ocf-data-sampler 0.3.0__py3-none-any.whl → 0.4.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of ocf-data-sampler might be problematic. Click here for more details.
- ocf_data_sampler/config/model.py +33 -4
- ocf_data_sampler/numpy_sample/__init__.py +1 -1
- ocf_data_sampler/numpy_sample/datetime_features.py +16 -25
- ocf_data_sampler/numpy_sample/site.py +1 -8
- ocf_data_sampler/select/dropout.py +33 -19
- ocf_data_sampler/torch_datasets/datasets/site.py +8 -18
- {ocf_data_sampler-0.3.0.dist-info → ocf_data_sampler-0.4.0.dist-info}/METADATA +3 -2
- {ocf_data_sampler-0.3.0.dist-info → ocf_data_sampler-0.4.0.dist-info}/RECORD +10 -10
- {ocf_data_sampler-0.3.0.dist-info → ocf_data_sampler-0.4.0.dist-info}/WHEEL +0 -0
- {ocf_data_sampler-0.3.0.dist-info → ocf_data_sampler-0.4.0.dist-info}/top_level.txt +0 -0
ocf_data_sampler/config/model.py
CHANGED
|
@@ -90,11 +90,10 @@ class DropoutMixin(Base):
|
|
|
90
90
|
"negative or zero.",
|
|
91
91
|
)
|
|
92
92
|
|
|
93
|
-
dropout_fraction: float = Field(
|
|
93
|
+
dropout_fraction: float|list[float] = Field(
|
|
94
94
|
default=0,
|
|
95
|
-
description="Chance of dropout being applied to each sample"
|
|
96
|
-
|
|
97
|
-
le=1,
|
|
95
|
+
description="Either a float(Chance of dropout being applied to each sample) or a list of "
|
|
96
|
+
"floats (probability that dropout of the corresponding timedelta is applied)",
|
|
98
97
|
)
|
|
99
98
|
|
|
100
99
|
@field_validator("dropout_timedeltas_minutes")
|
|
@@ -105,6 +104,36 @@ class DropoutMixin(Base):
|
|
|
105
104
|
raise ValueError("Dropout timedeltas must be negative")
|
|
106
105
|
return v
|
|
107
106
|
|
|
107
|
+
|
|
108
|
+
@field_validator("dropout_fraction")
|
|
109
|
+
def dropout_fractions(cls, dropout_frac: float|list[float]) -> float|list[float]:
|
|
110
|
+
"""Validate 'dropout_frac'."""
|
|
111
|
+
from math import isclose
|
|
112
|
+
if isinstance(dropout_frac, float):
|
|
113
|
+
if not (dropout_frac <= 1):
|
|
114
|
+
raise ValueError("Input should be less than or equal to 1")
|
|
115
|
+
elif not (dropout_frac >= 0):
|
|
116
|
+
raise ValueError("Input should be greater than or equal to 0")
|
|
117
|
+
|
|
118
|
+
elif isinstance(dropout_frac, list):
|
|
119
|
+
if not dropout_frac:
|
|
120
|
+
raise ValueError("List cannot be empty")
|
|
121
|
+
|
|
122
|
+
if not all(isinstance(i, float) for i in dropout_frac):
|
|
123
|
+
raise ValueError("All elements in the list must be floats")
|
|
124
|
+
|
|
125
|
+
if not all(0 <= i <= 1 for i in dropout_frac):
|
|
126
|
+
raise ValueError("Each float in the list must be between 0 and 1")
|
|
127
|
+
|
|
128
|
+
if not isclose(sum(dropout_frac), 1.0, rel_tol=1e-9):
|
|
129
|
+
raise ValueError("Sum of all floats in the list must be 1.0")
|
|
130
|
+
|
|
131
|
+
|
|
132
|
+
else:
|
|
133
|
+
raise TypeError("Must be either a float or a list of floats")
|
|
134
|
+
return dropout_frac
|
|
135
|
+
|
|
136
|
+
|
|
108
137
|
@model_validator(mode="after")
|
|
109
138
|
def dropout_instructions_consistent(self) -> "DropoutMixin":
|
|
110
139
|
"""Validator for dropout instructions."""
