ob-metaflow 2.12.7.2__py2.py3-none-any.whl → 2.12.9.1__py2.py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of ob-metaflow might be problematic. Click here for more details.

Files changed (38) hide show
  1. metaflow/__init__.py +2 -0
  2. metaflow/cli.py +12 -4
  3. metaflow/extension_support/plugins.py +1 -0
  4. metaflow/flowspec.py +8 -1
  5. metaflow/lint.py +13 -0
  6. metaflow/metaflow_current.py +0 -8
  7. metaflow/plugins/__init__.py +12 -0
  8. metaflow/plugins/argo/argo_workflows.py +463 -42
  9. metaflow/plugins/argo/argo_workflows_cli.py +60 -3
  10. metaflow/plugins/argo/argo_workflows_decorator.py +38 -7
  11. metaflow/plugins/argo/argo_workflows_deployer.py +290 -0
  12. metaflow/plugins/argo/jobset_input_paths.py +16 -0
  13. metaflow/plugins/aws/batch/batch_decorator.py +16 -13
  14. metaflow/plugins/aws/step_functions/step_functions_cli.py +45 -3
  15. metaflow/plugins/aws/step_functions/step_functions_deployer.py +251 -0
  16. metaflow/plugins/cards/card_cli.py +1 -1
  17. metaflow/plugins/kubernetes/kubernetes.py +279 -52
  18. metaflow/plugins/kubernetes/kubernetes_cli.py +26 -8
  19. metaflow/plugins/kubernetes/kubernetes_client.py +0 -1
  20. metaflow/plugins/kubernetes/kubernetes_decorator.py +56 -44
  21. metaflow/plugins/kubernetes/kubernetes_job.py +6 -6
  22. metaflow/plugins/kubernetes/kubernetes_jobsets.py +510 -272
  23. metaflow/plugins/parallel_decorator.py +108 -8
  24. metaflow/plugins/secrets/secrets_decorator.py +12 -3
  25. metaflow/plugins/test_unbounded_foreach_decorator.py +39 -4
  26. metaflow/runner/deployer.py +386 -0
  27. metaflow/runner/metaflow_runner.py +1 -20
  28. metaflow/runner/nbdeploy.py +130 -0
  29. metaflow/runner/nbrun.py +4 -28
  30. metaflow/runner/utils.py +49 -0
  31. metaflow/runtime.py +246 -134
  32. metaflow/version.py +1 -1
  33. {ob_metaflow-2.12.7.2.dist-info → ob_metaflow-2.12.9.1.dist-info}/METADATA +2 -2
  34. {ob_metaflow-2.12.7.2.dist-info → ob_metaflow-2.12.9.1.dist-info}/RECORD +38 -32
  35. {ob_metaflow-2.12.7.2.dist-info → ob_metaflow-2.12.9.1.dist-info}/WHEEL +1 -1
  36. {ob_metaflow-2.12.7.2.dist-info → ob_metaflow-2.12.9.1.dist-info}/LICENSE +0 -0
  37. {ob_metaflow-2.12.7.2.dist-info → ob_metaflow-2.12.9.1.dist-info}/entry_points.txt +0 -0
  38. {ob_metaflow-2.12.7.2.dist-info → ob_metaflow-2.12.9.1.dist-info}/top_level.txt +0 -0
@@ -4,11 +4,13 @@ import os
4
4
  import re
5
5
  import shlex
6
6
  import sys
7
+ from typing import Tuple, List
7
8
  from collections import defaultdict
8
9
  from hashlib import sha1
9
10
  from math import inf
10
11
 
11
12
  from metaflow import JSONType, current
13
+ from metaflow.graph import DAGNode
12
14
  from metaflow.decorators import flow_decorators
13
15
  from metaflow.exception import MetaflowException
14
16
  from metaflow.includefile import FilePathClass
@@ -48,6 +50,7 @@ from metaflow.metaflow_config import (
48
50
  UI_URL,
49
51
  PAGERDUTY_TEMPLATE_URL,
50
52
  )
53
+ from metaflow.unbounded_foreach import UBF_CONTROL, UBF_TASK
51
54
  from metaflow.metaflow_config_funcs import config_values
52
55
  from metaflow.mflog import BASH_SAVE_LOGS, bash_capture_logs, export_mflog_env_vars
53
56
  from metaflow.parameters import deploy_time_eval
@@ -55,6 +58,7 @@ from metaflow.plugins.kubernetes.kubernetes import (
55
58
  parse_kube_keyvalue_list,
56
59
  validate_kube_labels,
57
60
  )
61
+ from metaflow.graph import FlowGraph
58
62
  from metaflow.util import (
59
63
  compress_list,
60
64
  dict_to_cli_options,
@@ -62,6 +66,10 @@ from metaflow.util import (
62
66
  to_camelcase,
63
67
  to_unicode,
64
68
  )
69
+ from metaflow.plugins.kubernetes.kubernetes_jobsets import (
70
+ KubernetesArgoJobSet,
71
+ )
72
+
65
73
  from .argo_client import ArgoClient
66
74
 
67
75
 
@@ -82,14 +90,14 @@ class ArgoWorkflowsSchedulingException(MetaflowException):
82
90
  # 5. Add Metaflow tags to labels/annotations.
83
91
  # 6. Support Multi-cluster scheduling - https://github.com/argoproj/argo-workflows/issues/3523#issuecomment-792307297
84
92
  # 7. Support R lang.
85
- # 8. Ping @savin at slack.outerbounds.co for any feature request.
