ocnn 2.2.1__py3-none-any.whl → 2.2.3__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- ocnn/__init__.py +24 -24
- ocnn/dataset.py +160 -158
- ocnn/models/__init__.py +29 -27
- ocnn/models/autoencoder.py +155 -165
- ocnn/models/hrnet.py +192 -192
- ocnn/models/image2shape.py +128 -0
- ocnn/models/lenet.py +46 -46
- ocnn/models/ounet.py +94 -94
- ocnn/models/resnet.py +53 -53
- ocnn/models/segnet.py +72 -72
- ocnn/models/unet.py +105 -105
- ocnn/modules/__init__.py +20 -20
- ocnn/modules/modules.py +193 -231
- ocnn/modules/resblocks.py +124 -124
- ocnn/nn/__init__.py +43 -42
- ocnn/nn/octree2col.py +53 -53
- ocnn/nn/octree2vox.py +50 -50
- ocnn/nn/octree_align.py +46 -46
- ocnn/nn/octree_conv.py +429 -411
- ocnn/nn/octree_drop.py +55 -55
- ocnn/nn/octree_dwconv.py +222 -204
- ocnn/nn/octree_gconv.py +79 -0
- ocnn/nn/octree_interp.py +196 -196
- ocnn/nn/octree_norm.py +86 -86
- ocnn/nn/octree_pad.py +39 -39
- ocnn/nn/octree_pool.py +200 -200
- ocnn/octree/__init__.py +22 -21
- ocnn/octree/octree.py +639 -601
- ocnn/octree/points.py +322 -298
- ocnn/octree/shuffled_key.py +115 -115
- ocnn/utils.py +205 -153
- {ocnn-2.2.1.dist-info → ocnn-2.2.3.dist-info}/LICENSE +21 -21
- {ocnn-2.2.1.dist-info → ocnn-2.2.3.dist-info}/METADATA +79 -65
- ocnn-2.2.3.dist-info/RECORD +36 -0
- {ocnn-2.2.1.dist-info → ocnn-2.2.3.dist-info}/WHEEL +1 -1
- ocnn-2.2.1.dist-info/RECORD +0 -34
- {ocnn-2.2.1.dist-info → ocnn-2.2.3.dist-info}/top_level.txt +0 -0
ocnn/modules/resblocks.py
CHANGED
|
@@ -1,124 +1,124 @@
|
|
|
1
|
-
# --------------------------------------------------------
|
|
2
|
-
# Octree-based Sparse Convolutional Neural Networks
|
|
3
|
-
# Copyright (c) 2022 Peng-Shuai Wang <wangps@hotmail.com>
|
|
4
|
-
# Licensed under The MIT License [see LICENSE for details]
|
|
5
|
-
# Written by Peng-Shuai Wang
|
|
6
|
-
# --------------------------------------------------------
|
|
7
|
-
|
|
8
|
-
import torch
|
|
9
|
-
import torch.utils.checkpoint
|
|
10
|
-
|
|
11
|
-
from ocnn.octree import Octree
|
|
12
|
-
from ocnn.nn import OctreeMaxPool
|
|
13
|
-
from ocnn.modules import Conv1x1BnRelu, OctreeConvBnRelu, Conv1x1Bn, OctreeConvBn
|
|
14
|
-
|
|
15
|
-
|
|
16
|
-
class OctreeResBlock(torch.nn.Module):
|
|
17
|
-
r''' Octree-based ResNet block in a bottleneck style. The block is composed of
|
|
18
|
-
a series of :obj:`Conv1x1`, :obj:`Conv3x3`, and :obj:`Conv1x1`.
|
|
19
|
-
|
|
20
|
-
Args:
|
|
21
|
-
in_channels (int): Number of input channels.
|
|
22
|
-
out_channels (int): Number of output channels.
|
|
23
|
-
stride (int): The stride of the block (:obj:`1` or :obj:`2`).
|
|
24
|
-
bottleneck (int): The input and output channels of the :obj:`Conv3x3` is
|
|
25
|
-
equal to the input channel divided by :attr:`bottleneck`.
|
|
26
|
-
nempty (bool): If True, only performs the convolution on non-empty
|
|
27
|
-
octree nodes.
