ocf-data-sampler 0.0.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of ocf-data-sampler might be problematic. Click here for more details.

@@ -0,0 +1,21 @@
1
+ MIT License
2
+
3
+ Copyright (c) 2023 Open Climate Fix
4
+
5
+ Permission is hereby granted, free of charge, to any person obtaining a copy
6
+ of this software and associated documentation files (the "Software"), to deal
7
+ in the Software without restriction, including without limitation the rights
8
+ to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9
+ copies of the Software, and to permit persons to whom the Software is
10
+ furnished to do so, subject to the following conditions:
11
+
12
+ The above copyright notice and this permission notice shall be included in all
13
+ copies or substantial portions of the Software.
14
+
15
+ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
+ IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
+ FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18
+ AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19
+ LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20
+ OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21
+ SOFTWARE.
@@ -0,0 +1,20 @@
1
+ Metadata-Version: 2.1
2
+ Name: ocf_data_sampler
3
+ Version: 0.0.1
4
+ Summary: Sample from weather data for renewable energy prediction
5
+ Author: James Fulton, Peter Dudfield, and the Open Climate Fix team
6
+ Author-email: info@openclimatefix.org
7
+ License: MIT
8
+ Description-Content-Type: text/markdown
9
+ License-File: LICENSE
10
+ Requires-Dist: numpy
11
+ Requires-Dist: pandas
12
+ Requires-Dist: xarray
13
+ Requires-Dist: zarr
14
+ Requires-Dist: dask
15
+ Requires-Dist: ocf-blosc2
16
+ Requires-Dist: ocf-datapipes ==3.3.39
17
+ Requires-Dist: pvlib
18
+
19
+ # OCF Data Sampler
20
+ A repo for sampling from weather data for renewable energy prediction
@@ -0,0 +1,7 @@
1
+ tests/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
2
+ tests/conftest.py,sha256=OcArgF60paroZQqoP7xExRBF34nEyMuXd7dS7hD6p3w,5393
3
+ ocf_data_sampler-0.0.1.dist-info/LICENSE,sha256=F-Q3UFCR-BECSocV55BFDpn4YKxve9PKrm-lTt6o_Tg,1073
4
+ ocf_data_sampler-0.0.1.dist-info/METADATA,sha256=u1Nhi9GaANW3jMxG1ZBj1oXEkCmTephgJPObqgs35R0,587
5
+ ocf_data_sampler-0.0.1.dist-info/WHEEL,sha256=HiCZjzuy6Dw0hdX5R3LCFPDmFS4BWl8H-8W39XfmgX4,91
6
+ ocf_data_sampler-0.0.1.dist-info/top_level.txt,sha256=EdW7283x-lr_cbuivW8Ij7ANAP-ZJ9sLtILQseEPxXg,6
7
+ ocf_data_sampler-0.0.1.dist-info/RECORD,,
@@ -0,0 +1,5 @@
1
+ Wheel-Version: 1.0
2
+ Generator: setuptools (72.2.0)
3
+ Root-Is-Purelib: true
4
+ Tag: py3-none-any
5
+
@@ -0,0 +1 @@
1
+ tests
tests/__init__.py ADDED
File without changes
tests/conftest.py ADDED
@@ -0,0 +1,202 @@
1
+ import os
2
+
3
+ import numpy as np
4
+ import pandas as pd
5
+ import pytest
6
+ import xarray as xr
7
+ import tempfile
8
+
9
+
10
+
11
+ @pytest.fixture(scope="session")
12
+ def config_filename():
13
+ return f"{os.path.dirname(os.path.abspath(__file__))}/test_data/pvnet_test_config.yaml"
14
+
15
+
16
+ @pytest.fixture(scope="session")
17
+ def sat_zarr_path():
18
+
19
+ # Load dataset which only contains coordinates, but no data
20
+ ds = xr.open_zarr(
21
+ f"{os.path.dirname(os.path.abspath(__file__))}/test_data/non_hrv_shell.zarr.zip"
22
+ ).compute()
23
+
24
+ # Add time coord
25
+ ds = ds.assign_coords(time=pd.date_range("2023-01-01 00:00", "2023-01-02 23:55", freq="5min"))
26
+
27
+ # Add data to dataset
28
+ ds["data"] = xr.DataArray(
29
+ np.zeros([len(ds[c]) for c in ds.coords], dtype=np.float32),
30
+ coords=ds.coords,
31
+ )
32
+
33
+ # Transpose to variables, time, y, x (just in case)
34
+ ds = ds.transpose("variable", "time", "y_geostationary", "x_geostationary")
35
+
36
+ # add 100,000 to x_geostationary, this to make sure the fix index is within the satellite image
37
+ ds["x_geostationary"] = ds["x_geostationary"] - 200_000
38
+
39
+ # Add some NaNs
40
+ ds["data"].values[:, :, 0, 0] = np.nan
41
+
42
+ # make sure channel values are strings
43
+ ds["variable"] = ds["variable"].astype(str)
44
+
45
+ # add data attrs area
46
+ ds["data"].attrs["area"] = (
