ocf-data-sampler 0.0.19__py3-none-any.whl → 0.0.42__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of ocf-data-sampler might be problematic. Click here for more details.
- ocf_data_sampler/config/__init__.py +5 -0
- ocf_data_sampler/config/load.py +33 -0
- ocf_data_sampler/config/model.py +246 -0
- ocf_data_sampler/config/save.py +73 -0
- ocf_data_sampler/constants.py +173 -0
- ocf_data_sampler/load/load_dataset.py +55 -0
- ocf_data_sampler/load/nwp/providers/ecmwf.py +5 -2
- ocf_data_sampler/load/site.py +30 -0
- ocf_data_sampler/numpy_sample/__init__.py +8 -0
- ocf_data_sampler/numpy_sample/collate.py +77 -0
- ocf_data_sampler/numpy_sample/gsp.py +34 -0
- ocf_data_sampler/numpy_sample/nwp.py +42 -0
- ocf_data_sampler/numpy_sample/satellite.py +30 -0
- ocf_data_sampler/numpy_sample/site.py +30 -0
- ocf_data_sampler/{numpy_batch → numpy_sample}/sun_position.py +9 -10
- ocf_data_sampler/select/__init__.py +8 -1
- ocf_data_sampler/select/dropout.py +4 -3
- ocf_data_sampler/select/find_contiguous_time_periods.py +40 -75
- ocf_data_sampler/select/geospatial.py +160 -0
- ocf_data_sampler/select/location.py +62 -0
- ocf_data_sampler/select/select_spatial_slice.py +13 -16
- ocf_data_sampler/select/select_time_slice.py +24 -33
- ocf_data_sampler/select/spatial_slice_for_dataset.py +53 -0
- ocf_data_sampler/select/time_slice_for_dataset.py +125 -0
- ocf_data_sampler/torch_datasets/__init__.py +2 -1
- ocf_data_sampler/torch_datasets/process_and_combine.py +131 -0
- ocf_data_sampler/torch_datasets/pvnet_uk_regional.py +11 -425
- ocf_data_sampler/torch_datasets/site.py +405 -0
- ocf_data_sampler/torch_datasets/valid_time_periods.py +116 -0
- ocf_data_sampler/utils.py +10 -0
- ocf_data_sampler-0.0.42.dist-info/METADATA +153 -0
- ocf_data_sampler-0.0.42.dist-info/RECORD +71 -0
- {ocf_data_sampler-0.0.19.dist-info → ocf_data_sampler-0.0.42.dist-info}/WHEEL +1 -1
- {ocf_data_sampler-0.0.19.dist-info → ocf_data_sampler-0.0.42.dist-info}/top_level.txt +1 -0
- scripts/refactor_site.py +50 -0
- tests/config/test_config.py +161 -0
- tests/config/test_save.py +37 -0
- tests/conftest.py +86 -1
- tests/load/test_load_gsp.py +15 -0
- tests/load/test_load_nwp.py +21 -0
- tests/load/test_load_satellite.py +17 -0
- tests/load/test_load_sites.py +14 -0
- tests/numpy_sample/test_collate.py +26 -0
- tests/numpy_sample/test_gsp.py +38 -0
- tests/numpy_sample/test_nwp.py +52 -0
- tests/numpy_sample/test_satellite.py +40 -0
- tests/numpy_sample/test_sun_position.py +81 -0
- tests/select/test_dropout.py +75 -0
- tests/select/test_fill_time_periods.py +28 -0
- tests/select/test_find_contiguous_time_periods.py +202 -0
- tests/select/test_location.py +67 -0
- tests/select/test_select_spatial_slice.py +154 -0
- tests/select/test_select_time_slice.py +272 -0
- tests/torch_datasets/conftest.py +18 -0
- tests/torch_datasets/test_process_and_combine.py +126 -0
- tests/torch_datasets/test_pvnet_uk_regional.py +59 -0
- tests/torch_datasets/test_site.py +129 -0
- ocf_data_sampler/numpy_batch/__init__.py +0 -7
- ocf_data_sampler/numpy_batch/gsp.py +0 -20
- ocf_data_sampler/numpy_batch/nwp.py +0 -33
- ocf_data_sampler/numpy_batch/satellite.py +0 -23
- ocf_data_sampler-0.0.19.dist-info/METADATA +0 -22
- ocf_data_sampler-0.0.19.dist-info/RECORD +0 -32
- {ocf_data_sampler-0.0.19.dist-info → ocf_data_sampler-0.0.42.dist-info}/LICENSE +0 -0
|
@@ -0,0 +1,33 @@
|
|
|
1
|
+
"""Loading configuration functions.
