ocnn 2.2.0__py3-none-any.whl → 2.2.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,65 +1,67 @@
1
- Metadata-Version: 2.1
2
- Name: ocnn
3
- Version: 2.2.0
4
- Summary: Octree-based Sparse Convolutional Neural Networks
5
- Home-page: https://github.com/octree-nn/ocnn-pytorch
6
- Author: Peng-Shuai Wang
7
- Author-email: wangps@hotmail.com
8
- License: MIT
9
- Classifier: Programming Language :: Python :: 3
10
- Classifier: License :: OSI Approved :: MIT License
11
- Classifier: Operating System :: OS Independent
12
- Requires-Python: >=3.6
13
- Description-Content-Type: text/markdown
14
- License-File: LICENSE
15
- Requires-Dist: torch
16
- Requires-Dist: numpy
17
-
18
- # O-CNN
19
-
20
- **[Documentation](https://ocnn-pytorch.readthedocs.io)**
21
-
22
- [![Documentation Status](https://readthedocs.org/projects/ocnn-pytorch/badge/?version=latest)](https://ocnn-pytorch.readthedocs.io/en/latest/?badge=latest)
23
- [![downloads](https://pepy.tech/badge/ocnn)](https://pepy.tech/project/ocnn)
24
- [![PyPI](https://img.shields.io/pypi/v/ocnn)](https://pypi.org/project/ocnn/)
25
-
26
- This repository contains the **pure PyTorch**-based implementation of
27
- [O-CNN](https://wang-ps.github.io/O-CNN.html). The code has been tested with
28
- `Pytorch>=1.6.0`, and `Pytorch>=1.9.0` is preferred.
29
-
30
- O-CNN is an octree-based sparse convolutional neural network framework for 3D
31
- deep learning. O-CNN constrains the CNN storage and computation into non-empty
32
- sparse voxels for efficiency and uses the `octree` data structure to organize
33
- and index these sparse voxels.
34
-
35
- The concept of sparse convolution in O-CNN is the same with
36
- [H-CNN](https://ieeexplore.ieee.org/abstract/document/8580422),
37
- [SparseConvNet](https://openaccess.thecvf.com/content_cvpr_2018/papers/Graham_3D_Semantic_Segmentation_CVPR_2018_paper.pdf),
38
- and
39
- [MinkowskiNet](https://openaccess.thecvf.com/content_CVPR_2019/papers/Choy_4D_Spatio-Temporal_ConvNets_Minkowski_Convolutional_Neural_Networks_CVPR_2019_paper.pdf).
40
- The key difference is that our O-CNN uses the `octree` to index the sparse
41
- voxels, while these 3 works use the `Hash Table`.
42
-
43
- Our O-CNN is published in SIGGRAPH 2017, H-CNN is published in TVCG 2018,
44
- SparseConvNet is published in CVPR 2018, and MinkowskiNet is published in
45
- CVPR 2019. Actually, our O-CNN was submitted to SIGGRAPH in the end of 2016 and
46
- was officially accepted in March, 2017. The camera-ready version of our O-CNN was
47
- submitted to SIGGRAPH in April, 2017. We just did not post our paper on Arxiv
48
- during the review process of SIGGRAPH. Therefore, **the idea of constraining CNN
49
- computation into sparse non-emtpry voxels is first proposed by our O-CNN**.
50
- Currently, this type of 3D convolution is known as Sparse Convolution in the
51
- research community.
52
-
53
- ## Key benefits of ocnn-pytorch
54
-
55
- - **Simplicity**. The ocnn-pytorch is based on pure PyTorch, it is portable and
56
- can be installed with a simple command:`pip install ocnn`. Other sparse
57
- convolution frameworks heavily rely on C++ and CUDA, and it is complicated to
58
- configure the compiling environment.
59
-
60
- - **Efficiency**. The ocnn-pytorch is very efficient compared with other sparse
61
- convolution frameworks. It only takes 18 hours to train the network on
62
- ScanNet for 600 epochs with 4 V100 GPUs. For reference, under the same
63
- training settings, MinkowskiNet 0.4.3 takes 60 hours and MinkowskiNet 0.5.4
64
- takes 30 hours.