|
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
"""Conversion from Xarray to NumpySample"""
|
|
2
2
|
|
|
3
|
-
from .datetime_features import
|
|
3
|
+
from .datetime_features import encode_datetimes
|
|
4
4
|
from .gsp import convert_gsp_to_numpy_sample, GSPSampleKey
|
|
5
5
|
from .nwp import convert_nwp_to_numpy_sample, NWPSampleKey
|
|
6
6
|
from .satellite import convert_satellite_to_numpy_sample, SatelliteSampleKey
|
|
@@ -6,33 +6,24 @@ import pandas as pd
|
|
|
6
6
|
from ocf_data_sampler.numpy_sample.common_types import NumpySample
|
|
7
7
|
|
|
8
8
|
|
|
9
|
-
def
|
|
10
|
-
"""
|
|
9
|
+
def encode_datetimes(datetimes: pd.DatetimeIndex) -> NumpySample:
|
|
10
|
+
"""Creates dictionary of sin and cos datetime embeddings.
|
|
11
11
|
|
|
12
12
|
Args:
|
|
13
|
-
|
|
13
|
+
datetimes: DatetimeIndex to create radian embeddings for
|
|
14
14
|
|
|
15
15
|
Returns:
|
|
16
|
-
|
|
16
|
+
Dictionary of datetime encodings
|
|
17
17
|
"""
|
|
18
|
-
day_of_year =
|
|
19
|
-
minute_of_day =
|
|
20
|
-
|
|
21
|
-
|
|
22
|
-
|
|
23
|
-
|
|
24
|
-
return
|
|
25
|
-
|
|
26
|
-
|
|
27
|
-
|
|
28
|
-
|
|
29
|
-
|
|
30
|
-
|
|
31
|
-
time_numpy_sample = {}
|
|
32
|
-
|
|
33
|
-
time_numpy_sample[key_prefix + "_date_sin"] = np.sin(date_in_pi)
|
|
34
|
-
time_numpy_sample[key_prefix + "_date_cos"] = np.cos(date_in_pi)
|
|
35
|
-
time_numpy_sample[key_prefix + "_time_sin"] = np.sin(time_in_pi)
|
|
36
|
-
time_numpy_sample[key_prefix + "_time_cos"] = np.cos(time_in_pi)
|
|
37
|
-
|
|
38
|
-
return time_numpy_sample
|
|
18
|
+
day_of_year = datetimes.dayofyear
|
|
19
|
+
minute_of_day = datetimes.minute + datetimes.hour * 60
|
|
20
|
+
|
|
21
|
+
time_in_radians = (2 * np.pi) * (minute_of_day / (24 * 60))
|
|
22
|
+
date_in_radians = (2 * np.pi) * (day_of_year / 365)
|
|
23
|
+
|
|
24
|
+
return {
|
|
25
|
+
"date_sin": np.sin(date_in_radians),
|
|
26
|
+
"date_cos": np.cos(date_in_radians),
|
|
27
|
+
"time_sin": np.sin(time_in_radians),
|
|
28
|
+
"time_cos": np.cos(time_in_radians),
|
|
29
|
+
}
|
|
@@ -13,10 +13,7 @@ class SiteSampleKey:
|
|
|
13
13
|
time_utc = "site_time_utc"
|
|
14
14
|
t0_idx = "site_t0_idx"
|
|
15
15
|
id = "site_id"
|
|
16
|
-
|
|
17
|
-
date_cos = "site_date_cos"
|
|
18
|
-
time_sin = "site_time_sin"
|
|
19
|
-
time_cos = "site_time_cos"
|
|
16
|
+
|
|
20
17
|
|
|
21
18
|
|
|
22
19
|
def convert_site_to_numpy_sample(da: xr.DataArray, t0_idx: int | None = None) -> NumpySample:
|
|
@@ -31,10 +28,6 @@ def convert_site_to_numpy_sample(da: xr.DataArray, t0_idx: int | None = None) ->
|
|
|
31
28
|
SiteSampleKey.capacity_kwp: da.isel(time_utc=0)["capacity_kwp"].values,
|
|
32
29
|
SiteSampleKey.time_utc: da["time_utc"].values.astype(float),
|
|
33
30
|
SiteSampleKey.id: da["site_id"].values,
|
|
34
|
-
SiteSampleKey.date_sin: da["date_sin"].values,