|
|
2
|
+
|
|
3
|
+
Example:
|
|
4
|
+
|
|
5
|
+
from ocf_data_sampler.config import load_yaml_configuration
|
|
6
|
+
configuration = load_yaml_configuration(filename)
|
|
7
|
+
"""
|
|
8
|
+
|
|
9
|
+
import fsspec
|
|
10
|
+
from pathy import Pathy
|
|
11
|
+
from pyaml_env import parse_config
|
|
12
|
+
|
|
13
|
+
from ocf_data_sampler.config import Configuration
|
|
14
|
+
|
|
15
|
+
|
|
16
|
+
def load_yaml_configuration(filename: str | Pathy) -> Configuration:
|
|
17
|
+
"""
|
|
18
|
+
Load a yaml file which has a configuration in it
|
|
19
|
+
|
|
20
|
+
Args:
|
|
21
|
+
filename: the file name that you want to load. Will load from local, AWS, or GCP
|
|
22
|
+
depending on the protocol suffix (e.g. 's3://bucket/config.yaml').
|
|
23
|
+
|
|
24
|
+
Returns:pydantic class
|
|
25
|
+
|
|
26
|
+
"""
|
|
27
|
+
# load the file to a dictionary
|
|
28
|
+
with fsspec.open(filename, mode="r") as stream:
|
|
29
|
+
configuration = parse_config(data=stream)
|
|
30
|
+
# this means we can load ENVs in the yaml file
|
|
31
|
+
# turn into pydantic class
|
|
32
|
+
configuration = Configuration(**configuration)
|
|
33
|
+
return configuration
|
|
@@ -0,0 +1,246 @@
|
|
|
1
|
+
"""Configuration model for the dataset.
|
|
2
|
+
|
|
3
|
+
All paths must include the protocol prefix. For local files,
|
|
4
|
+
it's sufficient to just start with a '/'. For aws, start with 's3://',
|
|
5
|
+
for gcp start with 'gs://'.
|
|
6
|
+
|
|
7
|
+
Example:
|
|
8
|
+
|
|
9
|
+
from ocf_data_sampler.config import Configuration
|
|
10
|
+
config = Configuration(**config_dict)
|
|
11
|
+
"""
|
|
12
|
+
|
|
13
|
+
import logging
|
|
14
|
+
from typing import Dict, List, Optional
|
|
15
|
+
from typing_extensions import Self
|
|
16
|
+
|
|
17
|
+
from pydantic import BaseModel, Field, RootModel, field_validator, ValidationInfo, model_validator
|
|
18
|
+
|
|
19
|
+
from ocf_data_sampler.constants import NWP_PROVIDERS
|
|
20
|
+
|
|
21
|
+
logger = logging.getLogger(__name__)
|
|
22
|
+
|
|
23
|
+
providers = ["pvoutput.org", "solar_sheffield_passiv"]
|
|
24
|
+
|
|
25
|
+
|
|
26
|
+
class Base(BaseModel):
|
|
27
|
+
"""Pydantic Base model where no extras can be added"""
|
|
28
|
+
|
|
29
|
+
class Config:
|
|
30
|
+
"""config class"""
|
|
31
|
+
|
|
32
|
+
extra = "forbid" # forbid use of extra kwargs
|
|
33
|
+
|
|
34
|
+
|
|
35
|
+
class General(Base):
|
|
36
|
+
"""General pydantic model"""
|
|
37
|
+
|
|
38
|
+
name: str = Field("example", description="The name of this configuration file")
|
|
39
|
+
description: str = Field(
|
|
40
|
+
"example configuration", description="Description of this configuration file"
|
|
41
|
+
)
|
|
42
|
+
|
|
43
|
+
|
|
44
|
+
class TimeWindowMixin(Base):
|
|
45
|
+
"""Mixin class, to add interval start, end and resolution minutes"""
|
|
46
|
+
|
|
47
|
+
time_resolution_minutes: int = Field(
|
|
48
|
+
...,
|
|
49
|
+
gt=0,
|
|
50
|
+
description="The temporal resolution of the data in minutes",
|
|
51
|
+
)
|
|
52
|
+
|
|
53
|
+
interval_start_minutes: int = Field(
|
|
54
|
+
...,
|
|
55
|
+
description="Data interval starts at `t0 + interval_start_minutes`",
|
|
56
|
+
)
|
|
57
|
+
|
|
58
|
+
interval_end_minutes: int = Field(
|
|
59
|
+
...,
|
|
60
|
+
description="Data interval ends at `t0 + interval_end_minutes`",
|
|
61
|
+
)
|
|
62
|
+
|
|
63
|
+
@model_validator(mode='after')
|
|
64
|
+
def check_interval_range(cls, values):
|
|
65
|
+
if values.interval_start_minutes > values.interval_end_minutes:
|
|
66
|
+
raise ValueError('interval_start_minutes must be <= interval_end_minutes')
|
|
67
|
+
return values
|
|
68
|
+
|
|
69
|
+
@field_validator("interval_start_minutes")
|
|
70
|
+
def interval_start_minutes_divide_by_time_resolution(cls, v: int, info: ValidationInfo) -> int:
