ob-metaflow 2.12.36.3__py2.py3-none-any.whl → 2.13.0.1__py2.py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of ob-metaflow might be problematic. Click here for more details.
- metaflow/__init__.py +3 -0
- metaflow/cli.py +180 -718
- metaflow/cli_args.py +17 -0
- metaflow/cli_components/__init__.py +0 -0
- metaflow/cli_components/dump_cmd.py +96 -0
- metaflow/cli_components/init_cmd.py +51 -0
- metaflow/cli_components/run_cmds.py +360 -0
- metaflow/cli_components/step_cmd.py +189 -0
- metaflow/cli_components/utils.py +140 -0
- metaflow/cmd/develop/stub_generator.py +9 -2
- metaflow/datastore/flow_datastore.py +2 -2
- metaflow/decorators.py +63 -2
- metaflow/exception.py +8 -2
- metaflow/extension_support/plugins.py +41 -27
- metaflow/flowspec.py +175 -23
- metaflow/graph.py +28 -27
- metaflow/includefile.py +50 -22
- metaflow/lint.py +35 -20
- metaflow/metaflow_config.py +6 -1
- metaflow/package.py +17 -3
- metaflow/parameters.py +87 -23
- metaflow/plugins/__init__.py +4 -0
- metaflow/plugins/airflow/airflow_cli.py +1 -0
- metaflow/plugins/argo/argo_workflows.py +41 -1
- metaflow/plugins/argo/argo_workflows_cli.py +1 -0
- metaflow/plugins/argo/argo_workflows_deployer_objects.py +47 -1
- metaflow/plugins/aws/batch/batch_decorator.py +2 -2
- metaflow/plugins/aws/secrets_manager/aws_secrets_manager_secrets_provider.py +13 -10
- metaflow/plugins/aws/step_functions/step_functions.py +32 -0
- metaflow/plugins/aws/step_functions/step_functions_cli.py +1 -0
- metaflow/plugins/aws/step_functions/step_functions_deployer_objects.py +3 -0
- metaflow/plugins/cards/card_creator.py +1 -0
- metaflow/plugins/cards/card_decorator.py +46 -8
- metaflow/plugins/datatools/s3/s3op.py +3 -3
- metaflow/plugins/kubernetes/kubernetes_cli.py +1 -1
- metaflow/plugins/kubernetes/kubernetes_decorator.py +2 -2
- metaflow/plugins/pypi/bootstrap.py +196 -61
- metaflow/plugins/pypi/conda_decorator.py +20 -10
- metaflow/plugins/pypi/conda_environment.py +76 -21
- metaflow/plugins/pypi/micromamba.py +42 -15
- metaflow/plugins/pypi/pip.py +8 -3
- metaflow/plugins/pypi/pypi_decorator.py +11 -9
- metaflow/plugins/timeout_decorator.py +2 -2
- metaflow/runner/click_api.py +240 -50
- metaflow/runner/deployer.py +1 -1
- metaflow/runner/deployer_impl.py +8 -3
- metaflow/runner/metaflow_runner.py +10 -2
- metaflow/runner/nbdeploy.py +2 -0
- metaflow/runner/nbrun.py +1 -1
- metaflow/runner/subprocess_manager.py +3 -1
- metaflow/runner/utils.py +41 -19
- metaflow/runtime.py +111 -73
- metaflow/sidecar/sidecar_worker.py +1 -1
- metaflow/user_configs/__init__.py +0 -0
- metaflow/user_configs/config_decorators.py +563 -0
- metaflow/user_configs/config_options.py +548 -0
- metaflow/user_configs/config_parameters.py +405 -0
- metaflow/util.py +17 -0
- metaflow/version.py +1 -1
- {ob_metaflow-2.12.36.3.dist-info → ob_metaflow-2.13.0.1.dist-info}/METADATA +3 -2
- {ob_metaflow-2.12.36.3.dist-info → ob_metaflow-2.13.0.1.dist-info}/RECORD +65 -55
- {ob_metaflow-2.12.36.3.dist-info → ob_metaflow-2.13.0.1.dist-info}/LICENSE +0 -0
- {ob_metaflow-2.12.36.3.dist-info → ob_metaflow-2.13.0.1.dist-info}/WHEEL +0 -0
- {ob_metaflow-2.12.36.3.dist-info → ob_metaflow-2.13.0.1.dist-info}/entry_points.txt +0 -0
- {ob_metaflow-2.12.36.3.dist-info → ob_metaflow-2.13.0.1.dist-info}/top_level.txt +0 -0
|
@@ -50,20 +50,26 @@ class CondaStepDecorator(StepDecorator):
