ocf-data-sampler 0.2.16__py3-none-any.whl → 0.2.17__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of ocf-data-sampler might be problematic. Click here for more details.
- ocf_data_sampler/config/model.py +6 -0
- ocf_data_sampler/data/uk_gsp_locations_20250109.csv +333 -0
- ocf_data_sampler/load/gsp.py +37 -8
- ocf_data_sampler/load/load_dataset.py +8 -3
- ocf_data_sampler/torch_datasets/datasets/pvnet_uk.py +18 -12
- {ocf_data_sampler-0.2.16.dist-info → ocf_data_sampler-0.2.17.dist-info}/METADATA +1 -1
- {ocf_data_sampler-0.2.16.dist-info → ocf_data_sampler-0.2.17.dist-info}/RECORD +11 -9
- scripts/download_gsp_location_data.py +95 -0
- /ocf_data_sampler/data/{uk_gsp_locations.csv → uk_gsp_locations_20220314.csv} +0 -0
- {ocf_data_sampler-0.2.16.dist-info → ocf_data_sampler-0.2.17.dist-info}/WHEEL +0 -0
- {ocf_data_sampler-0.2.16.dist-info → ocf_data_sampler-0.2.17.dist-info}/top_level.txt +0 -0
ocf_data_sampler/load/gsp.py
CHANGED
|
@@ -6,25 +6,54 @@ import pandas as pd
|
|
|
6
6
|
import xarray as xr
|
|
7
7
|
|
|
8
8
|
|
|
9
|
-
def
|
|
9
|
+
def get_gsp_boundaries(version: str) -> pd.DataFrame:
|
|
10
|
+
"""Get the GSP boundaries for a given version.
|
|
11
|
+
|
|
12
|
+
Args:
|
|
13
|
+
version: Version of the GSP boundaries to use. Options are "20220314" or "20250109".
|
|
14
|
+
|
|
15
|
+
Returns:
|
|
16
|
+
pd.DataFrame: The GSP boundaries
|
|
17
|
+
"""
|
|
18
|
+
if version not in ["20220314", "20250109"]:
|
|
19
|
+
raise ValueError(
|
|
20
|
+
"Invalid version. Options are '20220314' or '20250109'.",
|
|
21
|
+
)
|
|
22
|
+
|
|
23
|
+
return pd.read_csv(
|
|
24
|
+
files("ocf_data_sampler.data").joinpath(f"uk_gsp_locations_{version}.csv"),
|
|
25
|
+
index_col="gsp_id",
|
|
26
|
+
)
|
|
27
|
+
|
|
28
|
+
|
|
29
|
+
def open_gsp(zarr_path: str, boundaries_version: str = "20220314") -> xr.DataArray:
|
|
10
30
|
"""Open the GSP data.
|
|
11
31
|
|
|
12
32
|
Args:
|
|
13
33
|
zarr_path: Path to the GSP zarr data
|
|
34
|
+
boundaries_version: Version of the GSP boundaries to use. Options are "20220314" or
|
|
35
|
+
"20250109".