93
+ # 8. Ping @savin at slack.outerbounds.co for any feature request
86
94
 
87
95
 
88
96
  class ArgoWorkflows(object):
89
97
  def __init__(
90
98
  self,
91
99
  name,
92
- graph,
100
+ graph: FlowGraph,
93
101
  flow,
94
102
  code_package_sha,
95
103
  code_package_url,
@@ -852,13 +860,13 @@ class ArgoWorkflows(object):
852
860
  # Visit every node and yield the uber DAGTemplate(s).
853
861
  def _dag_templates(self):
854
862
  def _visit(
855
- node, exit_node=None, templates=None, dag_tasks=None, parent_foreach=None
856
- ):
857
- if node.parallel_foreach:
858
- raise ArgoWorkflowsException(
859
- "Deploying flows with @parallel decorator(s) "
860
- "as Argo Workflows is not supported currently."
861
- )
863
+ node,
864
+ exit_node=None,
865
+ templates=None,
866
+ dag_tasks=None,
867
+ parent_foreach=None,
868
+ ): # Returns Tuple[List[Template], List[DAGTask]]
869
+ """ """
862
870
  # Every for-each node results in a separate subDAG and an equivalent
863
871
  # DAGTemplate rooted at the child of the for-each node. Each DAGTemplate
864
872
  # has a unique name - the top-level DAGTemplate is named as the name of
@@ -872,7 +880,6 @@ class ArgoWorkflows(object):
872
880
  templates = []
873
881
  if exit_node is not None and exit_node is node.name:
874
882
  return templates, dag_tasks
875
-
876
883
  if node.name == "start":
877
884
  # Start node has no dependencies.
878
885
  dag_task = DAGTask(self._sanitize(node.name)).template(
@@ -881,13 +888,86 @@ class ArgoWorkflows(object):
881
888
  elif (
882
889
  node.is_inside_foreach
883
890
  and self.graph[node.in_funcs[0]].type == "foreach"
891
+ and not self.graph[node.in_funcs[0]].parallel_foreach
892
+ # We need to distinguish what is a "regular" foreach (i.e something that doesn't care about to gang semantics)
893
+ # vs what is a "num_parallel" based foreach (i.e. something that follows gang semantics.)
894
+ # A `regular` foreach is basically any arbitrary kind of foreach.
884
895
  ):
885
896
  # Child of a foreach node needs input-paths as well as split-index
886
897
  # This child is the first node of the sub workflow and has no dependency
898
+
887
899
  parameters = [
888
900
  Parameter("input-paths").value("{{inputs.parameters.input-paths}}"),
889
901
  Parameter("split-index").value("{{inputs.parameters.split-index}}"),
890
902
  ]
903
+ dag_task = (
904
+ DAGTask(self._sanitize(node.name))
905
+ .template(self._sanitize(node.name))
906
+ .arguments(Arguments().parameters(parameters))
907
+ )
908
+ elif node.parallel_step:
909
+ # This is the step where the @parallel decorator is defined.
910
+ # Since this DAGTask will call the for the `resource` [based templates]
911
+ # (https://argo-workflows.readthedocs.io/en/stable/walk-through/kubernetes-resources/)
912
+ # we have certain constraints on the way we can pass information inside the Jobset manifest
913
+ # [All templates will have access](https://argo-workflows.readthedocs.io/en/stable/variables/#all-templates)
914
+ # to the `inputs.parameters` so we will pass down ANY/ALL information using the
915
+ # input parameters.
916
+ # We define the usual parameters like input-paths/split-index etc. but we will also
917
+ # define the following:
918
+ # - `workerCount`: parameter which will be used to determine the number of
919
+ # parallel worker jobs
920
+ # - `jobset-name`: parameter which will be used to determine the name of the jobset.
921
+ # This parameter needs to be dynamic so that when we have retries we don't
922
+ # end up using the name of the jobset again (if we do, it will crash since k8s wont allow duplicated job names)
923
+ # - `retryCount`: parameter which will be used to determine the number of retries
924
+ # This parameter will *only* be available within the container templates like we
925
+ # have it for all other DAGTasks and NOT for custom kubernetes resource templates.
