odin-engine 0.1.0__py3-none-any.whl → 0.2.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- benchmarks/__init__.py +17 -17
- benchmarks/datasets.py +284 -284
- benchmarks/metrics.py +275 -275
- benchmarks/run_ablation.py +279 -279
- benchmarks/run_npll_benchmark.py +270 -270
- npll/__init__.py +10 -10
- npll/bootstrap.py +474 -474
- npll/core/__init__.py +33 -33
- npll/core/knowledge_graph.py +308 -308
- npll/core/logical_rules.py +496 -496
- npll/core/mln.py +474 -474
- npll/inference/__init__.py +40 -40
- npll/inference/e_step.py +419 -419
- npll/inference/elbo.py +434 -434
- npll/inference/m_step.py +576 -576
- npll/npll_model.py +631 -631
- npll/scoring/__init__.py +42 -42
- npll/scoring/embeddings.py +441 -441
- npll/scoring/probability.py +402 -402
- npll/scoring/scoring_module.py +369 -369
- npll/training/__init__.py +24 -24
- npll/training/evaluation.py +496 -496
- npll/training/npll_trainer.py +520 -520
- npll/utils/__init__.py +47 -47
- npll/utils/batch_utils.py +492 -492
- npll/utils/config.py +144 -144
- npll/utils/math_utils.py +338 -338
- odin/__init__.py +21 -20
- odin/engine.py +264 -264
- odin/schema.py +210 -0
- {odin_engine-0.1.0.dist-info → odin_engine-0.2.0.dist-info}/METADATA +503 -456
- odin_engine-0.2.0.dist-info/RECORD +63 -0
- {odin_engine-0.1.0.dist-info → odin_engine-0.2.0.dist-info}/licenses/LICENSE +21 -21
- retrieval/__init__.py +50 -50
- retrieval/adapters.py +140 -140
- retrieval/adapters_arango.py +1418 -1418
- retrieval/aggregators.py +707 -707
- retrieval/beam.py +127 -127
- retrieval/budget.py +60 -60
- retrieval/cache.py +159 -159
- retrieval/confidence.py +88 -88
- retrieval/eval.py +49 -49
- retrieval/linker.py +87 -87
- retrieval/metrics.py +105 -105
- retrieval/metrics_motifs.py +36 -36
- retrieval/orchestrator.py +571 -571
- retrieval/ppr/__init__.py +12 -12
- retrieval/ppr/anchors.py +41 -41
- retrieval/ppr/bippr.py +61 -61
- retrieval/ppr/engines.py +257 -257
- retrieval/ppr/global_pr.py +76 -76
- retrieval/ppr/indexes.py +78 -78
- retrieval/ppr.py +156 -156
- retrieval/ppr_cache.py +25 -25
- retrieval/scoring.py +294 -294
- retrieval/utils/pii_redaction.py +36 -36
- retrieval/writers/__init__.py +9 -9
- retrieval/writers/arango_writer.py +28 -28
- retrieval/writers/base.py +21 -21
- retrieval/writers/janus_writer.py +36 -36
- odin_engine-0.1.0.dist-info/RECORD +0 -62
- {odin_engine-0.1.0.dist-info → odin_engine-0.2.0.dist-info}/WHEEL +0 -0
- {odin_engine-0.1.0.dist-info → odin_engine-0.2.0.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,63 @@
|
|
|
1
|
+
benchmarks/__init__.py,sha256=rollRY8I0xNWexV_jU-uDWYmwTH9Lu9vIxBUwPy1N60,484
|
|
2
|
+
benchmarks/datasets.py,sha256=MyvxpfuAwY2RVBJBvPyEzWgUMc4DcgX3IjMoz9mTVck,8171
|
|
3
|
+
benchmarks/metrics.py,sha256=WXAGSpGFWKZGc_5tU-GNdQNvmApfklaeG7Tve1YPzEE,7751
|
|
4
|
+
benchmarks/run_ablation.py,sha256=qdXTCr5PeakF-XyHGuYkqaDpfO0mAWsxQlyR3JPatUU,8484
|
|
5
|
+
benchmarks/run_npll_benchmark.py,sha256=uQcUq3g-AlbjT13eeY2mALtmGagOwBBmjMi2K9EPa0c,7746
|
|
6
|
+
npll/__init__.py,sha256=2t0fSdqg-P2QygPLeWyYT2LowERyBtifyN6CZVVt8Rk,231
|
|
7
|
+