47
+ """msg_seviri_rss_3km:
48
+ description: MSG SEVIRI Rapid Scanning Service area definition with 3 km resolution
49
+ projection:
50
+ proj: geos
51
+ lon_0: 9.5
52
+ h: 35785831
53
+ x_0: 0
54
+ y_0: 0
55
+ a: 6378169
56
+ rf: 295.488065897014
57
+ no_defs: null
58
+ type: crs
59
+ shape:
60
+ height: 298
61
+ width: 615
62
+ area_extent:
63
+ lower_left_xy: [28503.830075263977, 5090183.970808983]
64
+ upper_right_xy: [-1816744.1169023514, 4196063.827395439]
65
+ units: m
66
+ """
67
+ )
68
+
69
+ # Specifiy chunking
70
+ ds = ds.chunk({"time": 10, "variable": -1, "y_geostationary": -1, "x_geostationary": -1})
71
+
72
+ # Save temporarily as a zarr
73
+ with tempfile.TemporaryDirectory() as tmpdir:
74
+ zarr_path = f"{tmpdir}/test_sat.zarr"
75
+ ds.to_zarr(zarr_path)
76
+
77
+ yield zarr_path
78
+
79
+
80
+ @pytest.fixture(scope="session")
81
+ def ds_nwp_ukv():
82
+ init_times = pd.date_range(start="2023-01-01 00:00", freq="180min", periods=24 * 7)
83
+ steps = pd.timedelta_range("0h", "10h", freq="1h")
84
+
85
+ x = np.linspace(-239_000, 857_000, 50)
86
+ y = np.linspace(-183_000, 1225_000, 100)
87
+ variables = ["si10", "dswrf", "t", "prate"]
88
+
89
+ coords = (
90
+ ("init_time", init_times),
91
+ ("variable", variables),
92
+ ("step", steps),
93
+ ("x", x),
94
+ ("y", y),
95
+ )
96
+
97
+ nwp_array_shape = tuple(len(coord_values) for _, coord_values in coords)
98
+
99
+ nwp_data = xr.DataArray(
100
+ np.random.uniform(0, 200, size=nwp_array_shape).astype(np.float32),
101
+ coords=coords,
102
+ )
103
+ return nwp_data.to_dataset(name="UKV")
104
+
105
+
106
+ @pytest.fixture(scope="session")
107
+ def nwp_ukv_zarr_path(ds_nwp_ukv):
108
+ ds = ds_nwp_ukv.chunk(
109
+ {
110
+ "init_time": 1,
111
+ "step": -1,
112
+ "variable": -1,
113
+ "x": 50,
114
+ "y": 50,
115
+ }
116
+ )
117
+ with tempfile.TemporaryDirectory() as tmpdir:
118
+ filename = tmpdir + "/ukv_nwp.zarr"
119
+ ds.to_zarr(filename)
120
+ yield filename
121
+
122
+
123
+ @pytest.fixture(scope="session")
124
+ def ds_nwp_ecmwf():
125
+ init_times = pd.date_range(start="2023-01-01 00:00", freq="6h", periods=24 * 7)
126
+ steps = pd.timedelta_range("0h", "14h", freq="1h")
127
+
128
+ lons = np.arange(-12, 3)
129
+ lats = np.arange(48, 60)
130
+ variables = ["t2m","dswrf", "mcc"]
131
+
132
+ coords = (
133
+ ("init_time", init_times),
134
+ ("variable", variables),
135
+ ("step", steps),
136
+ ("longitude", lons),
137
+ ("latitude", lats),
138
+ )
139
+
140
+ nwp_array_shape = tuple(len(coord_values) for _, coord_values in coords)
141
+
142
+ nwp_data = xr.DataArray(
143
+ np.random.uniform(0, 200, size=nwp_array_shape).astype(np.float32),
144
+ coords=coords,
145
+ )
146
+ return nwp_data.to_dataset(name="ECMWF_UK")
147
+
148
+
149
+ @pytest.fixture(scope="session")
150
+ def nwp_ecmwf_zarr_path(ds_nwp_ecmwf):
151
+ ds = ds_nwp_ecmwf.chunk(
152
+ {
153
+ "init_time": 1,
154
+ "step": -1,
155
+ "variable": -1,
156
+ "longitude": 50,
157
+ "latitude": 50,
158
+ }
159
+ )
160
+ with tempfile.TemporaryDirectory() as tmpdir:
161
+ filename = tmpdir + "/ukv_ecmwf.zarr"
162
+ ds.to_zarr(filename)
163
+ yield filename
164
+
165
+
166
+ @pytest.fixture(scope="session")
167
+ def ds_uk_gsp():
168
+ times = pd.date_range("2023-01-01 00:00", "2023-01-02 00:00", freq="30min")
169
+ gsp_ids = np.arange(0, 318)
170
+ capacity = np.ones((len(times), len(gsp_ids)))
171
+ generation = np.random.uniform(0, 200, size=(len(times), len(gsp_ids))).astype(np.float32)
172
+
173
+ coords = (
174
+ ("datetime_gmt", times),
175
+ ("gsp_id", gsp_ids),
176
+ )
177
+
178
+ da_cap = xr.DataArray(
179
+ capacity,
180
+ coords=coords,
181
+ )
182
+
183
+ da_gen = xr.DataArray(
184
+ generation,
185
+ coords=coords,
186
+ )
187
+
188
+ return xr.Dataset({
189
+ "capacity_mwp": da_cap,
190
+ "installedcapacity_mwp": da_cap,
191
+ "generation_mw":da_gen
192
+ })
193
+
194
+
195
+ @pytest.fixture(scope="session")
196
+ def uk_gsp_zarr_path(ds_uk_gsp):
197
+
198
+ with tempfile.TemporaryDirectory() as tmpdir:
199
+ filename = tmpdir + "/uk_gsp.zarr"
200
+ ds_uk_gsp.to_zarr(filename)
201
+ yield filename
202
+