926
+ # So as a work-around, we will set it as the `retryCount` parameter instead of
927
+ # setting it as a {{ retries }} in the CLI code. Once set as a input parameter,
928
+ # we can use it in the Jobset Manifest templates as `{{inputs.parameters.retryCount}}`
929
+ # - `task-id-entropy`: This is a parameter which will help derive task-ids and jobset names. This parameter
930
+ # contains the relevant amount of entropy to ensure that task-ids and jobset names
931
+ # are uniquish. We will also use this in the join task to construct the task-ids of
932
+ # all parallel tasks since the task-ids for parallel task are minted formulaically.
933
+ parameters = [
934
+ Parameter("input-paths").value("{{inputs.parameters.input-paths}}"),
935
+ Parameter("num-parallel").value(
936
+ "{{inputs.parameters.num-parallel}}"
937
+ ),
938
+ Parameter("split-index").value("{{inputs.parameters.split-index}}"),
939
+ Parameter("task-id-entropy").value(
940
+ "{{inputs.parameters.task-id-entropy}}"
941
+ ),
942
+ # we cant just use hyphens with sprig.
943
+ # https://github.com/argoproj/argo-workflows/issues/10567#issuecomment-1452410948
944
+ Parameter("workerCount").value(
945
+ "{{=sprig.int(sprig.sub(sprig.int(inputs.parameters['num-parallel']),1))}}"
946
+ ),
947
+ ]
948
+ if any(d.name == "retry" for d in node.decorators):
949
+ parameters.extend(
950
+ [
951
+ Parameter("retryCount").value("{{retries}}"),
952
+ # The job-setname needs to be unique for each retry
953
+ # and we cannot use the `generateName` field in the
954
+ # Jobset Manifest since we need to construct the subdomain
955
+ # and control pod domain name pre-hand. So we will use
956
+ # the retry count to ensure that the jobset name is unique
957
+ Parameter("jobset-name").value(
958
+ "js-{{inputs.parameters.task-id-entropy}}{{retries}}",
959
+ ),
960
+ ]
961
+ )
962
+ else:
963
+ parameters.extend(
964
+ [
965
+ Parameter("jobset-name").value(
966
+ "js-{{inputs.parameters.task-id-entropy}}",
967
+ )
968
+ ]
969
+ )
970
+
891
971
  dag_task = (
892
972
  DAGTask(self._sanitize(node.name))
893
973
  .template(self._sanitize(node.name))
@@ -947,8 +1027,8 @@ class ArgoWorkflows(object):
947
1027
  .template(self._sanitize(node.name))
948
1028
  .arguments(Arguments().parameters(parameters))
949
1029
  )
950
- dag_tasks.append(dag_task)
951
1030
 
1031
+ dag_tasks.append(dag_task)
952
1032
  # End the workflow if we have reached the end of the flow
953
1033
  if node.type == "end":
954
1034
  return [
@@ -974,14 +1054,30 @@ class ArgoWorkflows(object):
974
1054
  parent_foreach,
975
1055
  )
976
1056
  # For foreach nodes generate a new sub DAGTemplate
1057
+ # We do this for "regular" foreaches (ie. `self.next(self.a, foreach=)`)
977
1058
  elif node.type == "foreach":
978
1059
  foreach_template_name = self._sanitize(
979
1060
  "%s-foreach-%s"
980
1061
  % (
981
1062
  node.name,
982
- node.foreach_param,
1063
+ "parallel" if node.parallel_foreach else node.foreach_param
1064
+ # Since foreach's are derived based on `self.next(self.a, foreach="<varname>")`
1065
+ # vs @parallel foreach are done based on `self.next(self.a, num_parallel="<some-number>")`,
1066
+ # we need to ensure that `foreach_template_name` suffix is appropriately set based on the kind
1067
+ # of foreach.
983
1068
  )
984
1069
  )
1070
+
1071
+ # There are two separate "DAGTask"s created for the foreach node.
1072
+ # - The first one is a "jump-off" DAGTask where we propagate the
1073
+ # input-paths and split-index. This thing doesn't create
1074
+ # any actual containers and it responsible for only propagating
1075
+ # the parameters.
1076
+ # - The DAGTask that follows first DAGTask is the one
1077
+ # that uses the ContainerTemplate. This DAGTask is named the same
1078
+ # thing as the foreach node. We will leverage a similar pattern for the
1079
+ # @parallel tasks.
1080
+ #
985
1081
  foreach_task = (
986
1082
  DAGTask(foreach_template_name)
987
1083
  .dependencies([self._sanitize(node.name)])
@@ -1005,9 +1101,26 @@ class ArgoWorkflows(object):
1005
1101
  if parent_foreach
1006
1102
  else []
1007
1103
  )
1104
+ + (
1105
+ # Disabiguate parameters for a regular `foreach` vs a `@parallel` foreach
1106
+ [
1107
+ Parameter("num-parallel").value(
1108
+ "{{tasks.%s.outputs.parameters.num-parallel}}"
1109
+ % self._sanitize(node.name)
1110
+ ),
1111
+ Parameter("task-id-entropy").value(
1112
+ "{{tasks.%s.outputs.parameters.task-id-entropy}}"
1113
+ % self._sanitize(node.name)
1114
+ ),
1115
+ ]
1116
+ if node.parallel_foreach
1117
+ else []
1118
+ )
1008
1119
  )
1009
1120
  )
1010
1121
  .with_param(
1122
+ # For @parallel workloads `num-splits` will be explicitly set to one so that
1123
+ # we can piggyback on the current mechanism with which we leverage argo.