|
|
71
|
+
if v % info.data["time_resolution_minutes"] != 0:
|
|
72
|
+
raise ValueError("interval_start_minutes must be divisible by time_resolution_minutes")
|
|
73
|
+
return v
|
|
74
|
+
|
|
75
|
+
@field_validator("interval_end_minutes")
|
|
76
|
+
def interval_end_minutes_divide_by_time_resolution(cls, v: int, info: ValidationInfo) -> int:
|
|
77
|
+
if v % info.data["time_resolution_minutes"] != 0:
|
|
78
|
+
raise ValueError("interval_end_minutes must be divisible by time_resolution_minutes")
|
|
79
|
+
return v
|
|
80
|
+
|
|
81
|
+
|
|
82
|
+
|
|
83
|
+
# noinspection PyMethodParameters
|
|
84
|
+
class DropoutMixin(Base):
|
|
85
|
+
"""Mixin class, to add dropout minutes"""
|
|
86
|
+
|
|
87
|
+
dropout_timedeltas_minutes: Optional[List[int]] = Field(
|
|
88
|
+
default=None,
|
|
89
|
+
description="List of possible minutes before t0 where data availability may start. Must be "
|
|
90
|
+
"negative or zero.",
|
|
91
|
+
)
|
|
92
|
+
|
|
93
|
+
dropout_fraction: float = Field(
|
|
94
|
+
default=0,
|
|
95
|
+
description="Chance of dropout being applied to each sample",
|
|
96
|
+
ge=0,
|
|
97
|
+
le=1,
|
|
98
|
+
)
|
|
99
|
+
|
|
100
|
+
@field_validator("dropout_timedeltas_minutes")
|
|
101
|
+
def dropout_timedeltas_minutes_negative(cls, v: List[int]) -> List[int]:
|
|
102
|
+
"""Validate 'dropout_timedeltas_minutes'"""
|
|
103
|
+
if v is not None:
|
|
104
|
+
for m in v:
|
|
105
|
+
assert m <= 0, "Dropout timedeltas must be negative"
|
|
106
|
+
return v
|
|
107
|
+
|
|
108
|
+
@model_validator(mode="after")
|
|
109
|
+
def dropout_instructions_consistent(self) -> Self:
|
|
110
|
+
if self.dropout_fraction == 0:
|
|
111
|
+
if self.dropout_timedeltas_minutes is not None:
|
|
112
|
+
raise ValueError("To use dropout timedeltas dropout fraction should be > 0")
|
|
113
|
+
else:
|
|
114
|
+
if self.dropout_timedeltas_minutes is None:
|
|
115
|
+
raise ValueError("To dropout fraction > 0 requires a list of dropout timedeltas")
|
|
116
|
+
return self
|
|
117
|
+
|
|
118
|
+
|
|
119
|
+
class SpatialWindowMixin(Base):
|
|
120
|
+
"""Mixin class, to add path and image size"""
|
|
121
|
+
|
|
122
|
+
image_size_pixels_height: int = Field(
|
|
123
|
+
...,
|
|
124
|
+
ge=0,
|
|
125
|
+
description="The number of pixels of the height of the region of interest",
|
|
126
|
+
)
|
|
127
|
+
|
|
128
|
+
image_size_pixels_width: int = Field(
|
|
129
|
+
...,
|
|
130
|
+
ge=0,
|
|
131
|
+
description="The number of pixels of the width of the region of interest",
|
|
132
|
+
)
|
|
133
|
+
|
|
134
|
+
|
|
135
|
+
class Satellite(TimeWindowMixin, DropoutMixin, SpatialWindowMixin):
|
|
136
|
+
"""Satellite configuration model"""
|
|
137
|
+
|
|
138
|
+
zarr_path: str | tuple[str] | list[str] = Field(
|
|
139
|
+
...,
|
|
140
|
+
description="The path or list of paths which hold the data zarr",
|
|
141
|
+
)
|
|
142
|
+
|
|
143
|
+
channels: list[str] = Field(
|
|
144
|
+
..., description="the satellite channels that are used"
|
|
145
|
+
)
|
|
146
|
+
|
|
147
|
+
|
|
148
|
+
# noinspection PyMethodParameters
|
|
149
|
+
class NWP(TimeWindowMixin, DropoutMixin, SpatialWindowMixin):
|
|
150
|
+
"""NWP configuration model"""
|
|
151
|
+
|
|
152
|
+
zarr_path: str | tuple[str] | list[str] = Field(
|
|
153
|
+
...,
|
|
154
|
+
description="The path or list of paths which hold the data zarr",
|
|
155
|
+
)
|
|
156
|
+
|
|
157
|
+
channels: list[str] = Field(
|
|
158
|
+
..., description="the channels used in the nwp data"
|
|
159
|
+
)
|
|
160
|
+
|
|
161
|
+
provider: str = Field(..., description="The provider of the NWP data")
|
|
162
|
+
|
|
163
|
+
accum_channels: list[str] = Field([], description="the nwp channels which need to be diffed")