|
|
14
36
|
|
|
15
37
|
Returns:
|
|
16
38
|
xr.DataArray: The opened GSP data
|
|
17
39
|
"""
|
|
18
|
-
ds = xr.open_zarr(zarr_path)
|
|
19
|
-
|
|
20
|
-
ds = ds.rename({"datetime_gmt": "time_utc"})
|
|
21
|
-
|
|
22
40
|
# Load UK GSP locations
|
|
23
|
-
df_gsp_loc =
|
|
24
|
-
|
|
25
|
-
|
|
41
|
+
df_gsp_loc = get_gsp_boundaries(boundaries_version)
|
|
42
|
+
|
|
43
|
+
# Open the GSP generation data
|
|
44
|
+
ds = (
|
|
45
|
+
xr.open_zarr(zarr_path)
|
|
46
|
+
.rename({"datetime_gmt": "time_utc"})
|
|
26
47
|
)
|
|
27
48
|
|
|
49
|
+
if not (ds.gsp_id.isin(df_gsp_loc.index)).all():
|
|
50
|
+
raise ValueError(
|
|
51
|
+
"Some GSP IDs in the GSP generation data are available in the locations file.",
|
|
52
|
+
)
|
|
53
|
+
|
|
54
|
+
# Select the locations by the GSP IDs in the generation data
|
|
55
|
+
df_gsp_loc = df_gsp_loc.loc[ds.gsp_id.values]
|
|
56
|
+
|
|
28
57
|
# Add locations and capacities as coordinates for each GSP and datetime
|
|
29
58
|
ds = ds.assign_coords(
|
|
30
59
|
x_osgb=(df_gsp_loc.x_osgb.to_xarray()),
|
|
@@ -6,8 +6,10 @@ from ocf_data_sampler.config import InputData
|
|
|
6
6
|
from ocf_data_sampler.load import open_gsp, open_nwp, open_sat_data, open_site
|
|
7
7
|
|
|
8
8
|
|
|
9
|
-
def get_dataset_dict(
|
|
10
|
-
|
|
9
|
+
def get_dataset_dict(
|
|
10
|
+
input_config: InputData,
|
|
11
|
+
gsp_ids: list[int] | None = None,
|
|
12
|
+
) -> dict[str, dict[xr.DataArray] | xr.DataArray]:
|
|
11
13
|
"""Construct dictionary of all of the input data sources.
|
|
12
14
|
|
|
13
15
|
Args:
|
|
@@ -19,7 +21,10 @@ def get_dataset_dict(input_config: InputData, gsp_ids: list[int] | None = None)\
|
|
|
19
21
|
# Load GSP data unless the path is None
|
|
20
22
|
if input_config.gsp and input_config.gsp.zarr_path:
|
|
21
23
|
|
|
22
|
-
da_gsp = open_gsp(
|
|
24
|
+
da_gsp = open_gsp(
|
|
25
|
+
zarr_path=input_config.gsp.zarr_path,
|
|
26
|
+
boundaries_version=input_config.gsp.boundaries_version,
|
|
27
|
+
).compute()
|
|
23
28
|
|
|
24
29
|
if gsp_ids is None:
|
|
25
30
|
# Remove national (gsp_id=0)
|
|
@@ -1,7 +1,5 @@
|
|
|
1
1
|
"""Torch dataset for UK PVNet."""
|
|
2
2
|
|
|
3
|
-
from importlib.resources import files
|
|
4
|
-
|
|
5
3
|
import numpy as np
|
|
6
4
|
import pandas as pd
|
|
7
5
|
import xarray as xr
|
|
@@ -9,6 +7,7 @@ from torch.utils.data import Dataset
|
|
|
9
7
|
from typing_extensions import override
|
|
10
8
|
|
|
11
9
|
from ocf_data_sampler.config import Configuration, load_yaml_configuration
|
|
10
|
+
from ocf_data_sampler.load.gsp import get_gsp_boundaries
|
|
12
11
|
from ocf_data_sampler.load.load_dataset import get_dataset_dict
|
|
13
12
|
from ocf_data_sampler.numpy_sample import (
|
|
14
13
|
convert_gsp_to_numpy_sample,
|
|
@@ -47,22 +46,26 @@ def compute(xarray_dict: dict) -> dict:
|
|
|
47
46
|
return xarray_dict
|
|
48
47
|
|
|
49
48
|
|
|
50
|
-
def get_gsp_locations(
|
|
49
|
+
def get_gsp_locations(
|
|
50
|
+
gsp_ids: list[int] | None = None,
|
|
51
|
+
version: str = "20220314",
|
|
52
|
+
) -> list[Location]:
|
|
51
53
|
"""Get list of locations of all GSPs.