1011
1124
  "{{tasks.%s.outputs.parameters.num-splits}}"
1012
1125
  % self._sanitize(node.name)
1013
1126
  )
@@ -1020,17 +1133,34 @@ class ArgoWorkflows(object):
1020
1133
  [],
1021
1134
  node.name,
1022
1135
  )
1136
+
1137
+ # How do foreach's work on Argo:
1138
+ # Lets say you have the following dag: (start[sets `foreach="x"`]) --> (task-a [actual foreach]) --> (join) --> (end)
1139
+ # With argo we will :
1140
+ # (start [sets num-splits]) --> (task-a-foreach-(0,0) [dummy task]) --> (task-a) --> (join) --> (end)
1141
+ # The (task-a-foreach-(0,0) [dummy task]) propagates the values of the `split-index` and the input paths.
1142
+ # to the actual foreach task.
1023
1143
  templates.append(
1024
1144
  Template(foreach_template_name)
1025
1145
  .inputs(
1026
1146
  Inputs().parameters(
1027
1147
  [Parameter("input-paths"), Parameter("split-index")]
1028
1148
  + ([Parameter("root-input-path")] if parent_foreach else [])
1149
+ + (
1150
+ [
1151
+ Parameter("num-parallel"),
1152
+ Parameter("task-id-entropy"),
1153
+ # Parameter("workerCount")
1154
+ ]
1155
+ if node.parallel_foreach
1156
+ else []
1157
+ )
1029
1158
  )
1030
1159
  )
1031
1160
  .outputs(
1032
1161
  Outputs().parameters(
1033
1162
  [
1163
+ # non @parallel tasks set task-ids as outputs
1034
1164
  Parameter("task-id").valueFrom(
1035
1165
  {
1036
1166
  "parameter": "{{tasks.%s.outputs.parameters.task-id}}"
@@ -1040,29 +1170,67 @@ class ArgoWorkflows(object):
1040
1170
  }
1041
1171
  )
1042
1172
  ]
1173
+ if not node.parallel_foreach
1174
+ else [
1175
+ # @parallel tasks set `task-id-entropy` and `num-parallel`
1176
+ # as outputs so task-ids can be derived in the join step.
1177
+ # Both of these values should be propagated from the
1178
+ # jobset labels.
1179
+ Parameter("num-parallel").valueFrom(
1180
+ {
1181
+ "parameter": "{{tasks.%s.outputs.parameters.num-parallel}}"
1182
+ % self._sanitize(
1183
+ self.graph[node.matching_join].in_funcs[0]
1184
+ )
1185
+ }
1186
+ ),
1187
+ Parameter("task-id-entropy").valueFrom(
1188
+ {
1189
+ "parameter": "{{tasks.%s.outputs.parameters.task-id-entropy}}"
1190
+ % self._sanitize(
1191
+ self.graph[node.matching_join].in_funcs[0]
1192
+ )
1193
+ }
1194
+ ),
1195
+ ]
1043
1196
  )
1044
1197
  )
1045
1198
  .dag(DAGTemplate().fail_fast().tasks(dag_tasks_1))
1046
1199
  )
1200
+
1047
1201
  join_foreach_task = (
1048
1202
  DAGTask(self._sanitize(self.graph[node.matching_join].name))
1049
1203
  .template(self._sanitize(self.graph[node.matching_join].name))
1050
1204
  .dependencies([foreach_template_name])
1051
1205
  .arguments(
1052
1206
  Arguments().parameters(
1053
- [
1054
- Parameter("input-paths").value(
1055
- "argo-{{workflow.name}}/%s/{{tasks.%s.outputs.parameters.task-id}}"
1056
- % (node.name, self._sanitize(node.name))
1057
- ),
1058
- Parameter("split-cardinality").value(
1059
- "{{tasks.%s.outputs.parameters.split-cardinality}}"
1060
- % self._sanitize(node.name)
1061
- ),
1062
- ]
1207
+ (
1208
+ [
1209
+ Parameter("input-paths").value(
1210
+ "argo-{{workflow.name}}/%s/{{tasks.%s.outputs.parameters.task-id}}"
1211
+ % (node.name, self._sanitize(node.name))
1212
+ ),
1213
+ Parameter("split-cardinality").value(
1214
+ "{{tasks.%s.outputs.parameters.split-cardinality}}"
1215
+ % self._sanitize(node.name)
1216
+ ),
1217
+ ]
1218
+ if not node.parallel_foreach
1219
+ else [
1220
+ Parameter("num-parallel").value(
1221
+ "{{tasks.%s.outputs.parameters.num-parallel}}"
1222
+ % self._sanitize(node.name)
1223
+ ),
1224
+ Parameter("task-id-entropy").value(
1225
+ "{{tasks.%s.outputs.parameters.task-id-entropy}}"
1226
+ % self._sanitize(node.name)
1227
+ ),
1228
+ ]
1229
+ )
1063
1230
  + (
1064
1231
  [
1065
1232
  Parameter("split-index").value(
1233
+ # TODO : Pass down these parameters to the jobset stuff.