npll/bootstrap.py,sha256=mb3No4rTPeQ28kqGVqiJsVoTwO6FHNPUVFA280HnCYA,18375
|
|
8
|
+
npll/npll_model.py,sha256=8pQOskXrugkah4OhQ3W4mYIaYfEu_XT8GvUMOJ06ZnU,26540
|
|
9
|
+
npll/core/__init__.py,sha256=8LWXF_z93tf-gzYvRu7ycdvgnXD5Kr6Jaa2SiFZWAUQ,832
|
|
10
|
+
npll/core/knowledge_graph.py,sha256=FwDrBNydCx_0PKBtWOnUbMapjkqvVkuPmmcj_fiK3Ow,11183
|
|
11
|
+
npll/core/logical_rules.py,sha256=x7SrGA8SsszMjy4m8mPUGDyV14uKgy3nFpeRd4qxUDk,17771
|
|
12
|
+
npll/core/mln.py,sha256=ShtA9MK-7vmqzQcS42A4iFE6CWmzFA1XlKCMfEqCaSQ,18585
|
|
13
|
+
npll/inference/__init__.py,sha256=ydHHiRQ8hJAZe0ayHIDgKvDTzugn5q_0vK4O0NkkUN8,1039
|
|
14
|
+
npll/inference/e_step.py,sha256=7u7Xk520WLcyu2f3OlUTRHmURdRh7bG-I91mrIx_nvk,16929
|
|
15
|
+
npll/inference/elbo.py,sha256=vVUFHNzKvUhvW6c-1GSf9YIYy1ZACeY9_Z8WX4qnqRg,16886
|
|
16
|
+
npll/inference/m_step.py,sha256=MG5LKPCcZHyYXr6SjuhKHDPxJOgPKobe_lS-RP_zOp8,22730
|
|
17
|
+
npll/scoring/__init__.py,sha256=y2JMOBGpVGMZRvL0K07OiH1RObARqu9RYkBEr06aCcE,1296
|
|
18
|
+
npll/scoring/embeddings.py,sha256=v6BID7cwjJ5i9-XnrKQ8WZV1YByrMCWaXsHTJQe9ZGQ,19478
|
|
19
|
+
npll/scoring/probability.py,sha256=lgokSRFE7Cu6p5mYFb_PlmjSONaRMwqx2h79hEokA7o,16799
|
|
20
|
+
npll/scoring/scoring_module.py,sha256=1hSNZzbnL6lw8ZYiglj8ok9pT_xQoDkCRIa8V51BwtU,13850
|
|
21
|
+
npll/training/__init__.py,sha256=BLR-CcMMdQ_v9uKHVNuErq2-xE4eRHynOfWaawJZgGA,641
|
|
22
|
+
npll/training/evaluation.py,sha256=rHPpofDOU5zYfbClrC3xrAMrYfDLrIYeMvh5IVZewFM,17155
|
|
23
|
+
npll/training/npll_trainer.py,sha256=1Nt-cdkM3LGLFbe0S87OX7GEzvpABXJbCHIVNObXoPo,17880
|
|
24
|
+
npll/utils/__init__.py,sha256=5xGn-xONVUiH8557_yTWwStBdNF46Yt2Pi7SHTPJa4c,1337
|
|
25
|
+
npll/utils/batch_utils.py,sha256=W1sXyX9b42YOmy-i_7Sv-4KkAIasf8Vip4qUSpKwc1Y,18498
|
|
26
|
+
npll/utils/config.py,sha256=b_s377KZ218jjS0_zWMgX92GkouOqbKk-LLpQHPb3z0,5134
|
|
27
|
+
npll/utils/math_utils.py,sha256=O2-rSZxFDI0WtD2EWx6dnA_YayHFW04WD91V-2d2CxQ,11398
|
|
28
|
+
odin/__init__.py,sha256=rV4ADDt5c43pVexCVcFB3OXlHXWLK3hc_xla2vSDpn8,670
|
|
29
|
+
odin/engine.py,sha256=fG0vof-wcHuU5vrRSnbkzv2l812EvhjXgOZulQFLsu8,9102
|
|
30
|
+
odin/schema.py,sha256=jmaaQRj94IHbppXdqtnIXv00lt3fLBHtZFrYhvqEslw,6524
|
|
31
|
+
odin_engine-0.2.0.dist-info/licenses/LICENSE,sha256=nTutNg_5r6C-zttxTWEYi8nTR8CmF8hMbszt-2qPlgs,1070
|
|
32
|
+
retrieval/__init__.py,sha256=Jf3-Dd82Xr4d78fCDYOpoQCAPCSZXDM_zxMWonp_d3g,2284
|
|
33
|
+
retrieval/adapters.py,sha256=ElU3FzadpeyDc7aajYQQN0QHCKHl5KM4ou_B83NRBXQ,5021
|
|
34
|
+
retrieval/adapters_arango.py,sha256=TP7_c8BeXGWxppyp3DkBCg2b45lOWB8ikwd7JU39zQg,53764
|
|
35
|
+
retrieval/aggregators.py,sha256=Efce66eDSdHiErpEXBzX2dffhdQxOe8IxnLQnUUsGac,23934
|
|
36
|
+
retrieval/beam.py,sha256=we5BV9NbKErFnYH8fOTRI5SklO2pOAycec2h2GW_X6I,4856
|
|
37
|
+
retrieval/budget.py,sha256=uLUUTGOc98q5Ll08_GLNMoLdpY69L33_y7QY6wJ8flQ,1474
|
|
38
|
+
retrieval/cache.py,sha256=OmDEFkOXjLCe5K5g-eiqtYjbslvV2pDJC0WV-DxDLrE,6107
|
|
39
|
+
retrieval/confidence.py,sha256=dlxU-dIK0IK01Y-EAr5xI7pZAbEbhYRdjBnA0_M_p1M,3272
|
|
40
|
+
retrieval/eval.py,sha256=j8_EaTaAFGPykhkIE3ruhbFzch7_1WJykDPTj4-q82M,1483
|
|
41
|
+
retrieval/linker.py,sha256=ZpZuTeLwKDgNWYXPPuPo7_D-af5-0L1-g6tMbFYzx4M,3210