|
|
28
|
-
'''
|
|
29
|
-
|
|
30
|
-
def __init__(self, in_channels: int, out_channels: int, stride: int = 1,
|
|
31
|
-
bottleneck: int = 4, nempty: bool = False):
|
|
32
|
-
super().__init__()
|
|
33
|
-
self.in_channels = in_channels
|
|
34
|
-
self.out_channels = out_channels
|
|
35
|
-
self.bottleneck = bottleneck
|
|
36
|
-
self.stride = stride
|
|
37
|
-
channelb = int(out_channels / bottleneck)
|
|
38
|
-
|
|
39
|
-
if self.stride == 2:
|
|
40
|
-
self.max_pool = OctreeMaxPool(nempty)
|
|
41
|
-
self.conv1x1a = Conv1x1BnRelu(in_channels, channelb)
|
|
42
|
-
self.conv3x3 = OctreeConvBnRelu(channelb, channelb, nempty=nempty)
|
|
43
|
-
self.conv1x1b = Conv1x1Bn(channelb, out_channels)
|
|
44
|
-
if self.in_channels != self.out_channels:
|
|
45
|
-
self.conv1x1c = Conv1x1Bn(in_channels, out_channels)
|
|
46
|
-
self.relu = torch.nn.ReLU(inplace=True)
|
|
47
|
-
|
|
48
|
-
def forward(self, data: torch.Tensor, octree: Octree, depth: int):
|
|
49
|
-
r''''''
|
|
50
|
-
|
|
51
|
-
if self.stride == 2:
|
|
52
|
-
data = self.max_pool(data, octree, depth)
|
|
53
|
-
depth = depth - 1
|
|
54
|
-
conv1 = self.conv1x1a(data)
|
|
55
|
-
conv2 = self.conv3x3(conv1, octree, depth)
|
|
56
|
-
conv3 = self.conv1x1b(conv2)
|
|
57
|
-
if self.in_channels != self.out_channels:
|
|
58
|
-
data = self.conv1x1c(data)
|
|
59
|
-
out = self.relu(conv3 + data)
|
|
60
|
-
return out
|
|
61
|
-
|
|
62
|
-
|
|
63
|
-
class OctreeResBlock2(torch.nn.Module):
|
|
64
|
-
r''' Basic Octree-based ResNet block. The block is composed of
|
|
65
|
-
a series of :obj:`Conv3x3` and :obj:`Conv3x3`.
|
|
66
|
-
|
|
67
|
-
Refer to :class:`OctreeResBlock` for the details of arguments.
|
|
68
|
-
'''
|
|
69
|
-
|
|
70
|
-
def __init__(self, in_channels, out_channels, stride=1, bottleneck=1,
|
|
71
|
-
nempty=False):
|
|
72
|
-
super().__init__()
|
|
73
|
-
self.in_channels = in_channels
|
|
74
|
-
self.out_channels = out_channels
|
|
75
|
-
self.stride = stride
|
|
76
|
-
channelb = int(out_channels / bottleneck)
|
|
77
|
-
|
|
78
|
-
if self.stride == 2:
|
|
79
|
-
self.maxpool = OctreeMaxPool(self.depth)
|
|
80
|
-
self.conv3x3a = OctreeConvBnRelu(in_channels, channelb, nempty=nempty)
|
|
81
|
-
self.conv3x3b = OctreeConvBn(channelb, out_channels, nempty=nempty)
|
|
82
|
-
if self.in_channels != self.out_channels:
|
|
83
|
-
self.conv1x1 = Conv1x1Bn(in_channels, out_channels)
|
|
84
|
-
self.relu = torch.nn.ReLU(inplace=True)
|
|
85
|
-
|
|
86
|
-
def forward(self, data: torch.Tensor, octree: Octree, depth: int):
|
|
87
|
-
r''''''
|
|
88
|
-
|
|
89
|
-
if self.stride == 2:
|
|
90
|
-
data = self.maxpool(data, octree, depth)
|
|
91
|
-
depth = depth - 1
|
|
92
|
-
conv1 = self.conv3x3a(data, octree, depth)
|
|
93
|
-
conv2 = self.conv3x3b(conv1, octree, depth)
|
|
94
|
-
if self.in_channels != self.out_channels:
|
|
95
|
-
data = self.conv1x1(data)
|
|
96
|
-
out = self.relu(conv2 + data)
|
|
97
|
-
return out
|
|
98
|
-
|
|
99
|
-
|
|
100
|
-
class OctreeResBlocks(torch.nn.Module):
|
|
101
|
-
r''' A sequence of :attr:`resblk_num` ResNet blocks.
|
|
102
|
-
'''
|
|
103
|
-
|
|
104
|
-
def __init__(self, in_channels, out_channels, resblk_num, bottleneck=4,
|
|
105
|
-
nempty=False, resblk=OctreeResBlock, use_checkpoint=False):
|
|
106
|
-
super().__init__()
|
|
107
|
-
self.resblk_num = resblk_num
|
|
108
|
-
self.use_checkpoint = use_checkpoint
|
|
109
|
-
channels = [in_channels] + [out_channels] * resblk_num
|
|
110
|
-
|
|
111
|
-
self.resblks = torch.nn.ModuleList(
|
|
112
|
-
[resblk(channels[i], channels[i+1], 1, bottleneck, nempty)
|
|
113
|
-
for i in range(self.resblk_num)])
|
|
114
|
-
|
|
115
|
-
def forward(self, data: torch.Tensor, octree: Octree, depth: int):
|
|
116
|
-
r''''''
|
|
117
|
-
|
|
118
|
-
for i in range(self.resblk_num):
|
|
119
|
-
if self.use_checkpoint:
|
|
120
|
-
data = torch.utils.checkpoint.checkpoint(
|
|
121
|
-
self.resblks[i], data, octree, depth)
|
|
122
|
-
else:
|
|
123
|
-
data = self.resblks[i](data, octree, depth)
|
|
124
|
-
return data
|
|
1
|
+
# --------------------------------------------------------
|
|
2
|
+
# Octree-based Sparse Convolutional Neural Networks
|
|
3
|
+
# Copyright (c) 2022 Peng-Shuai Wang <wangps@hotmail.com>
|
|
4
|
+
# Licensed under The MIT License [see LICENSE for details]
|
|
5
|
+
# Written by Peng-Shuai Wang
|
|
6
|
+
# --------------------------------------------------------
|
|
7
|
+
|
|
8
|
+
import torch
|
|
9
|
+
import torch.utils.checkpoint
|
|
10
|
+
|
|
11
|
+
from ocnn.octree import Octree
|
|
12
|
+
from ocnn.nn import OctreeMaxPool
|
|
13
|
+
from ocnn.modules import Conv1x1BnRelu, OctreeConvBnRelu, Conv1x1Bn, OctreeConvBn
|
|
14
|
+
|
|
15
|
+
|
|
16
|
+
class OctreeResBlock(torch.nn.Module):
|
|
17
|
+
r''' Octree-based ResNet block in a bottleneck style. The block is composed of
|
|
18
|
+
a series of :obj:`Conv1x1`, :obj:`Conv3x3`, and :obj:`Conv1x1`.