|
|
164
|
+
|
|
165
|
+
max_staleness_minutes: Optional[int] = Field(
|
|
166
|
+
None,
|
|
167
|
+
description="Sets a limit on how stale an NWP init time is allowed to be whilst still being"
|
|
168
|
+
" used to construct an example. If set to None, then the max staleness is set according to"
|
|
169
|
+
" the maximum forecast horizon of the NWP and the requested forecast length.",
|
|
170
|
+
)
|
|
171
|
+
|
|
172
|
+
|
|
173
|
+
@field_validator("provider")
|
|
174
|
+
def validate_provider(cls, v: str) -> str:
|
|
175
|
+
"""Validate 'provider'"""
|
|
176
|
+
if v.lower() not in NWP_PROVIDERS:
|
|
177
|
+
message = f"NWP provider {v} is not in {NWP_PROVIDERS}"
|
|
178
|
+
logger.warning(message)
|
|
179
|
+
raise Exception(message)
|
|
180
|
+
return v
|
|
181
|
+
|
|
182
|
+
|
|
183
|
+
class MultiNWP(RootModel):
|
|
184
|
+
"""Configuration for multiple NWPs"""
|
|
185
|
+
|
|
186
|
+
root: Dict[str, NWP]
|
|
187
|
+
|
|
188
|
+
def __getattr__(self, item):
|
|
189
|
+
return self.root[item]
|
|
190
|
+
|
|
191
|
+
def __getitem__(self, item):
|
|
192
|
+
return self.root[item]
|
|
193
|
+
|
|
194
|
+
def __len__(self):
|
|
195
|
+
return len(self.root)
|
|
196
|
+
|
|
197
|
+
def __iter__(self):
|
|
198
|
+
return iter(self.root)
|
|
199
|
+
|
|
200
|
+
def keys(self):
|
|
201
|
+
"""Returns dictionary-like keys"""
|
|
202
|
+
return self.root.keys()
|
|
203
|
+
|
|
204
|
+
def items(self):
|
|
205
|
+
"""Returns dictionary-like items"""
|
|
206
|
+
return self.root.items()
|
|
207
|
+
|
|
208
|
+
|
|
209
|
+
class GSP(TimeWindowMixin, DropoutMixin):
|
|
210
|
+
"""GSP configuration model"""
|
|
211
|
+
|
|
212
|
+
zarr_path: str = Field(..., description="The path which holds the GSP zarr")
|
|
213
|
+
|
|
214
|
+
|
|
215
|
+
class Site(TimeWindowMixin, DropoutMixin):
|
|
216
|
+
"""Site configuration model"""
|
|
217
|
+
|
|
218
|
+
file_path: str = Field(
|
|
219
|
+
...,
|
|
220
|
+
description="The NetCDF files holding the power timeseries.",
|
|
221
|
+
)
|
|
222
|
+
metadata_file_path: str = Field(
|
|
223
|
+
...,
|
|
224
|
+
description="The CSV files describing power system",
|
|
225
|
+
)
|
|
226
|
+
|
|
227
|
+
# TODO validate the netcdf for sites
|
|
228
|
+
# TODO validate the csv for metadata
|
|
229
|
+
|
|
230
|
+
|
|
231
|
+
|
|
232
|
+
# noinspection PyPep8Naming
|
|
233
|
+
class InputData(Base):
|
|
234
|
+
"""Input data model"""
|
|
235
|
+
|
|
236
|
+
satellite: Optional[Satellite] = None
|
|
237
|
+
nwp: Optional[MultiNWP] = None
|
|
238
|
+
gsp: Optional[GSP] = None
|
|
239
|
+
site: Optional[Site] = None
|
|
240
|
+
|
|
241
|
+
|
|
242
|
+
class Configuration(Base):
|
|
243
|
+
"""Configuration model for the dataset"""
|
|
244
|
+
|
|
245
|
+
general: General = General()
|
|
246
|
+
input_data: InputData = InputData()
|
|
@@ -0,0 +1,73 @@
|
|
|
1
|
+
"""Save functions for the configuration model.
|
|
2
|
+
|
|
3
|
+
This module provides functionality to save configuration objects to YAML files,
|
|
4
|
+
supporting local and cloud storage locations.
|
|
5
|
+
|
|
6
|
+
Example:
|
|
7
|
+
from ocf_data_sampler.config import save_yaml_configuration
|
|
8
|
+
saved_path = save_yaml_configuration(config, "config.yaml")
|
|
9
|
+
"""
|
|
10
|
+
|
|
11
|
+
import json
|
|
12
|
+
|
|
13
|
+
from pathlib import Path
|
|
14
|
+
from typing import Union
|
|
15
|
+
|
|
16
|
+
import fsspec
|
|
17
|
+
import yaml
|
|
18
|
+
|
|
19
|
+
from ocf_data_sampler.config import Configuration
|
|
20
|
+
|
|
21
|
+
|
|
22
|
+
def save_yaml_configuration(
|
|
23
|
+
configuration: Configuration,
|
|
24
|
+
filename: Union[str, Path],
|
|
25
|
+
) -> Path:
|
|
26
|
+
"""Save a configuration object to a YAML file.