|
|
|
50
50
|
# conda channels, users can specify channel::package as the package name.
|
|
51
51
|
|
|
52
52
|
def __init__(self, attributes=None, statically_defined=False):
|
|
53
|
-
self.
|
|
54
|
-
attributes.
|
|
53
|
+
self._attributes_with_user_values = (
|
|
54
|
+
set(attributes.keys()) if attributes is not None else set()
|
|
55
55
|
)
|
|
56
|
+
|
|
56
57
|
super(CondaStepDecorator, self).__init__(attributes, statically_defined)
|
|
57
58
|
|
|
59
|
+
def init(self):
|
|
60
|
+
super(CondaStepDecorator, self).init()
|
|
61
|
+
|
|
58
62
|
# Support legacy 'libraries=' attribute for the decorator.
|
|
59
63
|
self.attributes["packages"] = {
|
|
60
64
|
**self.attributes["libraries"],
|
|
61
65
|
**self.attributes["packages"],
|
|
62
66
|
}
|
|
63
67
|
del self.attributes["libraries"]
|
|
68
|
+
if self.attributes["packages"]:
|
|
69
|
+
self._attributes_with_user_values.add("packages")
|
|
64
70
|
|
|
65
71
|
def is_attribute_user_defined(self, name):
|
|
66
|
-
return name in self.
|
|
72
|
+
return name in self._attributes_with_user_values
|
|
67
73
|
|
|
68
74
|
def step_init(self, flow, graph, step, decos, environment, flow_datastore, logger):
|
|
69
75
|
# The init_environment hook for Environment creates the relevant virtual
|
|
@@ -83,10 +89,10 @@ class CondaStepDecorator(StepDecorator):
|
|
|
83
89
|
**super_attributes["packages"],
|
|
84
90
|
**self.attributes["packages"],
|
|
85
91
|
}
|
|
86
|
-
self.
|
|
87
|
-
|
|
88
|
-
|
|
89
|
-
|
|
92
|
+
self._attributes_with_user_values.update(
|
|
93
|
+
conda_base._attributes_with_user_values
|
|
94
|
+
)
|
|
95
|
+
|
|
90
96
|
self.attributes["python"] = (
|
|
91
97
|
self.attributes["python"] or super_attributes["python"]
|
|
92
98
|
)
|
|
@@ -333,11 +339,15 @@ class CondaFlowDecorator(FlowDecorator):
|
|
|
333
339
|
}
|
|
334
340
|
|
|
335
341
|
def __init__(self, attributes=None, statically_defined=False):
|
|
336
|
-
self.
|
|
337
|
-
attributes.
|
|
342
|
+
self._attributes_with_user_values = (
|
|
343
|
+
set(attributes.keys()) if attributes is not None else set()
|
|
338
344
|
)
|
|
345
|
+
|
|
339
346
|
super(CondaFlowDecorator, self).__init__(attributes, statically_defined)
|
|
340
347
|
|
|
348
|
+
def init(self):
|
|
349
|
+
super(CondaFlowDecorator, self).init()
|
|
350
|
+
|
|
341
351
|
# Support legacy 'libraries=' attribute for the decorator.
|
|
342
352
|
self.attributes["packages"] = {
|
|
343
353
|
**self.attributes["libraries"],
|
|
@@ -348,7 +358,7 @@ class CondaFlowDecorator(FlowDecorator):
|
|
|
348
358
|
self.attributes["python"] = str(self.attributes["python"])
|
|
349
359
|
|
|
350
360
|
def is_attribute_user_defined(self, name):
|
|
351
|
-
return name in self.