|
|
52
54
|
|
|
53
55
|
Args:
|
|
54
|
-
gsp_ids: List of GSP IDs to include. Defaults to all
|
|
56
|
+
gsp_ids: List of GSP IDs to include. Defaults to all GSPs except national
|
|
57
|
+
version: Version of GSP boundaries to use. Defaults to "20220314"
|
|
55
58
|
"""
|
|
59
|
+
df_gsp_loc = get_gsp_boundaries(version)
|
|
60
|
+
|
|
61
|
+
# Default GSP IDs is all except national (gsp_id=0)
|
|
56
62
|
if gsp_ids is None:
|
|
57
|
-
gsp_ids =
|
|
63
|
+
gsp_ids = df_gsp_loc.index.values
|
|
64
|
+
gsp_ids = gsp_ids[gsp_ids != 0]
|
|
58
65
|
|
|
59
|
-
|
|
66
|
+
df_gsp_loc = df_gsp_loc.loc[gsp_ids]
|
|
60
67
|
|
|
61
|
-
|
|
62
|
-
df_gsp_loc = pd.read_csv(
|
|
63
|
-
files("ocf_data_sampler.data").joinpath("uk_gsp_locations.csv"),
|
|
64
|
-
index_col="gsp_id",
|
|
65
|
-
)
|
|
68
|
+
locations = []
|
|
66
69
|
|
|
67
70
|
for gsp_id in gsp_ids:
|
|
68
71
|
locations.append(
|
|
@@ -108,7 +111,10 @@ class AbstractPVNetUKDataset(Dataset):
|
|
|
108
111
|
valid_t0_times = valid_t0_times[valid_t0_times <= pd.Timestamp(end_time)]
|
|
109
112
|
|
|
110
113
|
# Construct list of locations to sample from
|
|
111
|
-
self.locations = get_gsp_locations(
|
|
114
|
+
self.locations = get_gsp_locations(
|
|
115
|
+
gsp_ids,
|
|
116
|
+
version=config.input_data.gsp.boundaries_version,
|
|
117
|
+
)
|
|
112
118
|
self.valid_t0_times = valid_t0_times
|
|
113
119
|
|
|
114
120
|
# Assign config and input data to self
|
|
@@ -2,12 +2,13 @@ ocf_data_sampler/__init__.py,sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZOCcBY74-YBdrKVGs,
|
|
|
2
2
|
ocf_data_sampler/utils.py,sha256=DjuneGGisl08ENvPZV_lrcX4b2NCKJC1ZpXgIpxuQi4,290
|
|
3
3
|
ocf_data_sampler/config/__init__.py,sha256=O29mbH0XG2gIY1g3BaveGCnpBO2SFqdu-qzJ7a6evl0,223
|
|
4
4
|
ocf_data_sampler/config/load.py,sha256=LL-7wemI8o4KPkx35j-wQ3HjsMvDgqXr7G46IcASfnU,632
|
|
5
|
-
ocf_data_sampler/config/model.py,sha256=
|
|
5
|
+
ocf_data_sampler/config/model.py,sha256=SyjtlSK6gzQHWUfgX3VNKYLODyiKuD0Mu4hlm9GoHeg,10427
|
|
6
6
|
ocf_data_sampler/config/save.py,sha256=m8SPw5rXjkMm1rByjh3pK5StdBi4e8ysnn3jQopdRaI,1064
|
|
7
|
-
ocf_data_sampler/data/
|
|
7
|
+
ocf_data_sampler/data/uk_gsp_locations_20220314.csv,sha256=RSh7DRh55E3n8lVAaWXGTaXXHevZZtI58td4d4DhGos,10415772
|
|
8
|
+
ocf_data_sampler/data/uk_gsp_locations_20250109.csv,sha256=XZISFatnbpO9j8LwaxNKFzQSjs6hcHFsV8a9uDDpy2E,9055334
|
|
8
9
|
ocf_data_sampler/load/__init__.py,sha256=-vQP9g0UOWdVbjEGyVX_ipa7R1btmiETIKAf6aw4d78,201
