ocf-data-sampler 0.5.14__py3-none-any.whl → 0.5.15__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of ocf-data-sampler might be problematic. Click here for more details.

@@ -90,7 +90,7 @@ class DropoutMixin(Base):
90
90
  "negative or zero.",
91
91
  )
92
92
 
93
- dropout_fraction: float|list[float] = Field(
93
+ dropout_fraction: float | list[float] = Field(
94
94
  default=0,
95
95
  description="Either a float(Chance of dropout being applied to each sample) or a list of "
96
96
  "floats (probability that dropout of the corresponding timedelta is applied)",
@@ -106,31 +106,22 @@ class DropoutMixin(Base):
106
106
 
107
107
 
108
108
  @field_validator("dropout_fraction")
109
- def dropout_fractions(cls, dropout_frac: float|list[float]) -> float|list[float]:
109
+ def dropout_fractions(cls, dropout_frac: float | list[float]) -> float | list[float]:
110
110
  """Validate 'dropout_frac'."""
111
- from math import isclose
112
- if isinstance(dropout_frac, float):
113
- if not (dropout_frac <= 1):
114
- raise ValueError("Input should be less than or equal to 1")
115
- elif not (dropout_frac >= 0):
116
- raise ValueError("Input should be greater than or equal to 0")
111
+ if isinstance(dropout_frac, float | int):
112
+ if not (0<= dropout_frac <= 1):
113
+ raise ValueError("Dropout fractions must be in range [0, 1]")
117
114
 
118
115
  elif isinstance(dropout_frac, list):
119
116
  if not dropout_frac:
120
117
  raise ValueError("List cannot be empty")
121
118
 
122
- if not all(isinstance(i, float) for i in dropout_frac):
123
- raise ValueError("All elements in the list must be floats")
124
-
125
119
  if not all(0 <= i <= 1 for i in dropout_frac):
126
- raise ValueError("Each float in the list must be between 0 and 1")
127
-
128
- if not isclose(sum(dropout_frac), 1.0, rel_tol=1e-9):
129
- raise ValueError("Sum of all floats in the list must be 1.0")
120
+ raise ValueError("All dropout fractions must be in range [0, 1]")
130
121
 
122
+ if not (0 <= sum(dropout_frac) <= 1):
123
+ raise ValueError("The sum of dropout fractions must be in range [0, 1]")
131
124
 
132
- else:
133
- raise TypeError("Must be either a float or a list of floats")
134
125
  return dropout_frac
135
126
 
136
127
 
@@ -9,53 +9,51 @@ import pandas as pd
9
9
  import xarray as xr
10
10
 
11
11
 
12
- def apply_sampled_dropout_time(
12
+ def apply_history_dropout(
13
13
  t0: pd.Timestamp,
14
14
  dropout_timedeltas: list[pd.Timedelta],
15
- dropout_frac: float|list[float],
15
+ dropout_frac: float | list[float],
16
16
  da: xr.DataArray,
17
17
  ) -> xr.DataArray:
18
- """Randomly pick a dropout time from a list of timedeltas and apply dropout time to the data.
18
+ """Apply randomly sampled dropout to the historical part of some sequence data.
19
+
20
+ Dropped out data is replaced with NaNs
19
21
 
20
22
  Args:
21
- t0: The forecast init-time
23
+ t0: The forecast init-time.
22
24
  dropout_timedeltas: List of timedeltas relative to t0 to pick from
23
- dropout_frac: Either a probability that dropout will be applied.
24
- This should be between 0 and 1 inclusive.
25
- Or a list of probabilities for each of the corresponding timedeltas
25
+ dropout_frac: The probabilit(ies) that each dropout timedelta will be applied. This should
26
+ be between 0 and 1 inclusive.
26
27
  da: Xarray DataArray with 'time_utc' coordinate
27
28
  """
28
- if isinstance(dropout_frac, list):
29
- # checking if len match
30
- if len(dropout_frac) != len(dropout_timedeltas):
31
- raise ValueError("Lengths of dropout_frac and dropout_timedeltas should match")
29
+ if len(dropout_timedeltas)==0:
30
+ return da
32
31
 
32
+ if isinstance(dropout_frac, float | int):
33
33
 
34
+ if not (0<=dropout_frac<=1):
35
+ raise ValueError("`dropout_frac` must be in range [0, 1]")
34
36
 