|
|
361
|
+
return name in self._attributes_with_user_values
|
|
352
362
|
|
|
353
363
|
def flow_init(
|
|
354
364
|
self, flow, graph, environment, flow_datastore, metadata, logger, echo, options
|
|
@@ -5,10 +5,11 @@ import functools
|
|
|
5
5
|
import io
|
|
6
6
|
import json
|
|
7
7
|
import os
|
|
8
|
-
import sys
|
|
9
8
|
import tarfile
|
|
9
|
+
import threading
|
|
10
10
|
import time
|
|
11
|
-
from concurrent.futures import ThreadPoolExecutor
|
|
11
|
+
from concurrent.futures import ThreadPoolExecutor, as_completed
|
|
12
|
+
from functools import wraps
|
|
12
13
|
from hashlib import sha256
|
|
13
14
|
from io import BufferedIOBase, BytesIO
|
|
14
15
|
from itertools import chain
|
|
@@ -50,7 +51,6 @@ class CondaEnvironment(MetaflowEnvironment):
|
|
|
50
51
|
|
|
51
52
|
def validate_environment(self, logger, datastore_type):
|
|
52
53
|
self.datastore_type = datastore_type
|
|
53
|
-
self.logger = logger
|
|
54
54
|
|
|
55
55
|
# Avoiding circular imports.
|
|
56
56
|
from metaflow.plugins import DATASTORES
|
|
@@ -62,8 +62,21 @@ class CondaEnvironment(MetaflowEnvironment):
|
|
|
62
62
|
from .micromamba import Micromamba
|
|
63
63
|
from .pip import Pip
|
|
64
64
|
|
|
65
|
-
|
|
66
|
-
|
|
65
|
+
print_lock = threading.Lock()
|
|
66
|
+
|
|
67
|
+
def make_thread_safe(func):
|
|
68
|
+
@wraps(func)
|
|
69
|
+
def wrapper(*args, **kwargs):
|
|
70
|
+
with print_lock:
|
|
71
|
+
return func(*args, **kwargs)
|
|
72
|
+
|
|
73
|
+
return wrapper
|
|
74
|
+
|
|
75
|
+
self.logger = make_thread_safe(logger)
|
|
76
|
+
|
|
77
|
+
# TODO: Wire up logging
|
|
78
|
+
micromamba = Micromamba(self.logger)
|
|
79
|
+
self.solvers = {"conda": micromamba, "pypi": Pip(micromamba, self.logger)}
|
|
67
80
|
|
|
68
81
|
def init_environment(self, echo, only_steps=None):
|
|
69
82
|
# The implementation optimizes for latency to ensure as many operations can
|
|
@@ -150,6 +163,9 @@ class CondaEnvironment(MetaflowEnvironment):
|
|
|
150
163
|
(
|
|
151
164
|
package["path"],
|
|
152
165
|
# Lazily fetch package from the interweb if needed.
|
|
166
|
+
# TODO: Depending on the len_hint, the package might be downloaded from
|
|
167
|
+
# the interweb prematurely. save_bytes needs to be adjusted to handle
|
|
168
|
+
# this scenario.
|
|
153
169
|
LazyOpen(
|
|
154
170
|
package["local_path"],
|
|
155
171
|
"rb",
|
|
@@ -166,22 +182,60 @@ class CondaEnvironment(MetaflowEnvironment):
|
|
|
166
182
|
if id_ in dirty:
|
|
167
183
|
self.write_to_environment_manifest([id_, platform, type_], packages)
|
|
168
184
|
|
|
169
|
-
|
|
185
|
+
storage = None
|
|
186
|
+
if self.datastore_type not in ["local"]:
|
|
187
|
+
# Initialize storage for caching if using a remote datastore
|
|
188
|
+
storage = self.datastore(_datastore_packageroot(self.datastore, echo))
|
|
189
|
+
|
|
170
190
|
self.logger("Bootstrapping virtual environment(s) ...")