65
-
1
+ Metadata-Version: 2.1
2
+ Name: ocnn
3
+ Version: 2.2.2
4
+ Summary: Octree-based Sparse Convolutional Neural Networks
5
+ Home-page: https://github.com/octree-nn/ocnn-pytorch
6
+ Author: Peng-Shuai Wang
7
+ Author-email: wangps@hotmail.com
8
+ License: MIT
9
+ Classifier: Programming Language :: Python :: 3
10
+ Classifier: License :: OSI Approved :: MIT License
11
+ Classifier: Operating System :: OS Independent
12
+ Requires-Python: >=3.6
13
+ Description-Content-Type: text/markdown
14
+ License-File: LICENSE
15
+ Requires-Dist: torch
16
+ Requires-Dist: torchvision
17
+ Requires-Dist: numpy
18
+ Requires-Dist: packaging
19
+
20
+ # O-CNN
21
+
22
+ **[Documentation](https://ocnn-pytorch.readthedocs.io)**
23
+
24
+ [![Documentation Status](https://readthedocs.org/projects/ocnn-pytorch/badge/?version=latest)](https://ocnn-pytorch.readthedocs.io/en/latest/?badge=latest)
25
+ [![Downloads](https://static.pepy.tech/badge/ocnn)](https://pepy.tech/project/ocnn)
26
+ [![PyPI](https://img.shields.io/pypi/v/ocnn)](https://pypi.org/project/ocnn/)
27
+
28
+ This repository contains the **pure PyTorch**-based implementation of
29
+ [O-CNN](https://wang-ps.github.io/O-CNN.html). The code has been tested with
30
+ `Pytorch>=1.6.0`, and `Pytorch>=1.9.0` is preferred.
31
+
32
+ O-CNN is an octree-based sparse convolutional neural network framework for 3D
33
+ deep learning. O-CNN constrains the CNN storage and computation into non-empty
34
+ sparse voxels for efficiency and uses the `octree` data structure to organize
35
+ and index these sparse voxels.
36
+
37
+ The concept of sparse convolution in O-CNN is the same with
38
+ [H-CNN](https://ieeexplore.ieee.org/abstract/document/8580422),
39
+ [SparseConvNet](https://openaccess.thecvf.com/content_cvpr_2018/papers/Graham_3D_Semantic_Segmentation_CVPR_2018_paper.pdf),
40
+ and
41
+ [MinkowskiNet](https://openaccess.thecvf.com/content_CVPR_2019/papers/Choy_4D_Spatio-Temporal_ConvNets_Minkowski_Convolutional_Neural_Networks_CVPR_2019_paper.pdf).
42
+ The key difference is that our O-CNN uses the `octree` to index the sparse
43
+ voxels, while these 3 works use the `Hash Table`.
44
+
45
+ Our O-CNN is published in SIGGRAPH 2017, H-CNN is published in TVCG 2018,
46
+ SparseConvNet is published in CVPR 2018, and MinkowskiNet is published in
47
+ CVPR 2019. Actually, our O-CNN was submitted to SIGGRAPH in the end of 2016 and
48
+ was officially accepted in March, 2017. The camera-ready version of our O-CNN was
49
+ submitted to SIGGRAPH in April, 2017. We just did not post our paper on Arxiv
50
+ during the review process of SIGGRAPH. Therefore, **the idea of constraining CNN
51
+ computation into sparse non-emtpry voxels is first proposed by our O-CNN**.
52
+ Currently, this type of 3D convolution is known as Sparse Convolution in the
53
+ research community.
54
+
55
+ ## Key benefits of ocnn-pytorch
56
+
57
+ - **Simplicity**. The ocnn-pytorch is based on pure PyTorch, it is portable and
58
+ can be installed with a simple command:`pip install ocnn`. Other sparse
59
+ convolution frameworks heavily rely on C++ and CUDA, and it is complicated to
60
+ configure the compiling environment.