|
|
19
|
+
|
|
20
|
+
Args:
|
|
21
|
+
in_channels (int): Number of input channels.
|
|
22
|
+
out_channels (int): Number of output channels.
|
|
23
|
+
stride (int): The stride of the block (:obj:`1` or :obj:`2`).
|
|
24
|
+
bottleneck (int): The input and output channels of the :obj:`Conv3x3` is
|
|
25
|
+
equal to the input channel divided by :attr:`bottleneck`.
|
|
26
|
+
nempty (bool): If True, only performs the convolution on non-empty
|
|
27
|
+
octree nodes.
|
|
28
|
+
'''
|
|
29
|
+
|
|
30
|
+
def __init__(self, in_channels: int, out_channels: int, stride: int = 1,
|
|
31
|
+
bottleneck: int = 4, nempty: bool = False):
|
|
32
|
+
super().__init__()
|
|
33
|
+
self.in_channels = in_channels
|
|
34
|
+
self.out_channels = out_channels
|
|
35
|
+
self.bottleneck = bottleneck
|
|
36
|
+
self.stride = stride
|
|
37
|
+
channelb = int(out_channels / bottleneck)
|
|
38
|
+
|
|
39
|
+
if self.stride == 2:
|
|
40
|
+
self.max_pool = OctreeMaxPool(nempty)
|
|
41
|
+
self.conv1x1a = Conv1x1BnRelu(in_channels, channelb)
|
|
42
|
+
self.conv3x3 = OctreeConvBnRelu(channelb, channelb, nempty=nempty)
|
|
43
|
+
self.conv1x1b = Conv1x1Bn(channelb, out_channels)
|
|
44
|
+
if self.in_channels != self.out_channels:
|
|
45
|
+
self.conv1x1c = Conv1x1Bn(in_channels, out_channels)
|
|
46
|
+
self.relu = torch.nn.ReLU(inplace=True)
|
|
47
|
+
|
|
48
|
+
def forward(self, data: torch.Tensor, octree: Octree, depth: int):
|
|
49
|
+
r''''''
|
|
50
|
+
|
|
51
|
+
if self.stride == 2:
|
|
52
|
+
data = self.max_pool(data, octree, depth)
|
|
53
|
+
depth = depth - 1
|
|
54
|
+
conv1 = self.conv1x1a(data)
|
|
55
|
+
conv2 = self.conv3x3(conv1, octree, depth)
|
|
56
|
+
conv3 = self.conv1x1b(conv2)
|
|
57
|
+
if self.in_channels != self.out_channels:
|
|
58
|
+
data = self.conv1x1c(data)
|
|
59
|
+
out = self.relu(conv3 + data)
|
|
60
|
+
return out
|
|
61
|
+
|
|
62
|
+
|
|
63
|
+
class OctreeResBlock2(torch.nn.Module):
|
|
64
|
+
r''' Basic Octree-based ResNet block. The block is composed of
|
|
65
|
+
a series of :obj:`Conv3x3` and :obj:`Conv3x3`.
|
|
66
|
+
|
|
67
|
+
Refer to :class:`OctreeResBlock` for the details of arguments.