1066
1234
  "{{inputs.parameters.split-index}}"
1067
1235
  ),
1068
1236
  Parameter("root-input-path").value(
@@ -1140,7 +1308,17 @@ class ArgoWorkflows(object):
1140
1308
  # export input_paths as it is used multiple times in the container script
1141
1309
  # and we do not want to repeat the values.
1142
1310
  input_paths_expr = "export INPUT_PATHS=''"
1143
- if node.name != "start":
1311
+ # If node is not a start step or a @parallel join then we will set the input paths.
1312
+ # To set the input-paths as a parameter, we need to ensure that the node
1313
+ # is not (a start node or a parallel join node). Start nodes will have no
1314
+ # input paths and parallel join will derive input paths based on a
1315
+ # formulaic approach using `num-parallel` and `task-id-entropy`.
1316
+ if not (
1317
+ node.name == "start"
1318
+ or (node.type == "join" and self.graph[node.in_funcs[0]].parallel_step)
1319
+ ):
1320
+ # For parallel joins we don't pass the INPUT_PATHS but are dynamically constructed.
1321
+ # So we don't need to set the input paths.
1144
1322
  input_paths_expr = (
1145
1323
  "export INPUT_PATHS={{inputs.parameters.input-paths}}"
1146
1324
  )
@@ -1169,13 +1347,23 @@ class ArgoWorkflows(object):
1169
1347
  task_idx,
1170
1348
  ]
1171
1349
  )
1350
+ if node.parallel_step:
1351
+ task_str = "-".join(
1352
+ [
1353
+ "$TASK_ID_PREFIX",
1354
+ "{{inputs.parameters.task-id-entropy}}", # id_base is addition entropy to based on node-name of the workflow
1355
+ "$TASK_ID_SUFFIX",
1356
+ ]
1357
+ )
1358
+ else:
1359
+ # Generated task_ids need to be non-numeric - see register_task_id in
1360
+ # service.py. We do so by prefixing `t-`
1361
+ _task_id_base = (
1362
+ "$(echo %s | md5sum | cut -d ' ' -f 1 | tail -c 9)" % task_str
1363
+ )
1364
+ task_str = "(t-%s)" % _task_id_base
1172
1365
 
1173
- # Generated task_ids need to be non-numeric - see register_task_id in
1174
- # service.py. We do so by prefixing `t-`
1175
- task_id_expr = (
1176
- "export METAFLOW_TASK_ID="
1177
- "(t-$(echo %s | md5sum | cut -d ' ' -f 1 | tail -c 9))" % task_str
1178
- )
1366
+ task_id_expr = "export METAFLOW_TASK_ID=" "%s" % task_str
1179
1367
  task_id = "$METAFLOW_TASK_ID"
1180
1368
 
1181
1369
  # Resolve retry strategy.
@@ -1194,9 +1382,20 @@ class ArgoWorkflows(object):
1194
1382
  user_code_retries = max_user_code_retries
1195
1383
  total_retries = max_user_code_retries + max_error_retries
1196
1384
  # {{retries}} is only available if retryStrategy is specified
1385
+ # and they are only available in the container templates NOT for custom
1386
+ # Kubernetes manifests like Jobsets.
1387
+ # For custom kubernetes manifests, we will pass the retryCount as a parameter
1388
+ # and use that in the manifest.
1197
1389
  retry_count = (
1198
- "{{retries}}" if max_user_code_retries + max_error_retries else 0
1390
+ (
1391
+ "{{retries}}"
1392
+ if not node.parallel_step
1393
+ else "{{inputs.parameters.retryCount}}"
1394
+ )
1395
+ if total_retries
1396
+ else 0
1199
1397
  )
1398
+
1200
1399
  minutes_between_retries = int(minutes_between_retries)
1201
1400
 