|
|
35
|
-
SiteSampleKey.date_cos: da["date_cos"].values,
|
|
36
|
-
SiteSampleKey.time_sin: da["time_sin"].values,
|
|
37
|
-
SiteSampleKey.time_cos: da["time_cos"].values,
|
|
38
31
|
}
|
|
39
32
|
|
|
40
33
|
if t0_idx is not None:
|
|
@@ -12,7 +12,7 @@ import xarray as xr
|
|
|
12
12
|
def apply_sampled_dropout_time(
|
|
13
13
|
t0: pd.Timestamp,
|
|
14
14
|
dropout_timedeltas: list[pd.Timedelta],
|
|
15
|
-
dropout_frac: float,
|
|
15
|
+
dropout_frac: float|list[float],
|
|
16
16
|
da: xr.DataArray,
|
|
17
17
|
) -> xr.DataArray:
|
|
18
18
|
"""Randomly pick a dropout time from a list of timedeltas and apply dropout time to the data.
|
|
@@ -20,28 +20,42 @@ def apply_sampled_dropout_time(
|
|
|
20
20
|
Args:
|
|
21
21
|
t0: The forecast init-time
|
|
22
22
|
dropout_timedeltas: List of timedeltas relative to t0 to pick from
|
|
23
|
-
dropout_frac:
|
|
24
|
-
This should be between 0 and 1 inclusive
|
|
23
|
+
dropout_frac: Either a probability that dropout will be applied.
|
|
24
|
+
This should be between 0 and 1 inclusive.
|
|
25
|
+
Or a list of probabilities for each of the corresponding timedeltas
|
|
25
26
|
da: Xarray DataArray with 'time_utc' coordinate
|
|
26
27
|
"""
|
|
27
|
-
|
|
28
|
-
|
|
29
|
-
|
|
28
|
+
if isinstance(dropout_frac, list):
|
|
29
|
+
# checking if len match
|
|
30
|
+
if len(dropout_frac) != len(dropout_timedeltas):
|
|
31
|
+
raise ValueError("Lengths of dropout_frac and dropout_timedeltas should match")
|
|
30
32
|
|
|
31
|
-
for t in dropout_timedeltas:
|
|
32
|
-
if t > pd.Timedelta("0min"):
|
|
33
|
-
raise ValueError("Dropout timedeltas must be negative")
|
|
34
33
|
|
|
35
|
-
if not (0 <= dropout_frac <= 1):
|
|
36
|
-
raise ValueError("dropout_frac must be between 0 and 1 inclusive")
|
|
37
34
|
|
|
38
|
-
|
|
39
|
-
dropout_time =
|
|
35
|
+
|
|
36
|
+
dropout_time = t0 + np.random.choice(dropout_timedeltas,p=dropout_frac)
|
|
37
|
+
|
|
38
|
+
return da.where(da.time_utc <= dropout_time)
|
|
39
|
+
|
|
40
|
+
|
|
41
|
+
|
|
42
|
+
# old logic
|
|
40
43
|
else:
|
|
41
|
-
|
|
44
|
+
# sample dropout time
|
|
45
|
+
if dropout_frac > 0 and len(dropout_timedeltas) == 0:
|
|
46
|
+
raise ValueError("To apply dropout, dropout_timedeltas must be provided")
|
|
47
|
+
|
|
48
|
+
|
|
49
|
+
if not (0 <= dropout_frac <= 1):
|
|
50
|
+
raise ValueError("dropout_frac must be between 0 and 1 inclusive")
|
|
51
|
+
|
|
52
|
+
if (len(dropout_timedeltas) == 0) or (np.random.uniform() >= dropout_frac):
|
|
53
|
+
dropout_time = None
|
|
54
|
+
else:
|
|
55
|
+
dropout_time = t0 + np.random.choice(dropout_timedeltas)
|
|
42
56
|
|
|
43
|
-
|
|
44
|
-
|
|
45
|
-
|
|
46
|
-
|
|
47
|
-
|
|
57
|
+
# apply dropout time
|
|
58
|
+
if dropout_time is None:
|
|
59
|
+
return da
|
|
60
|
+
# This replaces the times after the dropout with NaNs
|