37
+ # Create list with equal chance for all dropout timedeltas
38
+ n = len(dropout_timedeltas)
39
+ dropout_frac = [dropout_frac/n for _ in range(n)]
40
+ else:
41
+ if not 0<=sum(dropout_frac)<=1:
42
+ raise ValueError("The sum of `dropout_frac` must be in range [0, 1]")
43
+ if len(dropout_timedeltas)!=len(dropout_frac):
44
+ raise ValueError("`dropout_timedeltas` and `dropout_frac` must have the same length")
35
45
 
36
- dropout_time = t0 + np.random.choice(dropout_timedeltas,p=dropout_frac)
46
+ dropout_frac = [*dropout_frac] # Make copy of the list so we can append to it
37
47
 
38
- return da.where(da.time_utc <= dropout_time)
48
+ dropout_timedeltas = [*dropout_timedeltas] # Make copy of the list so we can append to it
39
49
 
50
+ # Add chance of no dropout
51
+ dropout_frac.append(1-sum(dropout_frac))
52
+ dropout_timedeltas.append(None)
40
53
 
54
+ timedelta_choice = np.random.choice(dropout_timedeltas, p=dropout_frac)
41
55
 
42
- # old logic
56
+ if timedelta_choice is None:
57
+ return da
43
58
  else:
44
- # sample dropout time
45
- if dropout_frac > 0 and len(dropout_timedeltas) == 0:
46
- raise ValueError("To apply dropout, dropout_timedeltas must be provided")
47
-
48
-
49
- if not (0 <= dropout_frac <= 1):
50
- raise ValueError("dropout_frac must be between 0 and 1 inclusive")
51
-
52
- if (len(dropout_timedeltas) == 0) or (np.random.uniform() >= dropout_frac):
53
- dropout_time = None
54
- else:
55
- dropout_time = t0 + np.random.choice(dropout_timedeltas)
56
-
57
- # apply dropout time
58
- if dropout_time is None:
59
- return da
60
- # This replaces the times after the dropout with NaNs
61
- return da.where(da.time_utc <= dropout_time)
59
+ return da.where((da.time_utc <= timedelta_choice + t0) | (da.time_utc> t0))
@@ -1,10 +1,9 @@
1
1
  """Slice datasets by time."""
2
2
 
3
3
  import pandas as pd
4
- import xarray as xr
5
4
 
6
5
  from ocf_data_sampler.config import Configuration
7
- from ocf_data_sampler.select.dropout import apply_sampled_dropout_time
6
+ from ocf_data_sampler.select.dropout import apply_history_dropout
8
7
  from ocf_data_sampler.select.select_time_slice import select_time_slice, select_time_slice_nwp
9
8
  from ocf_data_sampler.utils import minutes
10
9
 
@@ -52,7 +51,7 @@ def slice_datasets_by_time(
52
51
  )
53
52
 
54
53
  # Apply the randomly sampled dropout
55
- sliced_datasets_dict["sat"] = apply_sampled_dropout_time(
54
+ sliced_datasets_dict["sat"] = apply_history_dropout(
56
55
  t0,
57
56
  dropout_timedeltas=minutes(sat_config.dropout_timedeltas_minutes),
58
57
  dropout_frac=sat_config.dropout_fraction,
@@ -62,59 +61,44 @@ def slice_datasets_by_time(
62
61
  if "gsp" in datasets_dict:
63
62
  gsp_config = config.input_data.gsp
64
63
 
65
- da_gsp_past = select_time_slice(
64
+ da_gsp = select_time_slice(
66
65
  datasets_dict["gsp"],
67
66
  t0,
68
67
  time_resolution=minutes(gsp_config.time_resolution_minutes),
69
68
  interval_start=minutes(gsp_config.interval_start_minutes),
70
- interval_end=minutes(0),
69
+ interval_end=minutes(gsp_config.interval_end_minutes),
71
70
  )
72
71
 
73
72
  # Dropout on the past GSP, but not the future GSP
74
- da_gsp_past = apply_sampled_dropout_time(
73
+ da_gsp = apply_history_dropout(
75
74
  t0,
76
75
  dropout_timedeltas=minutes(gsp_config.dropout_timedeltas_minutes),
77
76
  dropout_frac=gsp_config.dropout_fraction,
78
- da=da_gsp_past,
79
- )
80
-
81
- da_gsp_future = select_time_slice(
82
- datasets_dict["gsp"],
83
- t0,
84
- time_resolution=minutes(gsp_config.time_resolution_minutes),
85
- interval_start=minutes(gsp_config.time_resolution_minutes),
86
- interval_end=minutes(gsp_config.interval_end_minutes),
77
+ da=da_gsp,
87
78
  )
88
79
 