|
|
42
|
+
retrieval/metrics.py,sha256=kDltG_Uu1Ows394Rcc0iWqNgsXbuFgfQSHnzfcevtjs,3288
|
|
43
|
+
retrieval/metrics_motifs.py,sha256=wqVPSpfoIx5F1L9sUX6_LNAy_6zlKg27wUPsQKVcU8I,1346
|
|
44
|
+
retrieval/orchestrator.py,sha256=jm4LzkhUL7P93BEpgPP16gZSkBYOOmMBqc3JAoLexjU,22493
|
|
45
|
+
retrieval/ppr.py,sha256=xR_ovxOIVPMXHcWw5FTkrhnCIzxDqXOOVR6CHjdP894,5376
|
|
46
|
+
retrieval/ppr_cache.py,sha256=mQCGDtwBu-Sw1eFoAfL3f1ryZSfIY2CCE4cMn5QwnsQ,760
|
|
47
|
+
retrieval/scoring.py,sha256=ilQnrmdZvrbQ58io7nIcwvKdDlY2LpbQf2WO8RkU6ys,11022
|
|
48
|
+
retrieval/ppr/__init__.py,sha256=O1f0pM9592kcC2CHRjSHYKO299zAY0RfunlUhk3K7mc,453
|
|
49
|
+
retrieval/ppr/anchors.py,sha256=l_4JuB1UBaTZu3jLvc0z5I0-0QMUDF6QZSoc-7I5DYI,1221
|
|
50
|
+
retrieval/ppr/bippr.py,sha256=byCxF4nCvnu__izsoof2aLSUxx2_sh9KLJd5ie6Ns30,2175
|
|
51
|
+
retrieval/ppr/engines.py,sha256=FzraG3A3Zh2d-iVWIEfnJIrKrNH_lLBYv3sTREYW5sE,10132
|
|
52
|
+
retrieval/ppr/global_pr.py,sha256=dABidLtuhAnfLdbJvSJnQKBbmdTO7woePL6xmQRh05k,2457
|
|
53
|
+
retrieval/ppr/indexes.py,sha256=w1xmqr6xw91WPvShooj3DBV_x1kQWh37kkstcgO1M7I,2480
|
|
54
|
+
retrieval/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
55
|
+
retrieval/utils/pii_redaction.py,sha256=hZyw_8HQM7yUsBm46yIBQCNT7Z-5xGqMXiVmR3ZqUqs,1224
|
|
56
|
+
retrieval/writers/__init__.py,sha256=DvTadpcfbz5-XUI2d8dsP6CoajuYPIJ8vuYpHdDpCKc,203
|
|
57
|
+
retrieval/writers/arango_writer.py,sha256=yfV8Q6EzI3Xso-moDYvt-NsjM5MITqmOkxUtm0cF3-4,1004
|
|
58
|
+
retrieval/writers/base.py,sha256=pe_fgsI6ic8LUyNl2vShjK-OhPEmn2XqZrNW5B-dd1Y,637
|
|
59
|
+
retrieval/writers/janus_writer.py,sha256=SmNEh3ebOZAuO8Iddcs2B7zA3r5GDnad4aMIdk5Wj20,1505
|
|
60
|
+
odin_engine-0.2.0.dist-info/METADATA,sha256=q6EtepkN-Y2v30MR7q1K6tVPj-ANcp3yAiMl_Dgu2Y4,17358
|
|
61
|
+
odin_engine-0.2.0.dist-info/WHEEL,sha256=wUyA8OaulRlbfwMtmQsvNngGrxQHAvkKcvRmdizlJi0,92
|
|
62
|
+
odin_engine-0.2.0.dist-info/top_level.txt,sha256=U53RwIYgQIJ0DBf_OaThVdHosqy06lkB4Zz4crmFadQ,31
|
|
63
|
+
odin_engine-0.2.0.dist-info/RECORD,,
|
|
@@ -1,21 +1,21 @@
|
|
|
1
|
-
MIT License
|
|
2
|
-
|
|
3
|
-
Copyright (c) 2026 Prescott Data
|
|
4
|
-
|
|
5
|
-
Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
6
|
-
of this software and associated documentation files (the "Software"), to deal
|
|
7
|
-
in the Software without restriction, including without limitation the rights
|
|
8
|
-
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
9
|
-
copies of the Software, and to permit persons to whom the Software is
|
|
10
|
-
furnished to do so, subject to the following conditions:
|
|
11
|
-
|
|
12
|
-
The above copyright notice and this permission notice shall be included in all
|
|
13
|
-
copies or substantial portions of the Software.
|
|
14
|
-
|
|
15
|
-
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
16
|
-
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
17
|
-
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
18
|
-
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
19
|
-
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
20
|
-
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
21
|
-
SOFTWARE.