|
|
171
|
-
|
|
172
|
-
|
|
173
|
-
|
|
174
|
-
|
|
175
|
-
|
|
176
|
-
|
|
177
|
-
|
|
178
|
-
|
|
179
|
-
|
|
180
|
-
|
|
181
|
-
|
|
182
|
-
|
|
183
|
-
|
|
184
|
-
|
|
191
|
+
# Sequence of operations:
|
|
192
|
+
# 1. Start all conda solves in parallel
|
|
193
|
+
# 2. Download conda packages sequentially
|
|
194
|
+
# 3. Create and cache conda environments in parallel
|
|
195
|
+
# 4. Start PyPI solves in parallel after each conda environment is created
|
|
196
|
+
# 5. Download PyPI packages sequentially
|
|
197
|
+
# 6. Create and cache PyPI environments in parallel
|
|
198
|
+
|
|
199
|
+
with ThreadPoolExecutor() as executor:
|
|
200
|
+
# Start all conda solves in parallel
|
|
201
|
+
conda_futures = [
|
|
202
|
+
executor.submit(lambda x: solve(*x, "conda"), env)
|
|
203
|
+
for env in environments("conda")
|
|
204
|
+
]
|
|
205
|
+
|
|
206
|
+
pypi_envs = {env[0]: env for env in environments("pypi")}
|
|
207
|
+
pypi_futures = []
|
|
208
|
+
|
|
209
|
+
# Process conda results sequentially for downloads
|
|
210
|
+
for future in as_completed(conda_futures):
|
|
211
|
+
result = future.result()
|
|
212
|
+
# Sequential conda download
|
|
213
|
+
self.solvers["conda"].download(*result)
|
|
214
|
+
# Parallel conda create and cache
|
|
215
|
+
create_future = executor.submit(self.solvers["conda"].create, *result)
|
|
216
|
+
if storage:
|
|
217
|
+
executor.submit(cache, storage, [result], "conda")
|
|
218
|
+
|
|
219
|
+
# Queue PyPI solve to start after conda create
|
|
220
|
+
if result[0] in pypi_envs:
|
|
221
|
+
|
|
222
|
+
def pypi_solve(env):
|
|
223
|
+
create_future.result() # Wait for conda create
|
|
224
|
+
return solve(*env, "pypi")
|
|
225
|
+
|
|
226
|
+
pypi_futures.append(
|
|
227
|
+
executor.submit(pypi_solve, pypi_envs[result[0]])
|
|
228
|
+
)
|
|
229
|
+
|
|
230
|
+
# Process PyPI results sequentially for downloads
|
|
231
|
+
for solve_future in pypi_futures:
|
|
232
|
+
result = solve_future.result()
|
|
233
|
+
# Sequential PyPI download
|
|
234
|
+
self.solvers["pypi"].download(*result)
|
|
235
|
+
# Parallel PyPI create and cache
|
|
236
|
+
executor.submit(self.solvers["pypi"].create, *result)
|
|
237
|
+
if storage:
|
|
238
|
+
executor.submit(cache, storage, [result], "pypi")
|
|
185
239
|
self.logger("Virtual environment(s) bootstrapped!")
|
|
186
240
|
|
|
187
241
|
def executable(self, step_name, default=None):
|
|
@@ -385,7 +439,8 @@ class CondaEnvironment(MetaflowEnvironment):
|
|
|
385
439
|
'DISABLE_TRACING=True python -m metaflow.plugins.pypi.bootstrap "%s" %s "%s" linux-64'
|
|
386
440
|
% (self.flow.name, id_, self.datastore_type),
|
|
387
441
|
"echo 'Environment bootstrapped.'",
|
|
388
|
-
|
|
442
|
+
# To avoid having to install micromamba in the PATH in micromamba.py, we add it to the PATH here.
|
|
443
|
+
"export PATH=$PATH:$(pwd)/micromamba/bin",
|
|
389
444
|
]
|
|
390
445
|
else:
|
|
391
446
|
# for @conda/@pypi(disabled=True).
|
|
@@ -1,7 +1,9 @@
|
|
|
1
|
+
import functools
|
|
1
2
|
import json
|
|
2
3
|
import os
|
|
3
4
|
import subprocess
|
|
4
5
|
import tempfile
|
|
6
|
+
import time
|
|
5
7
|
|
|
6
8
|
from metaflow.exception import MetaflowException
|
|
7
9
|
from metaflow.util import which
|
|
@@ -19,8 +21,11 @@ class MicromambaException(MetaflowException):
|
|
|
19
21
|
super(MicromambaException, self).__init__(msg)
|
|
20
22
|
|
|
21
23
|
|
|
24
|
+
GLIBC_VERSION = os.environ.get("CONDA_OVERRIDE_GLIBC", "2.38")
|
|
25
|
+
|
|
26
|
+
|
|
22
27
|
class Micromamba(object):
|
|
23
|
-
def __init__(self):
|
|
28
|
+
def __init__(self, logger=None):
|
|
24
29
|
# micromamba is a tiny version of the mamba package manager and comes with
|
|
25
30
|
# metaflow specific performance enhancements.
|
|
26
31
|
|
|
@@ -33,6 +38,12 @@ class Micromamba(object):
|
|
|
33
38
|
os.path.expanduser(_home),
|
|
34
39
|
"micromamba",
|
|
35
40
|
)
|
|
41
|
+
|
|
42
|
+
if logger:
|
|
43
|
+
self.logger = logger
|
|
44
|
+
else:
|
|
45
|
+
self.logger = lambda *args, **kwargs: None # No-op logger if not provided
|
|
46
|
+
|
|
36
47
|
self.bin = (
|
|
37
48
|
which(os.environ.get("METAFLOW_PATH_TO_MICROMAMBA") or "micromamba")
|
|
38
49
|
or which("./micromamba") # to support remote execution
|
|
@@ -70,6 +81,9 @@ class Micromamba(object):
|
|
|
70
81
|
"MAMBA_ADD_PIP_AS_PYTHON_DEPENDENCY": "true",
|
|
71
82
|
"CONDA_SUBDIR": platform,
|
|
72
83
|
# "CONDA_UNSATISFIABLE_HINTS_CHECK_DEPTH": "0" # https://github.com/conda/conda/issues/9862
|
|
84
|
+
# Add a default glibc version for linux-64 environments (ignored for other platforms)
|
|
85
|
+
# TODO: Make the version configurable
|
|
86
|
+
"CONDA_OVERRIDE_GLIBC": GLIBC_VERSION,
|
|
73
87
|
}
|
|
74
88
|
cmd = [
|
|
75
89
|
"create",
|
|
@@ -78,6 +92,7 @@ class Micromamba(object):
|
|
|
78
92
|
"--dry-run",
|
|
79
93
|
"--no-extra-safety-checks",
|
|
80
94
|
"--repodata-ttl=86400",
|
|
95
|
+
"--safety-checks=disabled",
|
|
81
96
|
"--retry-clean-cache",
|
|
82
97
|
"--prefix=%s/prefix" % tmp_dir,
|
|
83
98
|
]
|
|
@@ -91,10 +106,11 @@ class Micromamba(object):
|
|
|
91
106
|
cmd.append("python==%s" % python)
|
|
92
107
|
# TODO: Ensure a human readable message is returned when the environment
|
|
93
108
|
# can't be resolved for any and all reasons.
|
|
94
|
-
|
|
109
|
+
solved_packages = [
|
|
95
110
|
{k: v for k, v in item.items() if k in ["url"]}
|
|
96
111
|
for item in self._call(cmd, env)["actions"]["LINK"]
|
|
97
112
|
]
|
|
113
|
+
return solved_packages
|
|
98
114
|
|
|
99
115
|
def download(self, id_, packages, python, platform):
|
|
100
116
|
# Unfortunately all the packages need to be catalogued in package cache
|
|
@@ -103,8 +119,6 @@ class Micromamba(object):