|
|
9
|
-
ocf_data_sampler/load/gsp.py,sha256=
|
|
10
|
-
ocf_data_sampler/load/load_dataset.py,sha256=
|
|
10
|
+
ocf_data_sampler/load/gsp.py,sha256=UfPxwHw2Dw2xYSO5Al28oTamgnEM_n_4bYXsqGwY5Tc,1884
|
|
11
|
+
ocf_data_sampler/load/load_dataset.py,sha256=sIi0nkijR_-1fRfW5JcXNTR0ccGbpkhxb7JX_zjJ-W4,1956
|
|
11
12
|
ocf_data_sampler/load/satellite.py,sha256=E7Ln7Y60Qr1RTV-_R71YoxXQM-Ca7Y1faIo3oKB2eFk,2292
|
|
12
13
|
ocf_data_sampler/load/site.py,sha256=zOzlWk6pYZBB5daqG8URGksmDXWKrkutUvN8uALAIh8,1468
|
|
13
14
|
ocf_data_sampler/load/utils.py,sha256=sZ0-zzconcLkVQwAkCYrqKDo98Hrh5ChdiQJv5Bh91g,2040
|
|
@@ -38,7 +39,7 @@ ocf_data_sampler/select/location.py,sha256=AZvGR8y62opiW7zACGXjoOtBEWRfSLOZIA73O
|
|
|
38
39
|
ocf_data_sampler/select/select_spatial_slice.py,sha256=liAqIa-Amj58pOqx5r16i99HURj9oQ41j7gnPgRDQP4,8201
|
|
39
40
|
ocf_data_sampler/select/select_time_slice.py,sha256=HeHbwZ0CP03x0-LaJtpbSdtpLufwVTR73p6wH6O_PS8,5513
|
|
40
41
|
ocf_data_sampler/torch_datasets/datasets/__init__.py,sha256=jfJSFcR0eO1AqeH7S3KnGjsBqVZT5w3oyi784PUR6Q0,146
|
|
41
|
-
ocf_data_sampler/torch_datasets/datasets/pvnet_uk.py,sha256=
|
|
42
|
+
ocf_data_sampler/torch_datasets/datasets/pvnet_uk.py,sha256=ZV2FoMPxFU2aPTWipj9HhJhGfrEg9MYOJRNR8aFcmvs,12613
|
|
42
43
|
ocf_data_sampler/torch_datasets/datasets/site.py,sha256=nRUlhXQQGVrTuBmE1QnwXAUsPTXz0dsezlQjwK71jIQ,17641
|
|
43
44
|
ocf_data_sampler/torch_datasets/sample/__init__.py,sha256=GL84vdZl_SjHDGVyh9Uekx2XhPYuZ0dnO3l6f6KXnHI,100
|
|
44
45
|
ocf_data_sampler/torch_datasets/sample/base.py,sha256=cQ1oIyhdmlotejZK8B3Cw6MNvpdnBPD8G_o2h7Ye4Vc,2206
|
|
@@ -51,9 +52,10 @@ ocf_data_sampler/torch_datasets/utils/spatial_slice_for_dataset.py,sha256=Hvz0wH
|
|
|
51
52
|
ocf_data_sampler/torch_datasets/utils/time_slice_for_dataset.py,sha256=1DN6VsWWdLvkpJxodZtBRDUgC4vJE2td_RP5J3ZqPNw,4268
|
|
52
53
|
ocf_data_sampler/torch_datasets/utils/valid_time_periods.py,sha256=xcy75cVxl0WrglnX5YUAFjXXlO2GwEBHWyqo8TDuiOA,4714
|
|
53
54
|
ocf_data_sampler/torch_datasets/utils/validation_utils.py,sha256=YqmT-lExWlI8_ul3l0EP73Ik002fStr_bhsZh9mQqEU,4735
|
|
55
|
+
scripts/download_gsp_location_data.py,sha256=rRDXMoqX-RYY4jPdxhdlxJGhWdl6r245F5UARgKV6P4,3121
|
|
54
56
|
scripts/refactor_site.py,sha256=skzvsPP0Cn9yTKndzkilyNcGz4DZ88ctvCJ0XrBdc2A,3135
|
|
55
57
|
utils/compute_icon_mean_stddev.py,sha256=a1oWMRMnny39rV-dvu8rcx85sb4bXzPFrR1gkUr4Jpg,2296
|
|
56
|
-
ocf_data_sampler-0.2.