|
|
1
|
+
MIT License
|
|
2
|
+
|
|
3
|
+
Copyright (c) 2026 Prescott Data
|
|
4
|
+
|
|
5
|
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
6
|
+
of this software and associated documentation files (the "Software"), to deal
|
|
7
|
+
in the Software without restriction, including without limitation the rights
|
|
8
|
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
9
|
+
copies of the Software, and to permit persons to whom the Software is
|
|
10
|
+
furnished to do so, subject to the following conditions:
|
|
11
|
+
|
|
12
|
+
The above copyright notice and this permission notice shall be included in all
|
|
13
|
+
copies or substantial portions of the Software.
|
|
14
|
+
|
|
15
|
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
16
|
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
17
|
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
18
|
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
19
|
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
20
|
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
21
|
+
SOFTWARE.
|
retrieval/__init__.py
CHANGED
|
@@ -1,50 +1,50 @@
|
|
|
1
|
-
"""
|
|
2
|
-
Retrieval components: budgets, PPR, beam search, adapters, and confidence providers.
|
|
3
|
-
"""
|
|
4
|
-
|
|
5
|
-
from .budget import SearchBudget, BudgetTracker
|
|
6
|
-
from .adapters import GraphAccessor, KGCommunityAccessor, OverlayAccessor, JanusGraphAccessor
|
|
7
|
-
from .adapters_arango import ArangoCommunityAccessor, GlobalGraphAccessor
|
|
8
|
-
from .cache import CachedGraphAccessor
|
|
9
|
-
from .confidence import EdgeConfidenceProvider, ConstantConfidence, NPLLConfidence
|
|
10
|
-
from .ppr import (
|
|
11
|
-
PushPPREngine, MonteCarloPPREngine, BiPPREngine, PPRParams,
|
|
12
|
-
APPRAnchors, APPRAnchorParams,
|
|
13
|
-
GlobalPR, GlobalPRParams,
|
|
14
|
-
RandomWalkIndex, WalkIndexConfig,
|
|
15
|
-
)
|
|
16
|
-
from .beam import beam_search, BeamParams
|
|
17
|
-
from .ppr_cache import PPRCache
|
|
18
|
-
from .scoring import (
|
|
19
|
-
PathScoreConfig, path_score,
|
|
20
|
-
aggregate_evidence_strength,
|
|
21
|
-
InsightScoreConfig, insight_score,
|
|
22
|
-
score_paths_and_insight,
|
|
23
|
-
)
|
|
24
|
-
from .orchestrator import RetrievalOrchestrator, OrchestratorParams
|
|
25
|
-
from .linker import CoherenceLinker, LinkerConfig, Mention
|
|
26
|
-
from .metrics import MetricsLogger, JSONLSink, RetrievalMetrics, aggregate_latency_and_budget
|
|
27
|
-
from .metrics_motifs import wedge_and_triad_closures
|
|
28
|
-
from .eval import recall_at_k, expected_calibration_error, SimpleLLMCalibrator
|
|
29
|
-
from .writers import PersistenceWriter, ArangoWriter, JanusGraphWriter
|
|
30
|
-
|
|
31
|
-
__all__ = [
|
|
32
|
-
'GraphAccessor', 'KGCommunityAccessor', 'OverlayAccessor', 'JanusGraphAccessor',
|
|
33
|
-
'ArangoCommunityAccessor', 'GlobalGraphAccessor',
|
|
34
|
-
'CachedGraphAccessor',
|
|
35
|
-
'EdgeConfidenceProvider', 'ConstantConfidence', 'NPLLConfidence',
|
|
36
|
-
'PushPPREngine', 'MonteCarloPPREngine', 'BiPPREngine', 'PPRParams',
|
|
37
|
-
'APPRAnchors', 'APPRAnchorParams', 'GlobalPR', 'GlobalPRParams',
|
|
38
|
-
'RandomWalkIndex', 'WalkIndexConfig',
|
|
39
|
-
'beam_search', 'BeamParams',
|
|
40
|
-
'PPRCache',
|
|
41
|
-
'PathScoreConfig', 'path_score', 'aggregate_evidence_strength',
|
|
42
|
-
'InsightScoreConfig', 'insight_score', 'score_paths_and_insight',
|
|
43
|
-
'RetrievalOrchestrator', 'OrchestratorParams', 'CoherenceLinker', 'LinkerConfig', 'Mention',
|
|
44
|
-
'MetricsLogger', 'JSONLSink', 'RetrievalMetrics',
|
|
45
|
-
'aggregate_latency_and_budget', 'wedge_and_triad_closures',
|
|
46
|
-
'recall_at_k', 'expected_calibration_error', 'SimpleLLMCalibrator',
|
|
47
|
-
'PersistenceWriter', 'ArangoWriter', 'JanusGraphWriter',
|
|
48
|
-
'SearchBudget', 'BudgetTracker'
|
|
49
|
-
]
|
|
50
|
-
|
|
1
|
+
"""
|
|
2
|
+
Retrieval components: budgets, PPR, beam search, adapters, and confidence providers.