|
|
|
103
119
|
# Micromamba is painfully slow in determining if many packages are infact
|
|
104
120
|
# already cached. As a perf heuristic, we check if the environment already
|
|
105
121
|
# exists to short circuit package downloads.
|
|
106
|
-
if self.path_to_environment(id_, platform):
|
|
107
|
-
return
|
|
108
122
|
|
|
109
123
|
prefix = "{env_dirs}/{keyword}/{platform}/{id}".format(
|
|
110
124
|
env_dirs=self.info()["envs_dirs"][0],
|
|
@@ -113,13 +127,18 @@ class Micromamba(object):
|
|
|
113
127
|
id=id_,
|
|
114
128
|
)
|
|
115
129
|
|
|
116
|
-
#
|
|
130
|
+
# cheap check
|
|
117
131
|
if os.path.exists(f"{prefix}/fake.done"):
|
|
118
132
|
return
|
|
119
133
|
|
|
134
|
+
# somewhat expensive check
|
|
135
|
+
if self.path_to_environment(id_, platform):
|
|
136
|
+
return
|
|
137
|
+
|
|
120
138
|
with tempfile.TemporaryDirectory() as tmp_dir:
|
|
121
139
|
env = {
|
|
122
140
|
"CONDA_SUBDIR": platform,
|
|
141
|
+
"CONDA_OVERRIDE_GLIBC": GLIBC_VERSION,
|
|
123
142
|
}
|
|
124
143
|
cmd = [
|
|
125
144
|
"create",
|
|
@@ -159,6 +178,7 @@ class Micromamba(object):
|
|
|
159
178
|
# use hardlinks when possible, otherwise copy files
|
|
160
179
|
# disabled for now since it adds to environment creation latencies
|
|
161
180
|
"CONDA_ALLOW_SOFTLINKS": "0",
|
|
181
|
+
"CONDA_OVERRIDE_GLIBC": GLIBC_VERSION,
|
|
162
182
|
}
|
|
163
183
|
cmd = [
|
|
164
184
|
"create",
|
|
@@ -174,6 +194,7 @@ class Micromamba(object):
|
|
|
174
194
|
cmd.append("{url}".format(**package))
|
|
175
195
|
self._call(cmd, env)
|
|
176
196
|
|
|
197
|
+
@functools.lru_cache(maxsize=None)
|
|
177
198
|
def info(self):
|
|
178
199
|
return self._call(["config", "list", "-a"])
|
|
179
200
|
|
|
@@ -198,18 +219,24 @@ class Micromamba(object):
|
|
|
198
219
|
}
|
|
199
220
|
directories = self.info()["pkgs_dirs"]
|
|
200
221
|
# search all package caches for packages
|
|
201
|
-
|
|
202
|
-
|
|
222
|
+
|
|
223
|
+
file_to_path = {}
|
|
224
|
+
for d in directories:
|
|
225
|
+
if os.path.isdir(d):
|
|
226
|
+
try:
|
|
227
|
+
with os.scandir(d) as entries:
|
|
228
|
+
for entry in entries:
|
|
229
|
+
if entry.is_file():
|
|
230
|
+
# Prefer the first occurrence if the file exists in multiple directories
|
|
231
|
+
file_to_path.setdefault(entry.name, entry.path)
|
|
232
|
+
except OSError:
|
|
233
|
+
continue
|
|
234
|
+
ret = {
|
|
235
|
+
# set package tarball local paths to None if package tarballs are missing
|
|
236
|
+
url: file_to_path.get(file)
|
|
203
237
|
for url, file in packages_to_filenames.items()
|
|
204
|
-
for d in directories
|
|
205
|
-
if os.path.isdir(d)
|
|
206
|
-
and file in os.listdir(d)
|
|
207
|
-
and os.path.isfile(os.path.join(d, file))
|
|
208
238
|
}
|
|
209
|
-
|
|
210
|
-
for url in packages_to_filenames:
|
|
211
|
-
metadata.setdefault(url, None)
|
|
212
|
-
return metadata
|
|
239
|
+
return ret
|
|
213
240
|
|
|
214
241
|
def interpreter(self, id_):
|
|
215
242
|
return os.path.join(self.path_to_environment(id_), "bin/python")
|
metaflow/plugins/pypi/pip.py
CHANGED
|
@@ -4,6 +4,7 @@ import re
|
|
|
4
4
|
import shutil
|
|
5
5
|
import subprocess
|
|
6
6
|