|
61
|
+
return da.where(da.time_utc <= dropout_time)
|
|
@@ -13,7 +13,7 @@ from ocf_data_sampler.numpy_sample import (
|
|
|
13
13
|
convert_nwp_to_numpy_sample,
|
|
14
14
|
convert_satellite_to_numpy_sample,
|
|
15
15
|
convert_site_to_numpy_sample,
|
|
16
|
-
|
|
16
|
+
encode_datetimes,
|
|
17
17
|
make_sun_position_numpy_sample,
|
|
18
18
|
)
|
|
19
19
|
from ocf_data_sampler.numpy_sample.collate import stack_np_samples_into_batch
|
|
@@ -249,7 +249,7 @@ class SitesDataset(Dataset):
|
|
|
249
249
|
|
|
250
250
|
# add datetime features
|
|
251
251
|
datetimes = pd.DatetimeIndex(combined_sample_dataset.site__time_utc.values)
|
|
252
|
-
datetime_features =
|
|
252
|
+
datetime_features = encode_datetimes(datetimes=datetimes)
|
|
253
253
|
combined_sample_dataset = combined_sample_dataset.assign_coords(
|
|
254
254
|
{k: ("site__time_utc", v) for k, v in datetime_features.items()},
|
|
255
255
|
)
|
|
@@ -445,11 +445,7 @@ class SitesDatasetConcurrent(Dataset):
|
|
|
445
445
|
da_sites = da_sites / da_sites.capacity_kwp
|
|
446
446
|
|
|
447
447
|
# Convert to NumpyBatch
|
|
448
|
-
numpy_modalities.append(
|
|
449
|
-
convert_site_to_numpy_sample(
|
|
450
|
-
da_sites,
|
|
451
|
-
),
|
|
452
|
-
)
|
|
448
|
+
numpy_modalities.append(convert_site_to_numpy_sample(da_sites))
|
|
453
449
|
|
|
454
450
|
# Only add solar position if explicitly configured
|
|
455
451
|
has_solar_config = (
|
|
@@ -578,13 +574,11 @@ def convert_netcdf_to_numpy_sample(ds: xr.Dataset) -> dict:
|
|
|
578
574
|
sample_dict["sat"] = sample_dict.pop("satellite")
|
|
579
575
|
|
|
580
576
|
# process and combine the datasets
|
|
581
|
-
sample = convert_to_numpy_and_combine(
|
|
582
|
-
dataset_dict=sample_dict,
|
|
583
|
-
)
|
|
577
|
+
sample = convert_to_numpy_and_combine(dataset_dict=sample_dict)
|
|
584
578
|
|
|
585
|
-
#
|
|
586
|
-
|
|
587
|
-
for key in
|
|
579
|
+
# Add solar coord and datetime features
|
|
580
|
+
keys = ["solar_azimuth", "solar_elevation", "date_sin", "date_cos", "time_sin", "time_cos"]
|
|
581
|
+
for key in keys:
|
|
588
582
|
if key in ds.coords:
|
|
589
583
|
sample[key] = ds.coords[key].values
|
|
590
584
|
|
|
@@ -672,11 +666,7 @@ def convert_to_numpy_and_combine(dataset_dict: dict[xr.Dataset]) -> NumpySample:
|
|
|
672
666
|
if "site" in dataset_dict:
|
|
673
667
|
da_sites = dataset_dict["site"]
|
|
674
668
|
|
|
675
|
-
numpy_modalities.append(
|
|
676
|
-
convert_site_to_numpy_sample(
|
|
677
|
-
da_sites,
|
|
678
|
-
),
|
|
679
|
-
)
|
|
669
|
+
numpy_modalities.append(convert_site_to_numpy_sample(da_sites))
|
|
680
670
|
|
|
681
671
|
# Combine all the modalities and fill NaNs
|
|
682
672
|
combined_sample = merge_dicts(numpy_modalities)
|
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.4
|
|
2
2
|
Name: ocf-data-sampler
|
|
3
|
-
Version: 0.