|
|
3
|
+
"""
|
|
4
|
+
|
|
5
|
+
from .budget import SearchBudget, BudgetTracker
|
|
6
|
+
from .adapters import GraphAccessor, KGCommunityAccessor, OverlayAccessor, JanusGraphAccessor
|
|
7
|
+
from .adapters_arango import ArangoCommunityAccessor, GlobalGraphAccessor
|
|
8
|
+
from .cache import CachedGraphAccessor
|
|
9
|
+
from .confidence import EdgeConfidenceProvider, ConstantConfidence, NPLLConfidence
|
|
10
|
+
from .ppr import (
|
|
11
|
+
PushPPREngine, MonteCarloPPREngine, BiPPREngine, PPRParams,
|
|
12
|
+
APPRAnchors, APPRAnchorParams,
|
|
13
|
+
GlobalPR, GlobalPRParams,
|
|
14
|
+
RandomWalkIndex, WalkIndexConfig,
|
|
15
|
+
)
|
|
16
|
+
from .beam import beam_search, BeamParams
|
|
17
|
+
from .ppr_cache import PPRCache
|
|
18
|
+
from .scoring import (
|
|
19
|
+
PathScoreConfig, path_score,
|
|
20
|
+
aggregate_evidence_strength,
|
|
21
|
+
InsightScoreConfig, insight_score,
|
|
22
|
+
score_paths_and_insight,
|
|
23
|
+
)
|
|
24
|
+
from .orchestrator import RetrievalOrchestrator, OrchestratorParams
|
|
25
|
+
from .linker import CoherenceLinker, LinkerConfig, Mention
|
|
26
|
+
from .metrics import MetricsLogger, JSONLSink, RetrievalMetrics, aggregate_latency_and_budget
|
|
27
|
+
from .metrics_motifs import wedge_and_triad_closures
|
|
28
|
+
from .eval import recall_at_k, expected_calibration_error, SimpleLLMCalibrator
|
|
29
|
+
from .writers import PersistenceWriter, ArangoWriter, JanusGraphWriter
|
|
30
|
+
|
|
31
|
+
__all__ = [
|
|
32
|
+
'GraphAccessor', 'KGCommunityAccessor', 'OverlayAccessor', 'JanusGraphAccessor',
|
|
33
|
+
'ArangoCommunityAccessor', 'GlobalGraphAccessor',
|
|
34
|
+
'CachedGraphAccessor',
|
|
35
|
+
'EdgeConfidenceProvider', 'ConstantConfidence', 'NPLLConfidence',
|
|
36
|
+
'PushPPREngine', 'MonteCarloPPREngine', 'BiPPREngine', 'PPRParams',
|
|
37
|
+
'APPRAnchors', 'APPRAnchorParams', 'GlobalPR', 'GlobalPRParams',
|
|
38
|
+
'RandomWalkIndex', 'WalkIndexConfig',
|
|
39
|
+
'beam_search', 'BeamParams',
|
|
40
|
+
'PPRCache',
|
|
41
|
+
'PathScoreConfig', 'path_score', 'aggregate_evidence_strength',
|
|
42
|
+
'InsightScoreConfig', 'insight_score', 'score_paths_and_insight',
|
|
43
|
+
'RetrievalOrchestrator', 'OrchestratorParams', 'CoherenceLinker', 'LinkerConfig', 'Mention',
|
|
44
|
+
'MetricsLogger', 'JSONLSink', 'RetrievalMetrics',
|
|
45
|
+
'aggregate_latency_and_budget', 'wedge_and_triad_closures',
|
|
46
|
+
'recall_at_k', 'expected_calibration_error', 'SimpleLLMCalibrator',
|
|
47
|
+
'PersistenceWriter', 'ArangoWriter', 'JanusGraphWriter',
|
|
48
|
+
'SearchBudget', 'BudgetTracker'
|
|
49
|
+
]
|
|
50
|
+
|
retrieval/adapters.py
CHANGED
|
@@ -1,140 +1,140 @@
|
|
|
1
|
-
from __future__ import annotations
|
|
2
|
-
from typing import Iterable, Tuple, Protocol, List, Dict, Optional
|
|
3
|
-
from gremlin_python.process.graph_traversal import __
|
|
4
|
-
from gremlin_python.structure.graph import Graph
|
|
5
|
-
|
|
6
|
-
NodeId = str
|
|
7
|
-
RelId = str
|
|
8
|
-
|
|
9
|
-
|
|
10
|
-
class GraphAccessor(Protocol):
|
|
11
|
-
"""
|
|
12
|
-
Minimal graph view inside a single community/subgraph.
|
|
13
|
-
Implement these methods for your KG.
|
|
14
|
-
"""
|
|
15
|
-
|
|
16
|
-
def iter_out(self, node: NodeId) -> Iterable[Tuple[NodeId, RelId, float]]:
|
|
17
|
-
"""Yield (neighbor, relation, weight)."""
|
|
18
|
-
...