|
|
27
|
+
|
|
28
|
+
Args:
|
|
29
|
+
configuration: Configuration object containing the settings to save
|
|
30
|
+
filename: Destination path for the YAML file. Can be a local path or
|
|
31
|
+
cloud storage URL (e.g., 'gs://', 's3://'). For local paths,
|
|
32
|
+
absolute paths are recommended.
|
|
33
|
+
|
|
34
|
+
Returns:
|
|
35
|
+
Path: The path where the configuration was saved
|
|
36
|
+
|
|
37
|
+
Raises:
|
|
38
|
+
ValueError: If filename is None or if writing to the specified path fails
|
|
39
|
+
TypeError: If the configuration cannot be serialized
|
|
40
|
+
"""
|
|
41
|
+
if filename is None:
|
|
42
|
+
raise ValueError("filename cannot be None")
|
|
43
|
+
|
|
44
|
+
try:
|
|
45
|
+
# Convert to absolute path if it's a relative path
|
|
46
|
+
if isinstance(filename, (str, Path)) and not any(
|
|
47
|
+
str(filename).startswith(prefix) for prefix in ('gs://', 's3://', '/')
|
|
48
|
+
):
|
|
49
|
+
filename = Path.cwd() / filename
|
|
50
|
+
|
|
51
|
+
filepath = Path(filename)
|
|
52
|
+
|
|
53
|
+
# For local files, check if directory exists before proceeding
|
|
54
|
+
if filepath.is_absolute():
|
|
55
|
+
directory = filepath.parent
|
|
56
|
+
if not directory.exists():
|
|
57
|
+
raise ValueError("Directory does not exist")
|
|
58
|
+
|
|
59
|
+
# Serialize configuration to JSON-compatible dictionary
|
|
60
|
+
config_dict = json.loads(configuration.model_dump_json())
|
|
61
|
+
|
|
62
|
+
# Save to YAML file using fsspec
|
|
63
|
+
with fsspec.open(str(filepath), mode='w') as yaml_file:
|
|
64
|
+
yaml.safe_dump(config_dict, yaml_file, default_flow_style=False)
|
|
65
|
+
|
|
66
|
+
return filepath
|
|
67
|
+
|
|
68
|
+
except json.JSONDecodeError as e:
|
|
69
|
+
raise TypeError(f"Failed to serialize configuration: {str(e)}") from e
|
|
70
|
+
except PermissionError as e:
|
|
71
|
+
raise ValueError(f"Permission denied when writing to {filename}") from e
|
|
72
|
+
except (IOError, OSError) as e:
|
|
73
|
+
raise ValueError(f"Failed to write configuration to {filename}: {str(e)}") from e
|
|
@@ -0,0 +1,173 @@
|
|
|
1
|
+
import xarray as xr
|
|
2
|
+
import numpy as np
|
|
3
|
+
|
|
4
|
+
|
|
5
|
+
NWP_PROVIDERS = [
|
|
6
|
+
"ukv",
|
|
7
|
+
"ecmwf",
|
|
8
|
+
]
|
|
9
|
+
|
|
10
|
+
|
|
11
|
+
def _to_data_array(d):
|
|
12
|
+
return xr.DataArray(
|
|
13
|
+
[d[k] for k in d.keys()],
|
|
14
|
+
coords={"channel": [k for k in d.keys()]},
|
|
15
|
+
).astype(np.float32)
|
|
16
|
+
|
|
17
|
+
|
|
18
|
+
class NWPStatDict(dict):
|
|
19
|
+
"""Custom dictionary class to hold NWP normalization stats"""
|
|
20
|
+
|
|
21
|
+
def __getitem__(self, key):
|
|
22
|
+
if key not in NWP_PROVIDERS:
|
|
23
|
+
raise KeyError(f"{key} is not a supported NWP provider - {NWP_PROVIDERS}")
|
|
24
|
+
elif key in self.keys():
|
|
25
|
+
return super().__getitem__(key)
|
|
26
|
+
else:
|
|
27
|
+
raise KeyError(
|
|
28
|
+
f"Values for {key} not yet available in ocf-data-sampler {list(self.keys())}"
|
|
29
|
+
)
|
|
30
|
+
|
|
31
|
+
|
|
32
|
+
# ------ UKV
|
|
33
|
+