1202
1401
  # Configure log capture.
@@ -1302,13 +1501,24 @@ class ArgoWorkflows(object):
1302
1501
  foreach_step = next(
1303
1502
  n for n in node.in_funcs if self.graph[n].is_inside_foreach
1304
1503
  )
1305
- input_paths = (
1306
- "$(python -m metaflow.plugins.argo.generate_input_paths %s {{workflow.creationTimestamp}} %s {{inputs.parameters.split-cardinality}})"
1307
- % (
1308
- foreach_step,
1309
- input_paths,
1504
+ if not self.graph[node.split_parents[-1]].parallel_foreach:
1505
+ input_paths = (
1506
+ "$(python -m metaflow.plugins.argo.generate_input_paths %s {{workflow.creationTimestamp}} %s {{inputs.parameters.split-cardinality}})"
1507
+ % (
1508
+ foreach_step,
1509
+ input_paths,
1510
+ )
1511
+ )
1512
+ else:
1513
+ # When we run Jobsets with Argo Workflows we need to ensure that `input_paths` are generated using the a formulaic approach
1514
+ # because our current strategy of using volume mounts for outputs won't work with Jobsets
1515
+ input_paths = (
1516
+ "$(python -m metaflow.plugins.argo.jobset_input_paths %s %s {{inputs.parameters.task-id-entropy}} {{inputs.parameters.num-parallel}})"
1517
+ % (
1518
+ run_id,
1519
+ foreach_step,
1520
+ )
1310
1521
  )
1311
- )
1312
1522
  step = [
1313
1523
  "step",
1314
1524
  node.name,
@@ -1318,7 +1528,14 @@ class ArgoWorkflows(object):
1318
1528
  "--max-user-code-retries %d" % user_code_retries,
1319
1529
  "--input-paths %s" % input_paths,
1320
1530
  ]
1321
- if any(self.graph[n].type == "foreach" for n in node.in_funcs):
1531
+ if node.parallel_step:
1532
+ step.append(
1533
+ "--split-index ${MF_CONTROL_INDEX:-$((MF_WORKER_REPLICA_INDEX + 1))}"
1534
+ )
1535
+ # This is needed for setting the value of the UBF context in the CLI.
1536
+ step.append("--ubf-context $UBF_CONTEXT")
1537
+
1538
+ elif any(self.graph[n].type == "foreach" for n in node.in_funcs):
1322
1539
  # Pass split-index to a foreach task
1323
1540
  step.append("--split-index {{inputs.parameters.split-index}}")
1324
1541
  if self.tags:
@@ -1481,17 +1698,47 @@ class ArgoWorkflows(object):
1481
1698
  # join task deterministically inside the join task without resorting to
1482
1699
  # passing a rather long list of (albiet compressed)
1483
1700
  inputs = []
1484
- if node.name != "start":
1701
+ # To set the input-paths as a parameter, we need to ensure that the node
1702
+ # is not (a start node or a parallel join node). Start nodes will have no
1703
+ # input paths and parallel join will derive input paths based on a
1704
+ # formulaic approach.
1705
+ if not (
1706
+ node.name == "start"
1707
+ or (node.type == "join" and self.graph[node.in_funcs[0]].parallel_step)
1708
+ ):
1485
1709
  inputs.append(Parameter("input-paths"))
1486
1710
  if any(self.graph[n].type == "foreach" for n in node.in_funcs):
1487
1711
  # Fetch split-index from parent
1488
1712
  inputs.append(Parameter("split-index"))
1713
+
1489
1714
  if (
1490
1715
  node.type == "join"
1491
1716
  and self.graph[node.split_parents[-1]].type == "foreach"
1492
1717
  ):
1493
- # append this only for joins of foreaches, not static splits
1494
- inputs.append(Parameter("split-cardinality"))
1718
+ # @parallel join tasks require `num-parallel` and `task-id-entropy`
1719
+ # to construct the input paths, so we pass them down as input parameters.
1720
+ if self.graph[node.split_parents[-1]].parallel_foreach:
1721
+ inputs.extend(
1722
+ [Parameter("num-parallel"), Parameter("task-id-entropy")]
1723
+ )
1724
+ else:
1725
+ # append this only for joins of foreaches, not static splits
1726
+ inputs.append(Parameter("split-cardinality"))
1727
+ # We can use an `elif` condition because the first `if` condition validates if its
1728
+ # a foreach join node, hence we can safely assume that if that condition fails then
1729
+ # we can check if the node is a @parallel node.
1730
+ elif node.parallel_step:
1731
+ inputs.extend(
1732
+ [
1733
+ Parameter("num-parallel"),
1734
+ Parameter("task-id-entropy"),
1735
+ Parameter("jobset-name"),
1736
+ Parameter("workerCount"),
1737
+ ]
1738
+ )
1739
+ if any(d.name == "retry" for d in node.decorators):
1740
+ inputs.append(Parameter("retryCount"))
1741
+
1495
1742
  if node.is_inside_foreach and self.graph[node.out_funcs[0]].type == "join":
1496
1743
  if any(
1497
1744
  self.graph[parent].matching_join
@@ -1508,7 +1755,9 @@ class ArgoWorkflows(object):
1508
1755
  inputs.append(Parameter("root-input-path"))
1509
1756
 
1510
1757
  outputs = []
1511
- if node.name != "end":
1758
+ # @parallel steps will not have a task-id as an output parameter since task-ids
1759
+ # are derived at runtime.