89
- sliced_datasets_dict["gsp"] = xr.concat([da_gsp_past, da_gsp_future], dim="time_utc")
80
+ sliced_datasets_dict["gsp"] = da_gsp
90
81
 
91
82
  if "site" in datasets_dict:
92
83
  site_config = config.input_data.site
93
84
 
94
- da_site_past = select_time_slice(
85
+ da_site = select_time_slice(
95
86
  datasets_dict["site"],
96
87
  t0,
97
88
  time_resolution=minutes(site_config.time_resolution_minutes),
98
89
  interval_start=minutes(site_config.interval_start_minutes),
99
- interval_end=minutes(0),
90
+ interval_end=minutes(site_config.interval_end_minutes),
100
91
  )
101
92
 
102
93
  # Apply the randomly sampled dropout on the past site not the future
103
- da_site_past = apply_sampled_dropout_time(
94
+ da_site = apply_history_dropout(
104
95
  t0,
105
96
  dropout_timedeltas=minutes(site_config.dropout_timedeltas_minutes),
106
97
  dropout_frac=site_config.dropout_fraction,
107
- da=da_site_past,
98
+ da=da_site,
108
99
  )
109
100
 
110
- da_site_future = select_time_slice(
111
- datasets_dict["site"],
112
- t0,
113
- time_resolution=minutes(site_config.time_resolution_minutes),
114
- interval_start=minutes(site_config.time_resolution_minutes),
115
- interval_end=minutes(site_config.interval_end_minutes),
116
- )
101
+ sliced_datasets_dict["site"] = da_site
117
102
 
118
- sliced_datasets_dict["site"] = xr.concat([da_site_past, da_site_future], dim="time_utc")
119
103
 
