: norm.sf(x,loc=mu,scale=std), return_dtype=pl.Float64 ).clip(lower_bound=1e-320).alias('pv')
|
|
291
|
+
)
|
|
292
|
+
dp_result_new = dp_result_new.with_columns(
|
|
293
|
+
fdr=offtracker.fdr(dp_result_new['pv']).alias('fdr'),
|
|
294
|
+
rank=pl.Series(range(1,len(dp_result_new)+1))
|
|
295
|
+
) #.with_row_index(name='rank',offset=1)
|
|
296
|
+
dp_result_new.write_csv(f'./temp/df_result_{outname}.csv') # 覆盖原结果
|
|
297
|
+
|
|
298
|
+
# ouput Offtracker result
|
|
299
|
+
bool_fdr = pl.col('fdr')<=fdr_thresh
|
|
300
|
+
bool_score = pl.col('track_score')>=score_thresh
|
|
301
|
+
dp_output = dp_result_new.filter(bool_fdr|bool_score)
|
|
302
|
+
if pattern_ctr != 'none':
|
|
303
|
+
dp_output = dp_output[['target_location', 'best_strand','best_target','deletion','insertion','mismatch',
|
|
304
|
+
'exp_L_length', 'exp_R_length','ctr_L_length','ctr_R_length','L_length','R_length','signal_length',
|
|
305
|
+
'norm_best_seq_score','track_score', 'log2_track_score','fdr','rank']]
|
|
306
|
+
dp_output.columns = ['target_location', 'strand', 'target', 'deletion', 'insertion', 'mismatch',
|
|
307
|
+
'exp_L_length', 'exp_R_length','ctr_L_length','ctr_R_length','L_length','R_length','signal_length',
|
|
308
|
+
'seq_score', 'track_score', 'log2_track_score','FDR', 'rank']
|
|
309
|
+
else:
|
|
310
|
+
dp_output = dp_output[['target_location', 'best_strand','best_target','deletion','insertion','mismatch',
|
|
311
|
+
'L_length', 'R_length','signal_length',
|
|
312
|
+
'norm_best_seq_score','track_score', 'log2_track_score','fdr','rank']]
|
|
313
|
+
dp_output.columns = ['target_location', 'strand', 'target', 'deletion', 'insertion', 'mismatch',
|
|
314
|
+
'L_length', 'R_length','signal_length',
|
|
315
|
+
'seq_score', 'track_score', 'log2_track_score','FDR', 'rank']
|
|
316
|
+
dp_output.write_csv(f'Offtracker_result_{outname}.csv')
|
|
317
|
+
|
|
318
|
+
return 'correction finished'
|
|
319
|
+
|
|
320
|
+
if __name__ == '__main__' :
|
|
321
|
+
result = main()
|
|
322
|
+
print(result)
|
|
323
|
+
|
|
324
|
+
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
{offtracker-2.13.0 → offtracker-2.13.2}/offtracker/utility/offtracker_blacklist_hg38.merged.bed
RENAMED
|
File without changes
|
{offtracker-2.13.0 → offtracker-2.13.2}/offtracker/utility/offtracker_blacklist_mm10.merged.bed
RENAMED
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|