|
|
19
|
-
|
|
20
|
-
def community_seed_norm(self, community_id: str, seeds: List[NodeId]) -> List[NodeId]:
|
|
21
|
-
"""Optional mapping from external IDs to internal; default passthrough."""
|
|
22
|
-
return seeds
|
|
23
|
-
|
|
24
|
-
def nodes(self, community_id: str) -> Iterable[NodeId]:
|
|
25
|
-
"""All node IDs in this community."""
|
|
26
|
-
...
|
|
27
|
-
|
|
28
|
-
def degree(self, node: NodeId) -> int:
|
|
29
|
-
"""Fast out-degree if available; else len(list(iter_out(node)))."""
|
|
30
|
-
...
|
|
31
|
-
|
|
32
|
-
|
|
33
|
-
class KGCommunityAccessor:
|
|
34
|
-
"""
|
|
35
|
-
Example adapter to a KnowledgeGraph with a pre-sliced community.
|
|
36
|
-
Provide a set of allowed node IDs (entity names) for the community.
|
|
37
|
-
"""
|
|
38
|
-
|
|
39
|
-
def __init__(self, kg, community_id: str, community_nodes: Optional[set[str]] = None):
|
|
40
|
-
self.kg = kg
|
|
41
|
-
self.community_id = community_id
|
|
42
|
-
self.allowed = community_nodes or set(n.name for n in kg.entities)
|
|
43
|
-
|
|
44
|
-
def iter_out(self, node: NodeId):
|
|
45
|
-
ent = self.kg.get_entity(node)
|
|
46
|
-
if ent is None:
|
|
47
|
-
return
|
|
48
|
-
for triple in self.kg.get_facts_by_head(ent):
|
|
49
|
-
v = triple.tail.name
|
|
50
|
-
if v in self.allowed:
|
|
51
|
-
yield v, triple.relation.name, 1.0
|
|
52
|
-
|
|
53
|
-
def nodes(self, community_id: str):
|
|
54
|
-
return list(self.allowed)
|
|
55
|
-
|
|
56
|
-
def degree(self, node: NodeId) -> int:
|
|
57
|
-
ent = self.kg.get_entity(node)
|
|
58
|
-
if ent is None:
|
|
59
|
-
return 0
|
|
60
|
-
return sum(1 for t in self.kg.get_facts_by_head(ent) if t.tail.name in self.allowed)
|
|
61
|
-
|
|
62
|
-
|
|
63
|
-
class OverlayAccessor:
|
|
64
|
-
"""
|
|
65
|
-
Wrap a base GraphAccessor with soft overlay edges.
|
|
66
|
-
Overlay edges are tuples (u, rel, v, weight) scoped to a community.
|
|
67
|
-
"""
|
|
68
|
-
|
|
69
|
-
def __init__(self, base: GraphAccessor, community_id: str):
|
|
70
|
-
self.base = base
|
|
71
|
-
self.cid = community_id
|
|
72
|
-
self._overlay: dict[NodeId, list[tuple[NodeId, str, float]]] = {}
|
|
73
|
-
|
|
74
|
-
def add_edge(self, u: NodeId, rel: str, v: NodeId, weight: float = 1.0):
|
|
75
|
-
self._overlay.setdefault(u, []).append((v, rel, weight))
|
|
76
|
-
|
|
77
|
-
def iter_out(self, node: NodeId):
|
|
78
|
-
# Base edges
|
|
79
|
-
for v, r, w in self.base.iter_out(node):
|
|
80
|
-
yield v, r, w
|
|
81
|
-
# Overlay edges
|
|
82
|
-
for v, r, w in self._overlay.get(node, []):
|
|
83
|
-
yield v, r, w
|
|
84
|
-
|
|
85
|
-
def community_seed_norm(self, community_id: str, seeds: list[NodeId]) -> list[NodeId]:
|
|
86
|
-
return getattr(self.base, 'community_seed_norm', lambda cid, s: s)(community_id, seeds)
|
|
87
|
-
|
|
88
|
-
def nodes(self, community_id: str):
|
|
89
|
-
return getattr(self.base, 'nodes', lambda cid: [])(community_id)
|
|
90
|
-
|
|
91
|
-
def degree(self, node: NodeId) -> int:
|
|
92
|
-
base_deg = getattr(self.base, 'degree', lambda n: 0)(node)
|
|
93
|
-
return base_deg + len(self._overlay.get(node, []))
|
|
94
|
-
|
|
95
|
-
|
|
96
|
-
class JanusGraphAccessor(GraphAccessor):
|
|
97
|
-
"""
|
|
98
|
-
GraphAccessor implementation for JanusGraph.
|
|
99
|
-
Assumes connection to a JanusGraph instance via a Gremlin client.
|
|
100
|
-
"""
|
|
101
|
-
def __init__(self, graph: Graph, community_id_property: str = "communityId"):
|
|
102
|
-
self.g = graph.traversal()
|
|
103
|
-
self.community_id_property = community_id_property
|
|
104
|
-
|
|
105
|
-
def iter_out(self, node: NodeId) -> Iterable[Tuple[NodeId, RelId, float]]:
|
|
106
|
-
"""
|
|
107
|
-
Yields (neighbor, relation, weight) for outgoing edges from a node.