120
104
  return sliced_datasets_dict
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: ocf-data-sampler
3
- Version: 0.5.14
3
+ Version: 0.5.15
4
4
  Author: James Fulton, Peter Dudfield
5
5
  Author-email: Open Climate Fix team <info@openclimatefix.org>
6
6
  License: MIT License
@@ -2,7 +2,7 @@ ocf_data_sampler/__init__.py,sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZOCcBY74-YBdrKVGs,
2
2
  ocf_data_sampler/utils.py,sha256=CTJf9bjHjO8vOJebUtXiMpvgwUpF7gEOjjaoE77fhTk,1177
3
3
  ocf_data_sampler/config/__init__.py,sha256=O29mbH0XG2gIY1g3BaveGCnpBO2SFqdu-qzJ7a6evl0,223
4
4
  ocf_data_sampler/config/load.py,sha256=LL-7wemI8o4KPkx35j-wQ3HjsMvDgqXr7G46IcASfnU,632
5
- ocf_data_sampler/config/model.py,sha256=ucddp09yM4HGZKVuW-0N8vLGqLVAo_S4mPT89N_iG-0,11881
5
+ ocf_data_sampler/config/model.py,sha256=5ou8BZgQ9h-xyJEqHdspPKZgZO9Vr6opjSphUys7yE8,11505
6
6
  ocf_data_sampler/config/save.py,sha256=m8SPw5rXjkMm1rByjh3pK5StdBi4e8ysnn3jQopdRaI,1064
7
7
  ocf_data_sampler/data/uk_gsp_locations_20220314.csv,sha256=RSh7DRh55E3n8lVAaWXGTaXXHevZZtI58td4d4DhGos,10415772
8
8
  ocf_data_sampler/data/uk_gsp_locations_20250109.csv,sha256=XZISFatnbpO9j8LwaxNKFzQSjs6hcHFsV8a9uDDpy2E,9055334
@@ -32,7 +32,7 @@ ocf_data_sampler/numpy_sample/satellite.py,sha256=RaYzYIcB1AmDrKeiqSpn4QVfBH-QMe
32
32
  ocf_data_sampler/numpy_sample/site.py,sha256=4S19bzCN5lswVUrmWRfwpVsBPUE7bi0OIdxsD9wgvhU,982
33
33
  ocf_data_sampler/numpy_sample/sun_position.py,sha256=5tt-zNm6aRuZMsxZPaAxyg7HeikswfZCeHWXTHuO2K0,1555
34
34
  ocf_data_sampler/select/__init__.py,sha256=mK7Wu_-j9IXGTYrOuDf5yDDuU5a306b0iGKTAooNg_s,210
35
- ocf_data_sampler/select/dropout.py,sha256=BYpv8L771faPOyN7SdIJ5cwkpDve-ohClj95jjsHmjg,1973
35
+ ocf_data_sampler/select/dropout.py,sha256=i5NDP6oQnZBkQRJW-aXVrPXawktVKQz5VMexe5Ww51g,2021
36
36
  ocf_data_sampler/select/fill_time_periods.py,sha256=TlGxp1xiAqnhdWfLy0pv3FuZc00dtimjWdLzr4JoTGA,865
37
37
  ocf_data_sampler/select/find_contiguous_time_periods.py,sha256=etkr6LuB7zxkfzWJ6SgHiULdRuFzFlq5bOUNd257Qx4,11545
38
38
  ocf_data_sampler/select/geospatial.py,sha256=rvMy_e--3tm-KAy9pU6b9-UMBQqH2sXykr3N_4SHYy4,6528
@@ -51,12 +51,12 @@ ocf_data_sampler/torch_datasets/utils/add_alterate_coordinate_projections.py,sha
51
51
  ocf_data_sampler/torch_datasets/utils/config_normalization_values_to_dicts.py,sha256=SGt1H2nXcaj44ND14-gHzvA7dkLfgjTacCq7rOkRGwg,1991
52
52
  ocf_data_sampler/torch_datasets/utils/merge_and_fill_utils.py,sha256=we7BTxRH7B7jKayDT7YfNyfI3zZClz2Bk-HXKQIokgU,956
53
53
  ocf_data_sampler/torch_datasets/utils/spatial_slice_for_dataset.py,sha256=Hvz0wHSWMYYamf2oHNiGlzJcM4cAH6pL_7ZEvIBL2dE,1882
54
- ocf_data_sampler/torch_datasets/utils/time_slice_for_dataset.py,sha256=8E4a5v9dqr-sZOyBruuO-tjLPBbjtpYtdFY5z23aqnU,4365
54
+ ocf_data_sampler/torch_datasets/utils/time_slice_for_dataset.py,sha256=Q_-kCTtUieyEDpSElY1xwJct7Vsw0LAn5MbYSg2O6vg,3621
55
55
  ocf_data_sampler/torch_datasets/utils/valid_time_periods.py,sha256=xcy75cVxl0WrglnX5YUAFjXXlO2GwEBHWyqo8TDuiOA,4714
56
56
  ocf_data_sampler/torch_datasets/utils/validation_utils.py,sha256=YqmT-lExWlI8_ul3l0EP73Ik002fStr_bhsZh9mQqEU,4735
57
57
  scripts/download_gsp_location_data.py,sha256=rRDXMoqX-RYY4jPdxhdlxJGhWdl6r245F5UARgKV6P4,3121
58
58
  scripts/refactor_site.py,sha256=skzvsPP0Cn9yTKndzkilyNcGz4DZ88ctvCJ0XrBdc2A,3135
59
- ocf_data_sampler-0.5.14.dist-info/METADATA,sha256=OgS9xvqBfhmlWym0DYBBbT-IwZ3tRz_EKo2wEdErmCA,12817
60
- ocf_data_sampler-0.5.14.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
61
- ocf_data_sampler-0.5.14.dist-info/top_level.txt,sha256=deUxqmsONNAGZDNbsntbXH7BRA1MqWaUeAJrCo6q_xA,25
62
- ocf_data_sampler-0.5.14.dist-info/RECORD,,
59
+ ocf_data_sampler-0.5.15.dist-info/METADATA,sha256=AcLJpUOG6smk3WDSZkj3K8cjhvSg9z0lPoEKM16B6q8,12817
60
+ ocf_data_sampler-0.5.15.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
61
+ ocf_data_sampler-0.5.15.dist-info/top_level.txt,sha256=deUxqmsONNAGZDNbsntbXH7BRA1MqWaUeAJrCo6q_xA,25
62
+ ocf_data_sampler-0.5.15.dist-info/RECORD,,