# Means and std computed WITH version_7 and higher, MetOffice values
|
|
34
|
+
UKV_STD = {
|
|
35
|
+
"cdcb": 2126.99350113,
|
|
36
|
+
"lcc": 39.33210726,
|
|
37
|
+
"mcc": 41.91144559,
|
|
38
|
+
"hcc": 38.07184418,
|
|
39
|
+
"sde": 0.1029753,
|
|
40
|
+
"hcct": 18382.63958991,
|
|
41
|
+
"dswrf": 190.47216887,
|
|
42
|
+
"dlwrf": 39.45988077,
|
|
43
|
+
"h": 1075.77812282,
|
|
44
|
+
"t": 4.38818501,
|
|
45
|
+
"r": 11.45012499,
|
|
46
|
+
"dpt": 4.57250482,
|
|
47
|
+
"vis": 21578.97975625,
|
|
48
|
+
"si10": 3.94718813,
|
|
49
|
+
"wdir10": 94.08407495,
|
|
50
|
+
"prmsl": 1252.71790539,
|
|
51
|
+
"prate": 0.00021497,
|
|
52
|
+
}
|
|
53
|
+
|
|
54
|
+
UKV_MEAN = {
|
|
55
|
+
"cdcb": 1412.26599062,
|
|
56
|
+
"lcc": 50.08362643,
|
|
57
|
+
"mcc": 40.88984494,
|
|
58
|
+
"hcc": 29.11949682,
|
|
59
|
+
"sde": 0.00289545,
|
|
60
|
+
"hcct": -18345.97478167,
|
|
61
|
+
"dswrf": 111.28265039,
|
|
62
|
+
"dlwrf": 325.03130139,
|
|
63
|
+
"h": 2096.51991356,
|
|
64
|
+
"t": 283.64913206,
|
|
65
|
+
"r": 81.79229501,
|
|
66
|
+
"dpt": 280.54379901,
|
|
67
|
+
"vis": 32262.03285118,
|
|
68
|
+
"si10": 6.88348448,
|
|
69
|
+
"wdir10": 199.41891636,
|
|
70
|
+
"prmsl": 101321.61574029,
|
|
71
|
+
"prate": 3.45793433e-05,
|
|
72
|
+
}
|
|
73
|
+
|
|
74
|
+
UKV_STD = _to_data_array(UKV_STD)
|
|
75
|
+
UKV_MEAN = _to_data_array(UKV_MEAN)
|
|
76
|
+
|
|
77
|
+
# ------ ECMWF
|
|
78
|
+
# These were calculated from 100 random init times of UK data from 2020-2023
|
|
79
|
+
ECMWF_STD = {
|
|
80
|
+
"dlwrf": 15855867.0,
|
|
81
|
+
"dswrf": 13025427.0,
|
|
82
|
+
"duvrs": 1445635.25,
|
|
83
|
+
"hcc": 0.42244860529899597,
|
|
84
|
+
"lcc": 0.3791404366493225,
|
|
85
|
+
"mcc": 0.38039860129356384,
|
|
86
|
+
"prate": 9.81039775069803e-05,
|
|
87
|
+
"sde": 0.000913831521756947,
|
|
88
|
+
"sr": 16294988.0,
|
|
89
|
+
"t2m": 3.692270040512085,
|
|
90
|
+
"tcc": 0.37487083673477173,
|
|
91
|
+
"u10": 5.531515598297119,
|
|
92
|
+
"u100": 7.2320556640625,
|
|
93
|
+
"u200": 8.049470901489258,
|
|
94
|
+
"v10": 5.411230564117432,
|
|
95
|
+
"v100": 6.944501876831055,
|
|
96
|
+
"v200": 7.561611652374268,
|
|
97
|
+
"diff_dlwrf": 131942.03125,
|
|
98
|
+
"diff_dswrf": 715366.3125,
|
|
99
|
+
"diff_duvrs": 81605.25,
|
|
100
|
+
"diff_sr": 818950.6875,
|
|
101
|
+
}
|
|
102
|
+
|
|
103
|
+
ECMWF_MEAN = {
|
|
104
|
+
"dlwrf": 27187026.0,
|
|
105
|
+
"dswrf": 11458988.0,
|
|
106
|
+
"duvrs": 1305651.25,
|
|
107
|
+
"hcc": 0.3961029052734375,
|
|
108
|
+
"lcc": 0.44901806116104126,
|
|
109
|
+
"mcc": 0.3288780450820923,
|
|
110
|
+
"prate": 3.108070450252853e-05,
|
|
111
|
+
"sde": 8.107526082312688e-05,
|
|
112
|
+
"sr": 12905302.0,
|
|
113
|
+
"t2m": 283.48333740234375,
|
|
114
|
+
"tcc": 0.7049227356910706,
|
|
115
|
+
"u10": 1.7677178382873535,
|
|
116
|
+
"u100": 2.393547296524048,
|
|
117
|
+
"u200": 2.7963004112243652,
|
|
118
|
+
"v10": 0.985887885093689,
|
|
119
|
+
"v100": 1.4244288206100464,
|
|
120
|
+
"v200": 1.6010299921035767,
|
|
121
|
+
"diff_dlwrf": 1136464.0,
|
|
122
|
+
"diff_dswrf": 420584.6875,
|
|
123
|
+
"diff_duvrs": 48265.4765625,
|
|