|
|
68
|
+
'''
|
|
69
|
+
|
|
70
|
+
def __init__(self, in_channels, out_channels, stride=1, bottleneck=1,
|
|
71
|
+
nempty=False):
|
|
72
|
+
super().__init__()
|
|
73
|
+
self.in_channels = in_channels
|
|
74
|
+
self.out_channels = out_channels
|
|
75
|
+
self.stride = stride
|
|
76
|
+
channelb = int(out_channels / bottleneck)
|
|
77
|
+
|
|
78
|
+
if self.stride == 2:
|
|
79
|
+
self.maxpool = OctreeMaxPool(self.depth)
|
|
80
|
+
self.conv3x3a = OctreeConvBnRelu(in_channels, channelb, nempty=nempty)
|
|
81
|
+
self.conv3x3b = OctreeConvBn(channelb, out_channels, nempty=nempty)
|
|
82
|
+
if self.in_channels != self.out_channels:
|
|
83
|
+
self.conv1x1 = Conv1x1Bn(in_channels, out_channels)
|
|
84
|
+
self.relu = torch.nn.ReLU(inplace=True)
|
|
85
|
+
|
|
86
|
+
def forward(self, data: torch.Tensor, octree: Octree, depth: int):
|
|
87
|
+
r''''''
|
|
88
|
+
|
|
89
|
+
if self.stride == 2:
|
|
90
|
+
data = self.maxpool(data, octree, depth)
|
|
91
|
+
depth = depth - 1
|
|
92
|
+
conv1 = self.conv3x3a(data, octree, depth)
|
|
93
|
+
conv2 = self.conv3x3b(conv1, octree, depth)
|
|
94
|
+
if self.in_channels != self.out_channels:
|
|
95
|
+
data = self.conv1x1(data)
|
|
96
|
+
out = self.relu(conv2 + data)
|
|
97
|
+
return out
|
|
98
|
+
|
|
99
|
+
|
|
100
|
+
class OctreeResBlocks(torch.nn.Module):
|
|
101
|
+
r''' A sequence of :attr:`resblk_num` ResNet blocks.
|
|
102
|
+
'''
|
|
103
|
+
|
|
104
|
+
def __init__(self, in_channels, out_channels, resblk_num, bottleneck=4,
|
|
105
|
+
nempty=False, resblk=OctreeResBlock, use_checkpoint=False):
|
|
106
|
+
super().__init__()
|
|
107
|
+
self.resblk_num = resblk_num
|
|
108
|
+
self.use_checkpoint = use_checkpoint
|
|
109
|
+
channels = [in_channels] + [out_channels] * resblk_num
|
|
110
|
+
|
|
111
|
+
self.resblks = torch.nn.ModuleList(
|
|
112
|
+
[resblk(channels[i], channels[i+1], 1, bottleneck, nempty)
|
|
113
|
+
for i in range(self.resblk_num)])
|
|
114
|
+
|
|
115
|
+
def forward(self, data: torch.Tensor, octree: Octree, depth: int):
|
|
116
|
+
r''''''
|
|
117
|
+
|
|
118
|
+
for i in range(self.resblk_num):
|
|
119
|
+
if self.use_checkpoint:
|
|
120
|
+
data = torch.utils.checkpoint.checkpoint(
|
|
121
|
+
self.resblks[i], data, octree, depth)
|
|
122
|
+
else:
|
|
123
|
+
data = self.resblks[i](data, octree, depth)
|
|
124
|
+
return data
|
ocnn/nn/__init__.py
CHANGED
|
@@ -1,42 +1,43 @@
|
|
|
1
|
-
# --------------------------------------------------------
|
|
2
|
-
# Octree-based Sparse Convolutional Neural Networks
|
|
3
|
-
# Copyright (c) 2022 Peng-Shuai Wang <wangps@hotmail.com>
|
|
4
|
-
# Licensed under The MIT License [see LICENSE for details]
|
|
5
|
-
# Written by Peng-Shuai Wang
|
|
6
|
-
# --------------------------------------------------------
|
|
7
|
-
|
|
8
|
-
from .octree2vox import octree2voxel, Octree2Voxel
|
|
9
|
-
from .octree2col import octree2col, col2octree
|
|
10
|
-
from .octree_pad import octree_pad, octree_depad
|
|
11
|
-
from .octree_interp import (octree_nearest_pts, octree_linear_pts,
|
|
12
|
-
OctreeInterp, OctreeUpsample)
|
|
13
|
-
from .octree_pool import (octree_max_pool, OctreeMaxPool,
|
|
14
|
-
octree_max_unpool, OctreeMaxUnpool,
|
|
15
|
-
octree_global_pool, OctreeGlobalPool,
|
|
16
|
-
octree_avg_pool, OctreeAvgPool,)
|
|
17
|
-
from .octree_conv import OctreeConv, OctreeDeconv
|
|
18
|
-
from .
|
|
19
|
-
from .
|
|
20
|
-
from .
|
|
21
|
-
from .