|
|
3
|
+
Version: 0.4.0
|
|
4
4
|
Author: James Fulton, Peter Dudfield
|
|
5
5
|
Author-email: Open Climate Fix team <info@openclimatefix.org>
|
|
6
6
|
License: MIT License
|
|
@@ -49,7 +49,7 @@ Requires-Dist: xarray-tensorstore==0.1.5
|
|
|
49
49
|
# ocf-data-sampler
|
|
50
50
|
|
|
51
51
|
<!-- ALL-CONTRIBUTORS-BADGE:START - Do not remove or modify this section -->
|
|
52
|
-
[](#contributors-)
|
|
53
53
|
<!-- ALL-CONTRIBUTORS-BADGE:END -->
|
|
54
54
|
|
|
55
55
|
[](https://github.com/openclimatefix/ocf-data-sampler/tags)
|
|
@@ -128,6 +128,7 @@ Thanks goes to these wonderful people ([emoji key](https://allcontributors.org/d
|
|
|
128
128
|
<td align="center" valign="top" width="14.28%"><a href="http://siddharth7113.github.io"><img src="https://avatars.githubusercontent.com/u/114160268?v=4?s=100" width="100px;" alt="Siddharth"/><br /><sub><b>Siddharth</b></sub></a><br /><a href="https://github.com/openclimatefix/ocf-data-sampler/commits?author=siddharth7113" title="Code">💻</a></td>
|
|
129
129
|
<td align="center" valign="top" width="14.28%"><a href="https://github.com/Sachin-G13"><img src="https://avatars.githubusercontent.com/u/190184500?v=4?s=100" width="100px;" alt="Sachin-G13"/><br /><sub><b>Sachin-G13</b></sub></a><br /><a href="https://github.com/openclimatefix/ocf-data-sampler/commits?author=Sachin-G13" title="Code">💻</a></td>
|
|
130
130
|
<td align="center" valign="top" width="14.28%"><a href="https://drona-gyawali.github.io/"><img src="https://avatars.githubusercontent.com/u/170401554?v=4?s=100" width="100px;" alt="Dorna Raj Gyawali"/><br /><sub><b>Dorna Raj Gyawali</b></sub></a><br /><a href="https://github.com/openclimatefix/ocf-data-sampler/commits?author=drona-gyawali" title="Code">💻</a></td>
|
|
131
|
+
<td align="center" valign="top" width="14.28%"><a href="https://github.com/adnanhashmi25"><img src="https://avatars.githubusercontent.com/u/55550094?v=4?s=100" width="100px;" alt="Adnan Hashmi"/><br /><sub><b>Adnan Hashmi</b></sub></a><br /><a href="https://github.com/openclimatefix/ocf-data-sampler/commits?author=adnanhashmi25" title="Code">💻</a></td>
|
|
131
132
|
</tr>
|
|
132
133
|
</tbody>
|
|
133
134
|
</table>
|
|
@@ -2,7 +2,7 @@ ocf_data_sampler/__init__.py,sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZOCcBY74-YBdrKVGs,
|
|
|
2
2
|
ocf_data_sampler/utils.py,sha256=2NEl70ySdTpr0pbLRk4LGklvXe1Nv1hun9XKcDw7-44,610
|
|
3
3
|