124
|
+
"diff_sr": 469169.5,
|
|
125
|
+
}
|
|
126
|
+
|
|
127
|
+
ECMWF_STD = _to_data_array(ECMWF_STD)
|
|
128
|
+
ECMWF_MEAN = _to_data_array(ECMWF_MEAN)
|
|
129
|
+
|
|
130
|
+
NWP_STDS = NWPStatDict(
|
|
131
|
+
ukv=UKV_STD,
|
|
132
|
+
ecmwf=ECMWF_STD,
|
|
133
|
+
)
|
|
134
|
+
NWP_MEANS = NWPStatDict(
|
|
135
|
+
ukv=UKV_MEAN,
|
|
136
|
+
ecmwf=ECMWF_MEAN,
|
|
137
|
+
)
|
|
138
|
+
|
|
139
|
+
# ------ Satellite
|
|
140
|
+
# RSS Mean and std values from randomised 20% of 2020 imagery
|
|
141
|
+
|
|
142
|
+
RSS_STD = {
|
|
143
|
+
"HRV": 0.11405209,
|
|
144
|
+
"IR_016": 0.21462157,
|
|
145
|
+
"IR_039": 0.04618041,
|
|
146
|
+
"IR_087": 0.06687243,
|
|
147
|
+
"IR_097": 0.0468558,
|
|
148
|
+
"IR_108": 0.17482725,
|
|
149
|
+
"IR_120": 0.06115861,
|
|
150
|
+
"IR_134": 0.04492306,
|
|
151
|
+
"VIS006": 0.12184761,
|
|
152
|
+
"VIS008": 0.13090034,
|
|
153
|
+
"WV_062": 0.16111417,
|
|
154
|
+
"WV_073": 0.12924142,
|
|
155
|
+
}
|
|
156
|
+
|
|
157
|
+
RSS_MEAN = {
|
|
158
|
+
"HRV": 0.09298719,
|
|
159
|
+
"IR_016": 0.17594202,
|
|
160
|
+
"IR_039": 0.86167645,
|
|
161
|
+
"IR_087": 0.7719318,
|
|
162
|
+
"IR_097": 0.8014212,
|
|
163
|
+
"IR_108": 0.71254843,
|
|
164
|
+
"IR_120": 0.89058584,
|
|
165
|
+
"IR_134": 0.944365,
|
|
166
|
+
"VIS006": 0.09633306,
|
|
167
|
+
"VIS008": 0.11426069,
|
|
168
|
+
"WV_062": 0.7359355,
|
|
169
|
+
"WV_073": 0.62479186,
|
|
170
|
+
}
|
|
171
|
+
|
|
172
|
+
RSS_STD = _to_data_array(RSS_STD)
|
|
173
|
+
RSS_MEAN = _to_data_array(RSS_MEAN)
|
|
@@ -0,0 +1,55 @@
|
|
|
1
|
+
""" Loads all data sources """
|
|
2
|
+
import xarray as xr
|
|
3
|
+
|
|
4
|
+
from ocf_data_sampler.config import Configuration
|
|
5
|
+
from ocf_data_sampler.load.gsp import open_gsp
|
|
6
|
+
from ocf_data_sampler.load.nwp import open_nwp
|
|
7
|
+
from ocf_data_sampler.load.satellite import open_sat_data
|
|
8
|
+
from ocf_data_sampler.load.site import open_site
|
|
9
|
+
|
|
10
|
+
|
|
11
|
+
def get_dataset_dict(config: Configuration) -> dict[str, dict[xr.DataArray]]:
|
|
12
|
+
"""Construct dictionary of all of the input data sources
|
|
13
|
+
|
|
14
|
+
Args:
|
|
15
|
+
config: Configuration file
|
|
16
|
+
"""
|
|
17
|
+
|
|
18
|
+
in_config = config.input_data
|
|
19
|
+
|
|
20
|
+
datasets_dict = {}
|
|
21
|
+
|
|
22
|
+
# Load GSP data unless the path is None
|
|
23
|
+
if in_config.gsp and in_config.gsp.zarr_path:
|
|
24
|
+
da_gsp = open_gsp(zarr_path=in_config.gsp.zarr_path).compute()
|
|
25
|
+
|
|
26
|
+
# Remove national GSP
|
|
27
|
+
datasets_dict["gsp"] = da_gsp.sel(gsp_id=slice(1, None))
|
|
28
|
+
|
|
29
|
+
# Load NWP data if in config
|
|
30
|
+
if in_config.nwp:
|
|
31
|
+
|
|
32
|
+
datasets_dict["nwp"] = {}
|
|
33
|
+
for nwp_source, nwp_config in in_config.nwp.items():
|
|
34
|
+
|
|
35
|
+
da_nwp = open_nwp(nwp_config.zarr_path, provider=nwp_config.provider)
|
|
36
|
+
|
|
37
|
+
da_nwp = da_nwp.sel(channel=list(nwp_config.channels))
|
|
38
|
+
|
|
39
|
+
datasets_dict["nwp"][nwp_source] = da_nwp
|
|
40
|
+
|
|
41
|
+
# Load satellite data if in config
|
|
42
|
+