|
|
22
|
-
|
|
23
|
-
|
|
24
|
-
|
|
25
|
-
|
|
26
|
-
'
|
|
27
|
-
'
|
|
28
|
-
'
|
|
29
|
-
'
|
|
30
|
-
'
|
|
31
|
-
'
|
|
32
|
-
'
|
|
33
|
-
'
|
|
34
|
-
'
|
|
35
|
-
'
|
|
36
|
-
'
|
|
37
|
-
'
|
|
38
|
-
'
|
|
39
|
-
'
|
|
40
|
-
|
|
41
|
-
|
|
42
|
-
|
|
1
|
+
# --------------------------------------------------------
|
|
2
|
+
# Octree-based Sparse Convolutional Neural Networks
|
|
3
|
+
# Copyright (c) 2022 Peng-Shuai Wang <wangps@hotmail.com>
|
|
4
|
+
# Licensed under The MIT License [see LICENSE for details]
|
|
5
|
+
# Written by Peng-Shuai Wang
|
|
6
|
+
# --------------------------------------------------------
|
|
7
|
+
|
|
8
|
+
from .octree2vox import octree2voxel, Octree2Voxel
|
|
9
|
+
from .octree2col import octree2col, col2octree
|
|
10
|
+
from .octree_pad import octree_pad, octree_depad
|
|
11
|
+
from .octree_interp import (octree_nearest_pts, octree_linear_pts,
|
|
12
|
+
OctreeInterp, OctreeUpsample)
|
|
13
|
+
from .octree_pool import (octree_max_pool, OctreeMaxPool,
|
|
14
|
+
octree_max_unpool, OctreeMaxUnpool,
|
|
15
|
+
octree_global_pool, OctreeGlobalPool,
|
|
16
|
+
octree_avg_pool, OctreeAvgPool,)
|
|
17
|
+
from .octree_conv import OctreeConv, OctreeDeconv
|
|
18
|
+
from .octree_gconv import OctreeGroupConv
|
|
19
|
+
from .octree_dwconv import OctreeDWConv
|
|
20
|
+
from .octree_norm import OctreeBatchNorm, OctreeGroupNorm, OctreeInstanceNorm
|
|
21
|
+
from .octree_drop import OctreeDropPath
|
|
22
|
+
from .octree_align import search_value, octree_align
|
|
23
|
+
|
|
24
|
+
|
|
25
|
+
__all__ = [
|
|
26
|
+
'octree2voxel',
|
|
27
|
+
'octree2col', 'col2octree',
|
|
28
|
+
'octree_pad', 'octree_depad',
|
|
29
|
+
'octree_nearest_pts', 'octree_linear_pts',
|
|
30
|
+
'octree_max_pool', 'octree_max_unpool',
|
|
31
|
+
'octree_global_pool', 'octree_avg_pool',
|
|
32
|
+
'Octree2Voxel',
|
|
33
|
+
'OctreeMaxPool', 'OctreeMaxUnpool',
|
|
34
|
+
'OctreeGlobalPool', 'OctreeAvgPool',
|
|
35
|
+
'OctreeConv', 'OctreeDeconv',
|
|
36
|
+
'OctreeGroupConv', 'OctreeDWConv',
|
|
37
|
+
'OctreeInterp', 'OctreeUpsample',
|
|
38
|
+
'OctreeInstanceNorm', 'OctreeBatchNorm', 'OctreeGroupNorm',
|
|
39
|
+
'OctreeDropPath',
|
|
40
|
+
'search_value', 'octree_align',
|
|
41
|
+
]
|
|
42
|
+
|
|
43
|
+
classes = __all__
|
ocnn/nn/octree2col.py
CHANGED
|
@@ -1,53 +1,53 @@
|
|
|
1
|
-
# --------------------------------------------------------
|
|
2
|
-
# Octree-based Sparse Convolutional Neural Networks
|
|
3
|
-
# Copyright (c) 2022 Peng-Shuai Wang <wangps@hotmail.com>
|
|
4
|
-
# Licensed under The MIT License [see LICENSE for details]
|
|
5
|
-
# Written by Peng-Shuai Wang
|
|
6
|
-
# --------------------------------------------------------
|
|
7
|
-
|
|
8
|
-
import torch
|
|
9
|
-
import torch.nn
|
|
10
|
-
|
|
11
|
-
from ocnn.octree import Octree
|
|
12
|
-
from ocnn.utils import scatter_add
|
|
13
|
-
|
|
14
|
-
|
|
15
|
-
def octree2col(data: torch.Tensor, octree: Octree, depth: int,
|
|
16
|
-
kernel_size: str = '333', stride: int = 1, nempty: bool = False):
|
|
17
|
-
r''' Gathers the neighboring features for convolutions.
|
|
18
|
-
|
|
19
|
-
Args:
|
|
20
|
-
data (torch.Tensor): The input data.
|
|
21
|
-
octree (Octree): The corresponding octree.
|
|
22
|
-
depth (int): The depth of current octree.
|
|
23
|
-
kernel_size (str): The kernel shape, choose from :obj:`333`, :obj:`311`,
|
|
24
|
-
:obj:`131`, :obj:`113`, :obj:`222`, :obj:`331`, :obj:`133`, and
|
|
25
|
-
:obj:`313`.
|
|
26
|
-
stride (int): The stride of neighborhoods (:obj:`1` or :obj:`2`). If the
|
|
27
|
-
stride is :obj:`2`, it always returns the neighborhood of the first
|
|
28
|
-
siblings, and the number of elements of output tensor is
|
|
29
|
-
:obj:`octree.nnum[depth] / 8`.
|
|
30
|
-
nempty (bool): If True, only returns the neighborhoods of the non-empty
|
|
31
|
-
octree nodes.
|
|
32
|
-
'''
|
|
33
|
-
|
|
34
|
-
neigh = octree.get_neigh(depth, kernel_size, stride, nempty)
|
|
35
|
-
size = (neigh.shape[0], neigh.shape[1], data.shape[1])
|
|
36
|
-
out = torch.zeros(size, dtype=data.dtype, device=data.device)
|
|
37
|
-
valid = neigh >= 0
|
|
38
|
-
out[valid] = data[neigh[valid]] # (N, K, C)
|
|
39
|
-
return out
|
|
40
|
-
|
|
41
|
-
|
|
42
|
-
def col2octree(data: torch.Tensor, octree: Octree, depth: int,
|
|
43
|
-
kernel_size: str = '333', stride: int = 1, nempty: bool = False):
|
|
44
|
-
r''' Scatters the convolution features to an octree.