1760
+ if not (node.name == "end" or node.parallel_step):
1512
1761
  outputs = [Parameter("task-id").valueFrom({"path": "/mnt/out/task_id"})]
1513
1762
  if node.type == "foreach":
1514
1763
  # Emit split cardinality from foreach task
@@ -1521,6 +1770,19 @@ class ArgoWorkflows(object):
1521
1770
  )
1522
1771
  )
1523
1772
 
1773
+ if node.parallel_foreach:
1774
+ outputs.extend(
1775
+ [
1776
+ Parameter("num-parallel").valueFrom(
1777
+ {"path": "/mnt/out/num_parallel"}
1778
+ ),
1779
+ Parameter("task-id-entropy").valueFrom(
1780
+ {"path": "/mnt/out/task_id_entropy"}
1781
+ ),
1782
+ ]
1783
+ )
1784
+ # Outputs should be defined over here, Not in the _dag_template for the `num_parallel` stuff.
1785
+
1524
1786
  # It makes no sense to set env vars to None (shows up as "None" string)
1525
1787
  # Also we skip some env vars (e.g. in case we want to pull them from KUBERNETES_SECRETS)
1526
1788
  env = {
@@ -1550,6 +1812,156 @@ class ArgoWorkflows(object):
1550
1812
  # liked to inline this ContainerTemplate and avoid scanning the workflow
1551
1813
  # twice, but due to issues with variable substitution, we will have to
1552
1814
  # live with this routine.
1815
+ if node.parallel_step:
1816
+
1817
+ # Explicitly add the task-id-hint label. This is important because this label
1818
+ # is returned as an Output parameter of this step and is used subsequently an
1819
+ # an input in the join step. Even the num_parallel is used as an output parameter
1820
+ kubernetes_labels = self.kubernetes_labels.copy()
1821
+ jobset_name = "{{inputs.parameters.jobset-name}}"
1822
+ kubernetes_labels[
1823
+ "task_id_entropy"
1824
+ ] = "{{inputs.parameters.task-id-entropy}}"
1825
+ kubernetes_labels["num_parallel"] = "{{inputs.parameters.num-parallel}}"
1826
+ jobset = KubernetesArgoJobSet(
1827
+ kubernetes_sdk=kubernetes_sdk,
1828
+ name=jobset_name,
1829
+ flow_name=self.flow.name,
1830
+ run_id=run_id,
1831
+ step_name=self._sanitize(node.name),
1832
+ task_id=task_id,
1833
+ attempt=retry_count,
1834
+ user=self.username,
1835
+ subdomain=jobset_name,
1836
+ command=cmds,
1837
+ namespace=resources["namespace"],
1838
+ image=resources["image"],
1839
+ image_pull_policy=resources["image_pull_policy"],
1840
+ service_account=resources["service_account"],
1841
+ secrets=(
1842
+ [
1843
+ k
1844
+ for k in (
1845
+ list(
1846
+ []
1847
+ if not resources.get("secrets")
1848
+ else [resources.get("secrets")]
1849
+ if isinstance(resources.get("secrets"), str)
1850
+ else resources.get("secrets")
1851
+ )
1852
+ + KUBERNETES_SECRETS.split(",")
1853
+ + ARGO_WORKFLOWS_KUBERNETES_SECRETS.split(",")
1854
+ )
1855
+ if k
1856
+ ]
1857
+ ),
1858
+ node_selector=resources.get("node_selector"),
1859
+ cpu=str(resources["cpu"]),
1860
+ memory=str(resources["memory"]),
1861
+ disk=str(resources["disk"]),
1862
+ gpu=resources["gpu"],
1863
+ gpu_vendor=str(resources["gpu_vendor"]),
1864
+ tolerations=resources["tolerations"],
1865
+ use_tmpfs=use_tmpfs,
1866
+ tmpfs_tempdir=tmpfs_tempdir,
1867
+ tmpfs_size=tmpfs_size,
1868
+ tmpfs_path=tmpfs_path,
1869
+ timeout_in_seconds=run_time_limit,
1870
+ persistent_volume_claims=resources["persistent_volume_claims"],
1871
+ shared_memory=shared_memory,
1872
+ port=port,
1873
+ )
1874
+
1875
+ for k, v in env.items():
1876
+ jobset.environment_variable(k, v)
1877
+
1878
+ for k, v in kubernetes_labels.items():
1879
+ jobset.label(k, v)
1880
+
1881
+ ## -----Jobset specific env vars START here-----
1882
+ jobset.environment_variable(
1883
+ "MF_MASTER_ADDR", jobset.jobset_control_addr
1884
+ )
1885
+ jobset.environment_variable("MF_MASTER_PORT", str(port))
1886
+ jobset.environment_variable(
1887
+ "MF_WORLD_SIZE", "{{inputs.parameters.num-parallel}}"
1888
+ )
1889
+ # for k, v in .items():
1890
+ jobset.environment_variables_from_selectors(
1891
+ {
1892
+ "MF_WORKER_REPLICA_INDEX": "metadata.annotations['jobset.sigs.k8s.io/job-index']",
1893