|
|
108
|
-
Example Gremlin query: g.V(node).outE().as_('e').inV().as_('v').select('e', 'v')
|
|
109
|
-
"""
|
|
110
|
-
traversal = self.g.V(node).outE().as_('e').inV().as_('v').select('e', 'v').toList()
|
|
111
|
-
for edge, neighbor in traversal:
|
|
112
|
-
# Note: You might need to adjust how you access IDs and properties based on your graph schema
|
|
113
|
-
neighbor_id = neighbor.id
|
|
114
|
-
rel_id = edge.label
|
|
115
|
-
weight = edge.properties.get('weight', 1.0)
|
|
116
|
-
yield neighbor_id, rel_id, weight
|
|
117
|
-
|
|
118
|
-
def nodes(self, community_id: str) -> Iterable[NodeId]:
|
|
119
|
-
"""
|
|
120
|
-
Yields all node IDs in a given community.
|
|
121
|
-
Example Gremlin query: g.V().has('communityId', community_id).id()
|
|
122
|
-
"""
|
|
123
|
-
traversal = self.g.V().has(self.community_id_property, community_id).id().toList()
|
|
124
|
-
for node_id in traversal:
|
|
125
|
-
yield node_id
|
|
126
|
-
|
|
127
|
-
def degree(self, node: NodeId) -> int:
|
|
128
|
-
"""
|
|
129
|
-
Returns the out-degree of a node.
|
|
130
|
-
Example Gremlin query: g.V(node).outE().count()
|
|
131
|
-
"""
|
|
132
|
-
return self.g.V(node).outE().count().next()
|
|
133
|
-
|
|
134
|
-
def in_degree(self, node: NodeId) -> int:
|
|
135
|
-
"""
|
|
136
|
-
Returns the in-degree of a node.
|
|
137
|
-
Example Gremlin query: g.V(node).inE().count()
|
|
138
|
-
"""
|
|
139
|
-
return self.g.V(node).inE().count().next()
|
|
140
|
-
|
|
1
|
+
from __future__ import annotations
|
|
2
|
+
from typing import Iterable, Tuple, Protocol, List, Dict, Optional
|
|
3
|
+
from gremlin_python.process.graph_traversal import __
|
|
4
|
+
from gremlin_python.structure.graph import Graph
|
|
5
|
+
|
|
6
|
+
NodeId = str
|
|
7
|
+
RelId = str
|
|
8
|
+
|
|
9
|
+
|
|
10
|
+
class GraphAccessor(Protocol):
|
|
11
|
+
"""
|
|
12
|
+
Minimal graph view inside a single community/subgraph.
|
|
13
|
+
Implement these methods for your KG.
|
|
14
|
+
"""
|
|
15
|
+
|
|
16
|
+
def iter_out(self, node: NodeId) -> Iterable[Tuple[NodeId, RelId, float]]:
|
|
17
|
+
"""Yield (neighbor, relation, weight)."""
|
|
18
|
+
...
|
|
19
|
+
|
|
20
|
+
def community_seed_norm(self, community_id: str, seeds: List[NodeId]) -> List[NodeId]:
|
|
21
|
+
"""Optional mapping from external IDs to internal; default passthrough."""
|
|
22
|
+
return seeds
|
|
23
|
+
|
|
24
|
+
def nodes(self, community_id: str) -> Iterable[NodeId]:
|
|
25
|
+
"""All node IDs in this community."""
|
|
26
|
+
...
|
|
27
|
+
|
|
28
|
+
def degree(self, node: NodeId) -> int:
|
|
29
|
+
"""Fast out-degree if available; else len(list(iter_out(node)))."""
|
|
30
|
+
...
|
|
31
|
+
|
|
32
|
+
|
|
33
|
+
class KGCommunityAccessor:
|
|
34
|
+
"""
|
|
35
|
+
Example adapter to a KnowledgeGraph with a pre-sliced community.
|
|
36
|
+
Provide a set of allowed node IDs (entity names) for the community.
|
|
37
|
+
"""
|
|
38
|
+
|
|
39
|
+
def __init__(self, kg, community_id: str, community_nodes: Optional[set[str]] = None):
|
|
40
|
+
self.kg = kg
|
|
41
|
+
self.community_id = community_id
|
|
42
|
+
self.allowed = community_nodes or set(n.name for n in kg.entities)
|
|
43
|
+
|
|
44
|
+
def iter_out(self, node: NodeId):
|
|
45
|
+
ent = self.kg.get_entity(node)
|
|
46
|
+
if ent is None:
|
|
47
|
+
return
|
|
48
|
+
for triple in self.kg.get_facts_by_head(ent):
|
|
49
|
+
v = triple.tail.name
|
|
50
|
+
if v in self.allowed:
|
|
51
|
+
yield v, triple.relation.name, 1.0
|
|
52
|
+
|
|
53
|
+
def nodes(self, community_id: str):
|
|
54
|
+
return list(self.allowed)
|
|
55
|
+
|
|
56
|
+
def degree(self, node: NodeId) -> int:
|
|
57
|
+
ent = self.kg.get_entity(node)
|
|
58
|
+
if ent is None:
|
|
59
|
+
return 0
|
|
60
|
+
return sum(1 for t in self.kg.get_facts_by_head(ent) if t.tail.name in self.allowed)
|
|
61
|
+
|
|
62
|
+
|
|
63
|
+
class OverlayAccessor:
|
|
64
|
+
"""
|
|
65
|
+
Wrap a base GraphAccessor with soft overlay edges.