|
|
45
|
-
|
|
46
|
-
Please refer to :func:`octree2col` for the usage of function parameters.
|
|
47
|
-
'''
|
|
48
|
-
|
|
49
|
-
neigh = octree.get_neigh(depth, kernel_size, stride, nempty)
|
|
50
|
-
valid = neigh >= 0
|
|
51
|
-
dim_size = octree.nnum_nempty[depth] if nempty else octree.nnum[depth]
|
|
52
|
-
out = scatter_add(data[valid], neigh[valid], dim=0, dim_size=dim_size)
|
|
53
|
-
return out
|
|
1
|
+
# --------------------------------------------------------
|
|
2
|
+
# Octree-based Sparse Convolutional Neural Networks
|
|
3
|
+
# Copyright (c) 2022 Peng-Shuai Wang <wangps@hotmail.com>
|
|
4
|
+
# Licensed under The MIT License [see LICENSE for details]
|
|
5
|
+
# Written by Peng-Shuai Wang
|
|
6
|
+
# --------------------------------------------------------
|
|
7
|
+
|
|
8
|
+
import torch
|
|
9
|
+
import torch.nn
|
|
10
|
+
|
|
11
|
+
from ocnn.octree import Octree
|
|
12
|
+
from ocnn.utils import scatter_add
|
|
13
|
+
|
|
14
|
+
|
|
15
|
+
def octree2col(data: torch.Tensor, octree: Octree, depth: int,
|
|
16
|
+
kernel_size: str = '333', stride: int = 1, nempty: bool = False):
|
|
17
|
+
r''' Gathers the neighboring features for convolutions.
|
|
18
|
+
|
|
19
|
+
Args:
|
|
20
|
+
data (torch.Tensor): The input data.
|
|
21
|
+
octree (Octree): The corresponding octree.
|
|
22
|
+
depth (int): The depth of current octree.
|
|
23
|
+
kernel_size (str): The kernel shape, choose from :obj:`333`, :obj:`311`,
|
|
24
|
+
:obj:`131`, :obj:`113`, :obj:`222`, :obj:`331`, :obj:`133`, and
|
|
25
|
+
:obj:`313`.
|
|
26
|
+
stride (int): The stride of neighborhoods (:obj:`1` or :obj:`2`). If the
|
|
27
|
+
stride is :obj:`2`, it always returns the neighborhood of the first
|
|
28
|
+
siblings, and the number of elements of output tensor is
|
|
29
|
+
:obj:`octree.nnum[depth] / 8`.
|
|
30
|
+
nempty (bool): If True, only returns the neighborhoods of the non-empty
|
|
31
|
+
octree nodes.
|
|
32
|
+
'''
|
|
33
|
+
|
|
34
|
+
neigh = octree.get_neigh(depth, kernel_size, stride, nempty)
|
|
35
|
+
size = (neigh.shape[0], neigh.shape[1], data.shape[1])
|
|
36
|
+
out = torch.zeros(size, dtype=data.dtype, device=data.device)
|
|
37
|
+
valid = neigh >= 0
|
|
38
|
+
out[valid] = data[neigh[valid]] # (N, K, C)
|
|
39
|
+
return out
|
|
40
|
+
|
|
41
|
+
|
|
42
|
+
def col2octree(data: torch.Tensor, octree: Octree, depth: int,
|
|
43
|
+
kernel_size: str = '333', stride: int = 1, nempty: bool = False):
|
|
44
|
+
r''' Scatters the convolution features to an octree.
|
|
45
|
+
|
|
46
|
+
Please refer to :func:`octree2col` for the usage of function parameters.
|
|
47
|
+
'''
|
|
48
|
+
|
|
49
|
+
neigh = octree.get_neigh(depth, kernel_size, stride, nempty)
|
|
50
|
+
valid = neigh >= 0
|
|
51
|
+
dim_size = octree.nnum_nempty[depth] if nempty else octree.nnum[depth]
|
|
52
|
+
out = scatter_add(data[valid], neigh[valid], dim=0, dim_size=dim_size)
|
|
53
|
+
return out
|
ocnn/nn/octree2vox.py
CHANGED
|
@@ -1,50 +1,50 @@
|
|
|
1
|
-
# --------------------------------------------------------
|
|
2
|
-
# Octree-based Sparse Convolutional Neural Networks
|
|
3
|
-
# Copyright (c) 2022 Peng-Shuai Wang <wangps@hotmail.com>
|
|
4
|
-
# Licensed under The MIT License [see LICENSE for details]
|
|
5
|
-
# Written by Peng-Shuai Wang
|
|
6
|
-
# --------------------------------------------------------
|
|
7
|
-
|
|
8
|
-
import torch
|
|
9
|
-
|
|
10
|
-
from ocnn.octree import Octree
|
|
11
|
-
|
|
12
|
-
|
|
13
|
-
def octree2voxel(data: torch.Tensor, octree: Octree, depth: int,
|
|
14
|
-
nempty: bool = False):
|
|
15
|
-
r''' Converts the input feature to the full-voxel-based representation.