ocf_data_sampler/config/__init__.py,sha256=O29mbH0XG2gIY1g3BaveGCnpBO2SFqdu-qzJ7a6evl0,223
|
|
4
4
|
ocf_data_sampler/config/load.py,sha256=LL-7wemI8o4KPkx35j-wQ3HjsMvDgqXr7G46IcASfnU,632
|
|
5
|
-
ocf_data_sampler/config/model.py,sha256=
|
|
5
|
+
ocf_data_sampler/config/model.py,sha256=Jss8UDJAaQIBDr9megX2pERoT0ocFmwLNFC8pCWN6VA,12386
|
|
6
6
|
ocf_data_sampler/config/save.py,sha256=m8SPw5rXjkMm1rByjh3pK5StdBi4e8ysnn3jQopdRaI,1064
|
|
7
7
|
ocf_data_sampler/data/uk_gsp_locations_20220314.csv,sha256=RSh7DRh55E3n8lVAaWXGTaXXHevZZtI58td4d4DhGos,10415772
|
|
8
8
|
ocf_data_sampler/data/uk_gsp_locations_20250109.csv,sha256=XZISFatnbpO9j8LwaxNKFzQSjs6hcHFsV8a9uDDpy2E,9055334
|
|
@@ -22,17 +22,17 @@ ocf_data_sampler/load/nwp/providers/gfs.py,sha256=h6vm-Rfz1JGOE4P_fP1_XQJ3bugNbe
|
|
|
22
22
|
ocf_data_sampler/load/nwp/providers/icon.py,sha256=iVZwLKRr_D74_kAu5MHir6pRKEfbTmIxFRZAxzmiYdI,1257
|
|
23
23
|
ocf_data_sampler/load/nwp/providers/ukv.py,sha256=2i32VM9gnmWUpbL0qBSp_AKzuyKucXZPS8yklbcGlbc,1039
|
|
24
24
|
ocf_data_sampler/load/nwp/providers/utils.py,sha256=cVwCiC8FqNpkZFSUGv1CRqIQlKdjx1sIsb2SIUlvWV8,2333
|
|
25
|
-
ocf_data_sampler/numpy_sample/__init__.py,sha256=
|
|
25
|
+
ocf_data_sampler/numpy_sample/__init__.py,sha256=eeIVC3NcLl6vVN2rgI-oY-LxwMAZYDLMUU9kzrVy1Io,393
|
|
26
26
|
ocf_data_sampler/numpy_sample/collate.py,sha256=hoxIc5SoHoIs3Nx37aRZzWChpswjy9lHUgaKgHIoo80,2039
|
|
27
27
|
ocf_data_sampler/numpy_sample/common_types.py,sha256=9CjYHkUTx0ObduWh43fhsybZCTXvexql7qC2ptMDoek,377
|
|
28
|
-
ocf_data_sampler/numpy_sample/datetime_features.py,sha256=
|
|
28
|
+
ocf_data_sampler/numpy_sample/datetime_features.py,sha256=ObHM42VnZB7_daQ5a42GeftoDWYtVMT-wDP8kRtY_84,857
|
|
29
29
|
ocf_data_sampler/numpy_sample/gsp.py,sha256=aUHDIUSu2LMsVmR7TsTriZxVfv495QNL-scaxyJFHgQ,1149
|
|
30
30
|
ocf_data_sampler/numpy_sample/nwp.py,sha256=lXqE2Il0xX5hzz76HHkiYmfDsXWWhmaA_6bSnmwbAXU,1078
|
|
31
31
|
ocf_data_sampler/numpy_sample/satellite.py,sha256=RaYzYIcB1AmDrKeiqSpn4QVfBH-QMe26F1P5t1az2Jg,1111
|
|
32
|
-
ocf_data_sampler/numpy_sample/site.py,sha256=
|
|
32
|
+
ocf_data_sampler/numpy_sample/site.py,sha256=4S19bzCN5lswVUrmWRfwpVsBPUE7bi0OIdxsD9wgvhU,982
|
|
33
33
|
ocf_data_sampler/numpy_sample/sun_position.py,sha256=5tt-zNm6aRuZMsxZPaAxyg7HeikswfZCeHWXTHuO2K0,1555
|
|
34
34
|
ocf_data_sampler/select/__init__.py,sha256=mK7Wu_-j9IXGTYrOuDf5yDDuU5a306b0iGKTAooNg_s,210
|
|
35
|
-