61
+
62
+ - **Efficiency**. The ocnn-pytorch is very efficient compared with other sparse
63
+ convolution frameworks. It only takes 18 hours to train the network on
64
+ ScanNet for 600 epochs with 4 V100 GPUs. For reference, under the same
65
+ training settings, MinkowskiNet 0.4.3 takes 60 hours and MinkowskiNet 0.5.4
66
+ takes 30 hours.
67
+
@@ -0,0 +1,36 @@
1
+ ocnn/__init__.py,sha256=3vM-r35p3glXfQ00Pqe13Loig8b8zk17l-_lw2npsP0,582
2
+ ocnn/dataset.py,sha256=wvclvjlZs9qTeMXWLaO32K5d1VVY9XHSNuVVJEpVeeo,5266
3
+ ocnn/utils.py,sha256=w6IrVsBMAL5JuBUxg1BtcuWkCpy8Fo5LkYG6arYpFkc,6618
4
+ ocnn/models/__init__.py,sha256=F9PJRhOPHc1OrwkqcfywEBW0J6jmVW7-IHgWjGpY15U,724
5
+ ocnn/models/autoencoder.py,sha256=TjOet3dbZLexz-PvZdeV0mbIuGpUAeSH6KWU_z_s-d8,5906
6
+ ocnn/models/hrnet.py,sha256=9W2fi7Fuw0JXDBiZtEoUW2K7ghtpWUm_BWd-mKoHLY0,6684
7
+ ocnn/models/image2shape.py,sha256=5djcOHJh2SQCwd5XdLPeL5vlQDNWnRU3tJY3ojRI8aQ,4589
8
+ ocnn/models/lenet.py,sha256=oryTVauF48biFIJY163d15JNTYHU4M_gBHUWKDM9n7Q,1754
9
+ ocnn/models/ounet.py,sha256=sGGVHqF1nKw798vyththxp7-P3wHlsDUO39hbQpUVTw,3303
10
+ ocnn/models/resnet.py,sha256=9gZKbhFituqPJHCm-bp1xTtHKZ6wu77s31a0q7RtXoQ,2029
11
+ ocnn/models/segnet.py,sha256=VfZf8gBMSPgO5m8Agsfccw9snTrI4LGh0SqxhLZ1F8s,2575
12
+ ocnn/models/unet.py,sha256=1FZbTvmWg6sMYkcZyNxcSr_qN6bfOOag-tIwAoqIPKU,4123
13
+ ocnn/modules/__init__.py,sha256=BAEZybvtwDQf7yPZpGcptH1Oxf654Alq87G9D0vKw-E,820
14
+ ocnn/modules/modules.py,sha256=7VlBsbwN49J8Xea0DXcFHVhN8POxhzC3FNMY3_JHukM,6207
15
+ ocnn/modules/resblocks.py,sha256=Xh5EH6aSx8zcLk3D4m4lZiWDejLMu5AQDH7ZDI4p23A,4548
16
+ ocnn/nn/__init__.py,sha256=rmdXQiUa9-GVvVoAxDYf2uTc0yeiwW67BCgOgnqzn60,1707
17
+ ocnn/nn/octree2col.py,sha256=07BGGJD0je0VD-VdS_aKtDo7gWKNWdgojeL1a2n4VRQ,2137
18
+ ocnn/nn/octree2vox.py,sha256=QgyxxZvRvw2taHFWCvcGyCFAnFC6D6nfw71HrvwN3PI,1524
19
+ ocnn/nn/octree_align.py,sha256=Y12GBKS-F3JtRNaDdDcBFDBvhndoRxeMOVua4RB5HZE,1696
20
+ ocnn/nn/octree_conv.py,sha256=rylone_moG8oiWrhb4YYfTgtKcFqHyQ_hCk-VgGzvzI,14468
21