if in_config.satellite:
|
|
43
|
+
sat_config = config.input_data.satellite
|
|
44
|
+
|
|
45
|
+
da_sat = open_sat_data(sat_config.zarr_path)
|
|
46
|
+
|
|
47
|
+
da_sat = da_sat.sel(channel=list(sat_config.channels))
|
|
48
|
+
|
|
49
|
+
datasets_dict["sat"] = da_sat
|
|
50
|
+
|
|
51
|
+
if in_config.site:
|
|
52
|
+
da_sites = open_site(in_config.site)
|
|
53
|
+
datasets_dict["site"] = da_sites
|
|
54
|
+
|
|
55
|
+
return datasets_dict
|
|
@@ -9,7 +9,6 @@ from ocf_data_sampler.load.utils import (
|
|
|
9
9
|
)
|
|
10
10
|
|
|
11
11
|
|
|
12
|
-
|
|
13
12
|
def open_ifs(zarr_path: Path | str | list[Path] | list[str]) -> xr.DataArray:
|
|
14
13
|
"""
|
|
15
14
|
Opens the ECMWF IFS NWP data
|
|
@@ -27,10 +26,14 @@ def open_ifs(zarr_path: Path | str | list[Path] | list[str]) -> xr.DataArray:
|
|
|
27
26
|
ds = ds.rename(
|
|
28
27
|
{
|
|
29
28
|
"init_time": "init_time_utc",
|
|
30
|
-
"variable": "channel",
|
|
31
29
|
}
|
|
32
30
|
)
|
|
33
31
|
|
|
32
|
+
# LEGACY SUPPORT
|
|
33
|
+
# rename variable to channel if it exists
|
|
34
|
+
if "variable" in ds:
|
|
35
|
+
ds = ds.rename({"variable": "channel"})
|
|
36
|
+
|
|
34
37
|
# Check the timestamps are unique and increasing
|
|
35
38
|
check_time_unique_increasing(ds.init_time_utc)
|
|
36
39
|
|
|
@@ -0,0 +1,30 @@
|
|
|
1
|
+
import pandas as pd
|
|
2
|
+
import xarray as xr
|
|
3
|
+
import numpy as np
|
|
4
|
+
|
|
5
|
+
from ocf_data_sampler.config.model import Site
|
|
6
|
+
|
|
7
|
+
|
|
8
|
+
def open_site(sites_config: Site) -> xr.DataArray:
|
|
9
|
+
|
|
10
|
+
# Load site generation xr.Dataset
|
|
11
|
+
site_generation_ds = xr.open_dataset(sites_config.file_path)
|
|
12
|
+
|
|
13
|
+
# Load site generation data
|
|
14
|
+
metadata_df = pd.read_csv(sites_config.metadata_file_path, index_col="site_id")
|
|
15
|
+
|
|
16
|
+
# Ensure metadata aligns with the site_id dimension in data_ds
|
|
17
|
+
metadata_df = metadata_df.reindex(site_generation_ds.site_id.values)
|
|
18
|
+
|
|
19
|
+
# Assign coordinates to the Dataset using the aligned metadata
|
|
20
|
+
site_generation_ds = site_generation_ds.assign_coords(
|
|
21
|
+
latitude=("site_id", metadata_df["latitude"].values),
|
|
22
|
+
longitude=("site_id", metadata_df["longitude"].values),
|
|
23
|
+
capacity_kwp=("site_id", metadata_df["capacity_kwp"].values),
|
|
24
|
+
)
|
|
25
|
+
|
|
26
|
+
# Sanity checks
|
|
27
|
+
assert np.isfinite(site_generation_ds.capacity_kwp.values).all()
|
|
28
|
+
assert (site_generation_ds.capacity_kwp.values > 0).all()
|
|
29
|
+
assert metadata_df.index.is_unique
|
|
30
|
+
return site_generation_ds.generation_kw
|
|
@@ -0,0 +1,8 @@
|
|
|
1
|
+
"""Conversion from Xarray to NumpySample"""
|
|
2
|
+
|
|
3
|
+
from .gsp import convert_gsp_to_numpy_sample, GSPSampleKey
|
|
4
|
+
from .nwp import convert_nwp_to_numpy_sample, NWPSampleKey
|
|
5
|
+
from .satellite import convert_satellite_to_numpy_sample, SatelliteSampleKey
|
|
6
|
+
from .sun_position import make_sun_position_numpy_sample
|
|
7
|
+
from .site import convert_site_to_numpy_sample
|
|
8
|
+
|