|
|
57
|
-
ocf_data_sampler-0.2.
|
|
58
|
-
ocf_data_sampler-0.2.
|
|
59
|
-
ocf_data_sampler-0.2.
|
|
58
|
+
ocf_data_sampler-0.2.17.dist-info/METADATA,sha256=OKEhg6yBn1fCJKsWOBngnCXVSSd5G5VvOnck0J8bXxw,11581
|
|
59
|
+
ocf_data_sampler-0.2.17.dist-info/WHEEL,sha256=pxyMxgL8-pra_rKaQ4drOZAegBVuX-G_4nRHjjgWbmo,91
|
|
60
|
+
ocf_data_sampler-0.2.17.dist-info/top_level.txt,sha256=LEFU4Uk-PEo72QGLAfnVZIUEm37Q8mKuMeg_Xk-p33g,31
|
|
61
|
+
ocf_data_sampler-0.2.17.dist-info/RECORD,,
|
|
@@ -0,0 +1,95 @@
|
|
|
1
|
+
"""This script downloads the GSP location data from the Neso API and saves it to a CSV file.
|
|
2
|
+
|
|
3
|
+
This script was used to create the `uk_gsp_locations_20250109.csv` file in the `data` directory.
|
|
4
|
+
"""
|
|
5
|
+
|
|
6
|
+
import io
|
|
7
|
+
import os
|
|
8
|
+
import tempfile
|
|
9
|
+
import zipfile
|
|
10
|
+
|
|
11
|
+
import geopandas as gpd
|
|
12
|
+
import pandas as pd
|
|
13
|
+
import requests
|
|
14
|
+
|
|
15
|
+
SAVE_PATH = "uk_gsp_locations_20250109.csv"
|
|
16
|
+
|
|
17
|
+
# --- Configuration ---
|
|
18
|
+
GSP_REGIONS_URL = (
|
|
19
|
+
"https://api.neso.energy/dataset/2810092e-d4b2-472f-b955-d8bea01f9ec0/"
|
|
20
|
+
"resource/d95e8c1b-9cd9-41dd-aacb-4b53b8c07c20/download/gsp_regions_20250109.zip"
|
|
21
|
+
)
|
|
22
|
+
# This is the path to the OSBG version of the boundaries. The lon-lats version can be found at:
|
|
23
|
+
# Proj_4326/GSP_regions_4326_20250109.geojson
|
|
24
|
+
GSP_REGIONS_GEOJSON_PATH_IN_ZIP = "Proj_27700/GSP_regions_27700_20250109.geojson"
|
|
25
|
+
GSP_NAME_MAP_URL = "https://api.pvlive.uk/pvlive/api/v4/gsp_list"
|
|
26
|
+
SAVE_PATH = "uk_gsp_locations_20250109.csv"
|
|
27
|
+
# --- End Configuration ---
|
|
28
|
+
|
|
29
|
+
|
|
30
|
+
with tempfile.TemporaryDirectory() as tmpdirname:
|
|
31
|
+
|
|
32
|
+
# Download the GSP regions
|
|
33
|
+
response_regions = requests.get(GSP_REGIONS_URL, timeout=30)
|
|
34
|
+
response_regions.raise_for_status()
|
|
35
|
+
|
|
36
|
+
# Unzip
|
|
37
|
+
with zipfile.ZipFile(io.BytesIO(response_regions.content)) as z:
|
|
38
|
+
geojson_extract_path = os.path.join(tmpdirname, GSP_REGIONS_GEOJSON_PATH_IN_ZIP)
|
|
39
|
+
z.extract(GSP_REGIONS_GEOJSON_PATH_IN_ZIP, tmpdirname)
|
|
40
|
+
|
|
41
|
+
# Load the GSP regions
|
|
42
|
+