|
|
16
|
-
|
|
17
|
-
Args:
|
|
18
|
-
data (torch.Tensor): The input feature.
|
|
19
|
-
octree (Octree): The corresponding octree.
|
|
20
|
-
depth (int): The depth of current octree.
|
|
21
|
-
nempty (bool): If True, :attr:`data` only contains the features of non-empty
|
|
22
|
-
octree nodes.
|
|
23
|
-
'''
|
|
24
|
-
|
|
25
|
-
x, y, z, b = octree.xyzb(depth, nempty)
|
|
26
|
-
|
|
27
|
-
num = 1 << depth
|
|
28
|
-
channel = data.shape[1]
|
|
29
|
-
vox = data.new_zeros([octree.batch_size, num, num, num, channel])
|
|
30
|
-
vox[b, x, y, z] = data
|
|
31
|
-
return vox
|
|
32
|
-
|
|
33
|
-
|
|
34
|
-
class Octree2Voxel(torch.nn.Module):
|
|
35
|
-
r''' Converts the input feature to the full-voxel-based representation.
|
|
36
|
-
|
|
37
|
-
Please refer to :func:`octree2voxel` for details.
|
|
38
|
-
'''
|
|
39
|
-
|
|
40
|
-
def __init__(self, nempty: bool = False):
|
|
41
|
-
super().__init__()
|
|
42
|
-
self.nempty = nempty
|
|
43
|
-
|
|
44
|
-
def forward(self, data: torch.Tensor, octree: Octree, depth: int):
|
|
45
|
-
r''''''
|
|
46
|
-
|
|
47
|
-
return octree2voxel(data, octree, depth, self.nempty)
|
|
48
|
-
|
|
49
|
-
def extra_repr(self) -> str:
|
|
50
|
-
return 'nempty={}'.format(self.nempty)
|
|
1
|
+
# --------------------------------------------------------
|
|
2
|
+
# Octree-based Sparse Convolutional Neural Networks
|
|
3
|
+
# Copyright (c) 2022 Peng-Shuai Wang <wangps@hotmail.com>
|
|
4
|
+
# Licensed under The MIT License [see LICENSE for details]
|
|
5
|
+
# Written by Peng-Shuai Wang
|
|
6
|
+
# --------------------------------------------------------
|
|
7
|
+
|
|
8
|
+
import torch
|
|
9
|
+
|
|
10
|
+
from ocnn.octree import Octree
|
|
11
|
+
|
|
12
|
+
|
|
13
|
+
def octree2voxel(data: torch.Tensor, octree: Octree, depth: int,
|
|
14
|
+
nempty: bool = False):
|
|
15
|
+
r''' Converts the input feature to the full-voxel-based representation.
|
|
16
|
+
|
|
17
|
+
Args:
|
|
18
|
+
data (torch.Tensor): The input feature.
|
|
19
|
+
octree (Octree): The corresponding octree.
|
|
20
|
+
depth (int): The depth of current octree.
|
|
21
|
+
nempty (bool): If True, :attr:`data` only contains the features of non-empty
|
|
22
|
+
octree nodes.
|
|
23
|
+
'''
|
|
24
|
+
|
|
25
|
+
x, y, z, b = octree.xyzb(depth, nempty)
|
|
26
|
+
|
|
27
|
+
num = 1 << depth
|
|
28
|
+
channel = data.shape[1]
|
|
29
|
+
vox = data.new_zeros([octree.batch_size, num, num, num, channel])
|
|
30
|
+
vox[b, x, y, z] = data
|
|
31
|
+
return vox
|
|
32
|
+
|
|
33
|
+
|
|
34
|
+
class Octree2Voxel(torch.nn.Module):
|
|
35
|
+
r''' Converts the input feature to the full-voxel-based representation.
|
|
36
|
+
|
|
37
|
+
Please refer to :func:`octree2voxel` for details.
|
|
38
|
+
'''
|
|
39
|
+
|
|
40
|
+
def __init__(self, nempty: bool = False):
|
|
41
|
+
super().__init__()
|
|
42
|
+
self.nempty = nempty
|
|
43
|
+
|
|
44
|
+
def forward(self, data: torch.Tensor, octree: Octree, depth: int):
|
|
45
|
+
r''''''
|
|
46
|
+
|
|
47
|
+
return octree2voxel(data, octree, depth, self.nempty)
|
|
48
|
+
|
|
49
|
+
def extra_repr(self) -> str:
|
|
50
|
+
return 'nempty={}'.format(self.nempty)
|
ocnn/nn/octree_align.py
CHANGED
|
@@ -1,46 +1,46 @@
|
|
|
1
|
-
# --------------------------------------------------------
|
|
2
|
-
# Octree-based Sparse Convolutional Neural Networks
|
|
3
|
-
# Copyright (c) 2022 Peng-Shuai Wang <wangps@hotmail.com>
|
|
4
|
-
# Licensed under The MIT License [see LICENSE for details]
|
|
5
|
-
# Written by Peng-Shuai Wang
|
|
6
|
-
# --------------------------------------------------------
|
|
7
|
-
|
|
8
|
-
import torch
|
|
9
|
-
|
|
10
|
-
from ocnn.octree import Octree
|
|
11
|
-
|
|
12
|
-
|
|
13
|
-
def search_value(value: torch.Tensor, key: torch.Tensor, query: torch.Tensor):
|
|
14
|
-
r''' Searches values according to sorted shuffled keys.