|
|
66
|
+
Overlay edges are tuples (u, rel, v, weight) scoped to a community.
|
|
67
|
+
"""
|
|
68
|
+
|
|
69
|
+
def __init__(self, base: GraphAccessor, community_id: str):
|
|
70
|
+
self.base = base
|
|
71
|
+
self.cid = community_id
|
|
72
|
+
self._overlay: dict[NodeId, list[tuple[NodeId, str, float]]] = {}
|
|
73
|
+
|
|
74
|
+
def add_edge(self, u: NodeId, rel: str, v: NodeId, weight: float = 1.0):
|
|
75
|
+
self._overlay.setdefault(u, []).append((v, rel, weight))
|
|
76
|
+
|
|
77
|
+
def iter_out(self, node: NodeId):
|
|
78
|
+
# Base edges
|
|
79
|
+
for v, r, w in self.base.iter_out(node):
|
|
80
|
+
yield v, r, w
|
|
81
|
+
# Overlay edges
|
|
82
|
+
for v, r, w in self._overlay.get(node, []):
|
|
83
|
+
yield v, r, w
|
|
84
|
+
|
|
85
|
+
def community_seed_norm(self, community_id: str, seeds: list[NodeId]) -> list[NodeId]:
|
|
86
|
+
return getattr(self.base, 'community_seed_norm', lambda cid, s: s)(community_id, seeds)
|
|
87
|
+
|
|
88
|
+
def nodes(self, community_id: str):
|
|
89
|
+
return getattr(self.base, 'nodes', lambda cid: [])(community_id)
|
|
90
|
+
|
|
91
|
+
def degree(self, node: NodeId) -> int:
|
|
92
|
+
base_deg = getattr(self.base, 'degree', lambda n: 0)(node)
|
|
93
|
+
return base_deg + len(self._overlay.get(node, []))
|
|
94
|
+
|
|
95
|
+
|
|
96
|
+
class JanusGraphAccessor(GraphAccessor):
|
|
97
|
+
"""
|
|
98
|
+
GraphAccessor implementation for JanusGraph.
|
|
99
|
+
Assumes connection to a JanusGraph instance via a Gremlin client.
|
|
100
|
+
"""
|
|
101
|
+
def __init__(self, graph: Graph, community_id_property: str = "communityId"):
|
|
102
|
+
self.g = graph.traversal()
|
|
103
|
+
self.community_id_property = community_id_property
|
|
104
|
+
|
|
105
|
+
def iter_out(self, node: NodeId) -> Iterable[Tuple[NodeId, RelId, float]]:
|
|
106
|
+
"""
|
|
107
|
+
Yields (neighbor, relation, weight) for outgoing edges from a node.
|
|
108
|
+
Example Gremlin query: g.V(node).outE().as_('e').inV().as_('v').select('e', 'v')
|
|
109
|
+
"""
|
|
110
|
+
traversal = self.g.V(node).outE().as_('e').inV().as_('v').select('e', 'v').toList()
|
|
111
|
+
for edge, neighbor in traversal:
|
|
112
|
+
# Note: You might need to adjust how you access IDs and properties based on your graph schema
|
|
113
|
+
neighbor_id = neighbor.id
|
|
114
|
+
rel_id = edge.label
|
|
115
|
+
weight = edge.properties.get('weight', 1.0)
|
|
116
|
+
yield neighbor_id, rel_id, weight
|
|
117
|
+
|
|
118
|
+
def nodes(self, community_id: str) -> Iterable[NodeId]:
|
|
119
|
+
"""
|
|
120
|
+
Yields all node IDs in a given community.
|
|
121
|
+
Example Gremlin query: g.V().has('communityId', community_id).id()
|
|
122
|
+
"""
|
|
123
|
+
traversal = self.g.V().has(self.community_id_property, community_id).id().toList()
|
|
124
|
+
for node_id in traversal:
|
|
125
|
+
yield node_id
|
|
126
|
+
|
|
127
|
+
def degree(self, node: NodeId) -> int:
|
|
128
|
+
"""
|
|
129
|
+
Returns the out-degree of a node.
|
|
130
|
+
Example Gremlin query: g.V(node).outE().count()
|
|
131
|
+
"""
|
|
132
|
+
return self.g.V(node).outE().count().next()
|
|
133
|
+
|
|
134
|
+
def in_degree(self, node: NodeId) -> int:
|
|
135
|
+
"""
|
|
136
|
+
Returns the in-degree of a node.
|
|
137
|
+
Example Gremlin query: g.V(node).inE().count()
|
|
138
|
+
"""
|
|
139
|
+
return self.g.V(node).inE().count().next()
|
|
140
|
+
|