+ ocnn/nn/octree_drop.py,sha256=croMHtk0JScDT0nLpdmbiMnkM_b5uVAz6sOEUcta6sY,1963
22
+ ocnn/nn/octree_dwconv.py,sha256=lXwDtcIYUSjuY4qBGIMOsWHYBr5V7L6RFc78B0z8Ki8,6876
23
+ ocnn/nn/octree_gconv.py,sha256=Ogkn7wE49dDdP0X_aBthNfJXMsqcRn3ufJuYQtEEjUI,2928
24
+ ocnn/nn/octree_interp.py,sha256=yQVjiKMNLU1XakPeYjW5ArMsw2fxFRZdh90Nn3cWQuE,7108
25
+ ocnn/nn/octree_norm.py,sha256=Mbn28Hv-CEWt2WA0Pdhj2p127m10vwhepzCJVjiZYMI,2976
26
+ ocnn/nn/octree_pad.py,sha256=suV6Ftb-UlUuoJzKdQ9DCP9oqVQJq7vXb9_6hq-kUk4,1323
27
+ ocnn/nn/octree_pool.py,sha256=Zn2XLk5SFl6pqMhhKIvu1uZl5ebonFSlPcKr54fOIPA,6664
28
+ ocnn/octree/__init__.py,sha256=vKZFc5_r6Gxg5KsPWiCZCR-umWWfWPoE7qBx4PIrUGA,630
29
+ ocnn/octree/octree.py,sha256=w5L3cfXIbyzzQEqC8JiVMX-Jyijh6DxhXulE4voKfm0,23722
30
+ ocnn/octree/points.py,sha256=8yYHVc7E40qA8c3MGuI50k_51nwjg92PXXA3YRXt-LY,11121
31
+ ocnn/octree/shuffled_key.py,sha256=UJZ4eKNA_7nLbf9FbEvS_3VyrAqnZCOzk1hsPtJianM,3936
32
+ ocnn-2.2.2.dist-info/LICENSE,sha256=YeOS0Plo8Uistv_8ZXdgddmN9GHJKnIiJ5FZ8zTW6Sw,1114
33
+ ocnn-2.2.2.dist-info/METADATA,sha256=tnq-YTGa06xrggKxndRvoe2GS5Hv6qIx65LKyQmF1HM,3297
34
+ ocnn-2.2.2.dist-info/WHEEL,sha256=GJ7t_kWBFywbagK5eo9IoUwLW6oyOeTKmQ-9iHFVNxQ,92
35
+ ocnn-2.2.2.dist-info/top_level.txt,sha256=ayZdVOnxlOke3kgzAlrRh2IEL_qOudwOaEU3xhjtpZ0,5
36
+ ocnn-2.2.2.dist-info/RECORD,,
@@ -1,5 +1,5 @@
1
1
  Wheel-Version: 1.0
2
- Generator: bdist_wheel (0.38.4)
2
+ Generator: bdist_wheel (0.43.0)
3
3
  Root-Is-Purelib: true
4
4
  Tag: py3-none-any
5
5
 
@@ -1,32 +0,0 @@
1
- ocnn/__init__.py,sha256=Zv5CZ9U_SMB2iTfxKpDadxx2e4VjQYglYCYXMVtfi2U,558
2
- ocnn/dataset.py,sha256=Nq6Qu-8MpEr_1W8EKvOQr09WqRXwjpfmS7FpC3fELSo,5036
3
- ocnn/utils.py,sha256=N95F2gqluWXad0J5zy9U-iDRVBe5A9m-YGgcGCiwKi0,4949
4
- ocnn/models/__init__.py,sha256=8r1yDRUHyVGLQHIfT8PIiLmlUjjCPgSg1FF0VE8V3DY,600
5
- ocnn/models/autoencoder.py,sha256=6pzfedwcLYyMrdDg2-1SkfQUxiJEnVYX-aTq4RLes3E,6028
6
- ocnn/models/hrnet.py,sha256=oLVDmnCG0DMrfCDLOHQJ0z7mugIG7NZZPJSR-pdi_s0,6429
7
- ocnn/models/lenet.py,sha256=Q_K3_MA5351IAiNC8u-rZv9Oqaxw0xTjw5tLv4ZxkIM,1708
8