|
|
15
|
-
|
|
16
|
-
Args:
|
|
17
|
-
value (torch.Tensor): The input tensor with shape (N, C).
|
|
18
|
-
key (torch.Tensor): The key tensor corresponds to :attr:`value` with shape
|
|
19
|
-
(N,), which contains sorted shuffled keys of an octree.
|
|
20
|
-
query (torch.Tensor): The query tensor, which also contains shuffled keys.
|
|
21
|
-
'''
|
|
22
|
-
|
|
23
|
-
# deal with out-of-bound queries, the indices of these queries
|
|
24
|
-
# returned by torch.searchsorted equal to `key.shape[0]`
|
|
25
|
-
out_of_bound = query > key[-1]
|
|
26
|
-
|
|
27
|
-
# search
|
|
28
|
-
idx = torch.searchsorted(key, query)
|
|
29
|
-
idx[out_of_bound] = -1 # to avoid overflow when executing the following line
|
|
30
|
-
found = key[idx] == query
|
|
31
|
-
|
|
32
|
-
# assign the found value to the output
|
|
33
|
-
out = torch.zeros(query.shape[0], value.shape[1], device=value.device)
|
|
34
|
-
out[found] = value[idx[found]]
|
|
35
|
-
return out
|
|
36
|
-
|
|
37
|
-
|
|
38
|
-
def octree_align(value: torch.Tensor, octree: Octree, octree_query: Octree,
|
|
39
|
-
depth: int, nempty: bool = False):
|
|
40
|
-
r''' Wraps :func:`octree_align` to take octrees as input for convenience.
|
|
41
|
-
'''
|
|
42
|
-
|
|
43
|
-
key = octree.key(depth, nempty)
|
|
44
|
-
query = octree_query.key(depth, nempty)
|
|
45
|
-
assert key.shape[0] == value.shape[0]
|
|
46
|
-
return search_value(value, key, query)
|
|
1
|
+
# --------------------------------------------------------
|
|
2
|
+
# Octree-based Sparse Convolutional Neural Networks
|
|
3
|
+
# Copyright (c) 2022 Peng-Shuai Wang <wangps@hotmail.com>
|
|
4
|
+
# Licensed under The MIT License [see LICENSE for details]
|
|
5
|
+
# Written by Peng-Shuai Wang
|
|
6
|
+
# --------------------------------------------------------
|
|
7
|
+
|
|
8
|
+
import torch
|
|
9
|
+
|
|
10
|
+
from ocnn.octree import Octree
|
|
11
|
+
|
|
12
|
+
|
|
13
|
+
def search_value(value: torch.Tensor, key: torch.Tensor, query: torch.Tensor):
|
|
14
|
+
r''' Searches values according to sorted shuffled keys.
|
|
15
|
+
|
|
16
|
+
Args:
|
|
17
|
+
value (torch.Tensor): The input tensor with shape (N, C).
|
|
18
|
+
key (torch.Tensor): The key tensor corresponds to :attr:`value` with shape
|
|
19
|
+
(N,), which contains sorted shuffled keys of an octree.
|
|
20
|
+
query (torch.Tensor): The query tensor, which also contains shuffled keys.
|
|
21
|
+
'''
|
|
22
|
+
|
|
23
|
+
# deal with out-of-bound queries, the indices of these queries
|
|
24
|
+
# returned by torch.searchsorted equal to `key.shape[0]`
|
|
25
|
+
out_of_bound = query > key[-1]
|
|
26
|
+
|
|
27
|
+
# search
|
|
28
|
+
idx = torch.searchsorted(key, query)
|
|
29
|
+
idx[out_of_bound] = -1 # to avoid overflow when executing the following line
|
|
30
|
+
found = key[idx] == query
|
|
31
|
+
|
|
32
|
+
# assign the found value to the output
|
|
33
|
+
out = torch.zeros(query.shape[0], value.shape[1], device=value.device)
|
|
34
|
+
out[found] = value[idx[found]]
|
|
35
|
+
return out
|
|
36
|
+
|
|
37
|
+
|
|
38
|
+
def octree_align(value: torch.Tensor, octree: Octree, octree_query: Octree,
|
|
39
|
+
depth: int, nempty: bool = False):
|
|
40
|
+
r''' Wraps :func:`octree_align` to take octrees as input for convenience.
|
|
41
|
+
'''
|
|
42
|
+
|
|
43
|
+
key = octree.key(depth, nempty)
|
|
44
|
+
query = octree_query.key(depth, nempty)
|
|
45
|
+
assert key.shape[0] == value.shape[0]
|
|
46
|
+
return search_value(value, key, query)
|