ocf_data_sampler/select/dropout.py,sha256=
|
|
35
|
+
ocf_data_sampler/select/dropout.py,sha256=BYpv8L771faPOyN7SdIJ5cwkpDve-ohClj95jjsHmjg,1973
|
|
36
36
|
ocf_data_sampler/select/fill_time_periods.py,sha256=TlGxp1xiAqnhdWfLy0pv3FuZc00dtimjWdLzr4JoTGA,865
|
|
37
37
|
ocf_data_sampler/select/find_contiguous_time_periods.py,sha256=etkr6LuB7zxkfzWJ6SgHiULdRuFzFlq5bOUNd257Qx4,11545
|
|
38
38
|
ocf_data_sampler/select/geospatial.py,sha256=CDExkl36eZOKmdJPzUr_K0Wn3axHqv5nYo-EkSiINcc,5032
|
|
@@ -41,7 +41,7 @@ ocf_data_sampler/select/select_spatial_slice.py,sha256=Hd4jGRUfIZRoWCirOQZeoLpaU
|
|
|
41
41
|
ocf_data_sampler/select/select_time_slice.py,sha256=HeHbwZ0CP03x0-LaJtpbSdtpLufwVTR73p6wH6O_PS8,5513
|
|
42
42
|
ocf_data_sampler/torch_datasets/datasets/__init__.py,sha256=jfJSFcR0eO1AqeH7S3KnGjsBqVZT5w3oyi784PUR6Q0,146
|
|
43
43
|
ocf_data_sampler/torch_datasets/datasets/pvnet_uk.py,sha256=v63goKEMI6UgBPnQCnIbxhFFdwuP_sxgcPYY6iNfGkc,12257
|
|
44
|
-
ocf_data_sampler/torch_datasets/datasets/site.py,sha256=
|
|
44
|
+
ocf_data_sampler/torch_datasets/datasets/site.py,sha256=RGk1tNXxC4RXHVQtChlgtOSfi4DXOVeSyGSX3wiAjiM,24799
|
|
45
45
|
ocf_data_sampler/torch_datasets/sample/__init__.py,sha256=GL84vdZl_SjHDGVyh9Uekx2XhPYuZ0dnO3l6f6KXnHI,100
|
|
46
46
|
ocf_data_sampler/torch_datasets/sample/base.py,sha256=cQ1oIyhdmlotejZK8B3Cw6MNvpdnBPD8G_o2h7Ye4Vc,2206
|
|
47
47
|
ocf_data_sampler/torch_datasets/sample/site.py,sha256=Pq-QjAg88kWXzFR4ci5ATaTWA864eifU7wrJSpmqK4s,1292
|
|
@@ -56,7 +56,7 @@ ocf_data_sampler/torch_datasets/utils/validation_utils.py,sha256=YqmT-lExWlI8_ul
|
|
|
56
56
|
scripts/download_gsp_location_data.py,sha256=rRDXMoqX-RYY4jPdxhdlxJGhWdl6r245F5UARgKV6P4,3121
|
|
57
57
|
scripts/refactor_site.py,sha256=skzvsPP0Cn9yTKndzkilyNcGz4DZ88ctvCJ0XrBdc2A,3135
|
|
58
58
|
utils/compute_icon_mean_stddev.py,sha256=a1oWMRMnny39rV-dvu8rcx85sb4bXzPFrR1gkUr4Jpg,2296
|
|
59
|
-
ocf_data_sampler-0.
|
|
60
|
-
ocf_data_sampler-0.
|
|
61
|
-
ocf_data_sampler-0.
|
|
62
|
-
ocf_data_sampler-0.
|
|
59
|
+
ocf_data_sampler-0.4.0.dist-info/METADATA,sha256=QbbQ2msPobYgD4v0ghC-xkU3NRGtzi8fhn8A7Gb9TAk,12588
|
|
60
|
+
ocf_data_sampler-0.4.0.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
|
|
61
|
+
ocf_data_sampler-0.4.0.dist-info/top_level.txt,sha256=LEFU4Uk-PEo72QGLAfnVZIUEm37Q8mKuMeg_Xk-p33g,31
|
|
62
|
+
ocf_data_sampler-0.4.0.dist-info/RECORD,,
|
|
File without changes
|
|
File without changes
|