df_bound = gpd.read_file(geojson_extract_path)
|
|
43
|
+
|
|
44
|
+
# Download the GSP name mapping
|
|
45
|
+
response_map = requests.get(GSP_NAME_MAP_URL, timeout=10)
|
|
46
|
+
response_map.raise_for_status()
|
|
47
|
+
|
|
48
|
+
# Load the GSP name mapping
|
|
49
|
+
gsp_name_map = response_map.json()
|
|
50
|
+
df_gsp_name_map = (
|
|
51
|
+
pd.DataFrame(data=gsp_name_map["data"], columns=gsp_name_map["meta"])
|
|
52
|
+
.drop("pes_id", axis=1)
|
|
53
|
+
)
|
|
54
|
+
|
|
55
|
+
|
|
56
|
+
def combine_gsps(gdf: gpd.GeoDataFrame) -> gpd.GeoSeries:
|
|
57
|
+
"""Combine GSPs which have been split into mutliple rows."""
|
|
58
|
+
# If only one row for the GSP name then just return the row
|
|
59
|
+
if len(gdf)==0:
|
|
60
|
+
return gdf.iloc[0]
|
|
61
|
+
|
|
62
|
+
# If multiple rows for the GSP then get union of the GSP shapes
|
|
63
|
+
else:
|
|
64
|
+
return gpd.GeoSeries(gdf.unary_union, index=["geometry"], crs=gdf.crs)
|
|
65
|
+
|
|
66
|
+
|
|
67
|
+
# Combine GSPs which have been split into multiple rows
|
|
68
|
+
df_bound = (
|
|
69
|
+
df_bound.groupby("GSPs")
|
|
70
|
+
.apply(combine_gsps, include_groups=False)
|
|
71
|
+
.reset_index()
|
|
72
|
+
)
|
|
73
|
+
|
|
74
|
+
# Add the PVLive GSP ID for each GSP
|
|
75
|
+
df_bound = (
|
|
76
|
+
df_bound.merge(df_gsp_name_map, left_on="GSPs", right_on="gsp_name")
|
|
77
|
+
.drop("GSPs", axis=1)
|
|
78
|
+
)
|
|
79
|
+
|
|
80
|
+
# Add the national GSP - this is the union of all GSPs
|
|
81
|
+
national_boundaries = gpd.GeoDataFrame(
|
|
82
|
+
[["NATIONAL", df_bound.unary_union, 0]],
|
|
83
|
+
columns=["gsp_name", "geometry", "gsp_id"],
|
|
84
|
+
crs=df_bound.crs,
|
|
85
|
+
)
|
|
86
|
+
|
|
87
|
+
df_bound = pd.concat([national_boundaries, df_bound], ignore_index=True)
|
|
88
|
+
|
|
89
|
+
# Add the coordinates for the centroid of each GSP
|
|
90
|
+
df_bound["x_osgb"] = df_bound.geometry.centroid.x
|
|
91
|
+
df_bound["y_osgb"] = df_bound.geometry.centroid.y
|
|
92
|
+
|
|
93
|
+
# Reorder columns, sort by gsp_id (increasing) and save
|
|
94
|
+
columns = ["gsp_id", "gsp_name", "geometry", "x_osgb", "y_osgb"]
|
|
95
|
+
df_bound[columns].sort_values("gsp_id").to_csv(SAVE_PATH, index=False)
|
|
File without changes
|
|
File without changes
|
|
File without changes
|