+ "JOBSET_RESTART_ATTEMPT": "metadata.annotations['jobset.sigs.k8s.io/restart-attempt']",
1894
+ "METAFLOW_KUBERNETES_JOBSET_NAME": "metadata.annotations['jobset.sigs.k8s.io/jobset-name']",
1895
+ "METAFLOW_KUBERNETES_POD_NAMESPACE": "metadata.namespace",
1896
+ "METAFLOW_KUBERNETES_POD_NAME": "metadata.name",
1897
+ "METAFLOW_KUBERNETES_POD_ID": "metadata.uid",
1898
+ "METAFLOW_KUBERNETES_SERVICE_ACCOUNT_NAME": "spec.serviceAccountName",
1899
+ "METAFLOW_KUBERNETES_NODE_IP": "status.hostIP",
1900
+ # `TASK_ID_SUFFIX` is needed for the construction of the task-ids
1901
+ "TASK_ID_SUFFIX": "metadata.annotations['jobset.sigs.k8s.io/job-index']",
1902
+ }
1903
+ )
1904
+ annotations = {
1905
+ # setting annotations explicitly as they wont be
1906
+ # passed down from WorkflowTemplate level
1907
+ "metaflow/step_name": node.name,
1908
+ "metaflow/attempt": str(retry_count),
1909
+ "metaflow/run_id": run_id,
1910
+ "metaflow/production_token": self.production_token,
1911
+ "metaflow/owner": self.username,
1912
+ "metaflow/user": "argo-workflows",
1913
+ "metaflow/flow_name": self.flow.name,
1914
+ }
1915
+ if current.get("project_name"):
1916
+ annotations.update(
1917
+ {
1918
+ "metaflow/project_name": current.project_name,
1919
+ "metaflow/branch_name": current.branch_name,
1920
+ "metaflow/project_flow_name": current.project_flow_name,
1921
+ }
1922
+ )
1923
+ for k, v in annotations.items():
1924
+ jobset.annotation(k, v)
1925
+ ## -----Jobset specific env vars END here-----
1926
+ ## ---- Jobset control/workers specific vars START here ----
1927
+ jobset.control.replicas(1)
1928
+ jobset.worker.replicas("{{=asInt(inputs.parameters.workerCount)}}")
1929
+ jobset.control.environment_variable("UBF_CONTEXT", UBF_CONTROL)
1930
+ jobset.worker.environment_variable("UBF_CONTEXT", UBF_TASK)
1931
+ jobset.control.environment_variable("MF_CONTROL_INDEX", "0")
1932
+ # `TASK_ID_PREFIX` needs to explicitly be `control` or `worker`
1933
+ # because the join task uses a formulaic approach to infer the task-ids
1934
+ jobset.control.environment_variable("TASK_ID_PREFIX", "control")
1935
+ jobset.worker.environment_variable("TASK_ID_PREFIX", "worker")
1936
+
1937
+ ## ---- Jobset control/workers specific vars END here ----
1938
+ yield (
1939
+ Template(ArgoWorkflows._sanitize(node.name))
1940
+ .resource(
1941
+ "create",
1942
+ jobset.dump(),
1943
+ "status.terminalState == Completed",
1944
+ "status.terminalState == Failed",
1945
+ )
1946
+ .inputs(Inputs().parameters(inputs))
1947
+ .outputs(
1948
+ Outputs().parameters(
1949
+ [
1950
+ Parameter("task-id-entropy").valueFrom(
1951
+ {"jsonPath": "{.metadata.labels.task_id_entropy}"}
1952
+ ),
1953
+ Parameter("num-parallel").valueFrom(
1954
+ {"jsonPath": "{.metadata.labels.num_parallel}"}
1955
+ ),
1956
+ ]
1957
+ )
1958
+ )
1959
+ .retry_strategy(
1960
+ times=total_retries,
1961
+ minutes_between_retries=minutes_between_retries,
1962
+ )
1963
+ )
1964
+ continue
1553
1965
  yield (
1554
1966
  Template(self._sanitize(node.name))
1555
1967
  # Set @timeout values
@@ -1847,7 +2259,7 @@ class ArgoWorkflows(object):
1847
2259
  "fields": [
1848
2260
  {
1849
2261
  "type": "mrkdwn",
1850
- "text": "*Project:* %s" % current.project_name
2262
+ "text": "*Project:* %s" % current.project_name
1851
2263
  },
1852
2264
  {
1853
2265
  "type": "mrkdwn",
@@ -2621,6 +3033,15 @@ class Template(object):
2621
3033
  def to_json(self):
2622
3034
  return self.payload
2623
3035
 
3036
+ def resource(self, action, manifest, success_criteria, failure_criteria):
3037
+ self.payload["resource"] = {}
3038
+ self.payload["resource"]["action"] = action
3039
+ self.payload["setOwnerReference"] = True
3040
+ self.payload["resource"]["successCondition"] = success_criteria
3041
+ self.payload["resource"]["failureCondition"] = failure_criteria
3042
+ self.payload["resource"]["manifest"] = manifest
3043
+ return self
3044
+
2624
3045
  def __str__(self):
2625
3046
  return json.dumps(self.payload, indent=4)
2626
3047