- ocnn/models/resnet.py,sha256=NNjKrNN9WK0g9QkG8BEtNx-1NdURvtz3AgONktmFblA,1976
9
- ocnn/models/segnet.py,sha256=B9fmbxrGLUk89Mtau8bxWvasA4QKuX8kS_sXlJY-chA,2503
10
- ocnn/models/unet.py,sha256=zQi-e_3iblMq-1FwstRqDTdeG_nIAtGAc6xwzk6RzlA,4018
11
- ocnn/modules/__init__.py,sha256=3yBPDqJ82SIb-M42EmjWdE16g5huQp8PHp_y2rty1rk,800
12
- ocnn/modules/modules.py,sha256=M2mrrouttQ3hWj0A9-iFBeQPBXPQvSJySeloR2OFXFw,7433
13
- ocnn/modules/resblocks.py,sha256=coYMDc9_0EhhzAJ_EthNVkvif7rixe2yqBvcpdjoYSw,4424
14
- ocnn/nn/__init__.py,sha256=iLgcG8-3iE8PT9R5kcLEtNOlyMxZc7QV3XhM8ycUICc,1540
15
- ocnn/nn/octree2col.py,sha256=GAnUmCm0vqpvdoVhiteDizsjCUNIO0eIFEfWnFu4Z7A,2084
16
- ocnn/nn/octree2vox.py,sha256=I0VQpnqJlHaeEbsRBwKb8gnYRana8rSM3l-ypEuKAXI,1474
17
- ocnn/nn/octree_conv.py,sha256=hPBlJ4iKqsFsCzpU5V8TKn1Ifkrt6U9fKV-ZJ5TIN1U,14057
18
- ocnn/nn/octree_drop.py,sha256=KzlLNklPFQ9IAnWuvk4F6YQ8jg1P2vwgnsIeUE7eLzc,1908
19
- ocnn/nn/octree_dwconv.py,sha256=LIqQi4by4gR25W0Iyqt6Y35NnBrWUlykTKhPsbNQPjc,6672
20
- ocnn/nn/octree_interp.py,sha256=wQjh11HeHMTDdzb5csek1JzOtqIM0HLvEj_U8NVC9Ps,6912
21
- ocnn/nn/octree_norm.py,sha256=Gl-LropjolLx8ECnhqOQv5DPUEe_JJGbFoiuVitJe5E,1818
22
- ocnn/nn/octree_pad.py,sha256=hCGruT9wy04BxuSQNz_G1q0B-ug_4O_K5RC5zr_1ANg,1281
23
- ocnn/nn/octree_pool.py,sha256=03WU3p92U45frk5gYunp7E1kLB4EeWjrXI6jFnE0VO0,6356
24
- ocnn/octree/__init__.py,sha256=iiuSgmhFikuBhYx42jKHlyL3c6k1euaVkJFSjXx3lLw,576
25
- ocnn/octree/octree.py,sha256=Fg8F7t3xo3P__tMw_MYY91FhWByXBkEH-4P2HUhc-fA,20759
26
- ocnn/octree/points.py,sha256=UhWUb4NsDxCCQfEKqd5-roIQdAGFwlwdyCQjhK9c3Uc,10076
27
- ocnn/octree/shuffled_key.py,sha256=AhXnj3JL1UHxXWrH1QLPJpv_7aKlBI5Eh6CgiJnXE4c,3821
28
- ocnn-2.2.0.dist-info/LICENSE,sha256=gOZUTXnEc1Od1G6uwCP9_8Lg24YXkCI6iAsMJoGkUlI,1093
29
- ocnn-2.2.0.dist-info/METADATA,sha256=wXWqxH4O0Ae2HZrBR9zBXfRK6Ugl2g6BbgicJrh70Eo,3171
30
- ocnn-2.2.0.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
31
- ocnn-2.2.0.dist-info/top_level.txt,sha256=ayZdVOnxlOke3kgzAlrRh2IEL_qOudwOaEU3xhjtpZ0,5
32
- ocnn-2.2.0.dist-info/RECORD,,