import tempfile
|
|
7
|
+
import time
|
|
7
8
|
from concurrent.futures import ThreadPoolExecutor
|
|
8
9
|
from itertools import chain, product
|
|
9
10
|
from urllib.parse import unquote
|
|
@@ -50,10 +51,14 @@ INSTALLATION_MARKER = "{prefix}/.pip/id"
|
|
|
50
51
|
|
|
51
52
|
|
|
52
53
|
class Pip(object):
|
|
53
|
-
def __init__(self, micromamba=None):
|
|
54
|
+
def __init__(self, micromamba=None, logger=None):
|
|
54
55
|
# pip is assumed to be installed inside a conda environment managed by
|
|
55
56
|
# micromamba. pip commands are executed using `micromamba run --prefix`
|
|
56
|
-
self.micromamba = micromamba or Micromamba()
|
|
57
|
+
self.micromamba = micromamba or Micromamba(logger)
|
|
58
|
+
if logger:
|
|
59
|
+
self.logger = logger
|
|
60
|
+
else:
|
|
61
|
+
self.logger = lambda *args, **kwargs: None # No-op logger if not provided
|
|
57
62
|
|
|
58
63
|
def solve(self, id_, packages, python, platform):
|
|
59
64
|
prefix = self.micromamba.path_to_environment(id_)
|
|
@@ -123,7 +128,7 @@ class Pip(object):
|
|
|
123
128
|
**res,
|
|
124
129
|
subdir_str=(
|
|
125
130
|
"#subdirectory=%s" % subdirectory if subdirectory else ""
|
|
126
|
-
)
|
|
131
|
+
),
|
|
127
132
|
)
|
|
128
133
|
# used to deduplicate the storage location in case wheel does not
|
|
129
134
|
# build with enough unique identifiers.
|
|
@@ -25,9 +25,10 @@ class PyPIStepDecorator(StepDecorator):
|
|
|
25
25
|
defaults = {"packages": {}, "python": None, "disabled": None} # wheels
|
|
26
26
|
|
|
27
27
|
def __init__(self, attributes=None, statically_defined=False):
|
|
28
|
-
self.
|
|
29
|
-
attributes.
|
|
28
|
+
self._attributes_with_user_values = (
|
|
29
|
+
set(attributes.keys()) if attributes is not None else set()
|
|
30
30
|
)
|
|
31
|
+
|
|
31
32
|
super().__init__(attributes, statically_defined)
|
|
32
33
|
|
|
33
34
|
def step_init(self, flow, graph, step, decos, environment, flow_datastore, logger):
|
|
@@ -42,10 +43,9 @@ class PyPIStepDecorator(StepDecorator):
|
|
|
42
43
|
if "pypi_base" in self.flow._flow_decorators:
|
|
43
44
|
pypi_base = self.flow._flow_decorators["pypi_base"][0]
|
|
44
45
|
super_attributes = pypi_base.attributes
|
|
45
|
-
self.
|
|
46
|
-
|
|
47
|
-
|
|
48
|
-
}
|
|
46
|
+
self._attributes_with_user_values.update(
|
|
47
|
+
pypi_base._attributes_with_user_values
|
|
48
|
+
)
|
|
49
49
|
self.attributes["packages"] = {
|
|
50
50
|
**super_attributes["packages"],
|
|
51
51
|
**self.attributes["packages"],
|
|
@@ -106,7 +106,7 @@ class PyPIStepDecorator(StepDecorator):
|
|
|
106
106
|
environment.set_local_root(LocalStorage.get_datastore_root_from_config(logger))
|
|
107
107
|
|
|
108
108
|
def is_attribute_user_defined(self, name):
|
|
109
|
-
return name in self.
|
|
109
|
+
return name in self._attributes_with_user_values
|
|
110
110
|
|
|
111
111
|
|
|
112
112
|
class PyPIFlowDecorator(FlowDecorator):
|
|
@@ -129,9 +129,10 @@ class PyPIFlowDecorator(FlowDecorator):
|
|
|
129
129
|
defaults = {"packages": {}, "python": None, "disabled": None}
|
|
130
130
|
|
|
131
131
|
def __init__(self, attributes=None, statically_defined=False):
|
|
132
|
-
self.
|
|
133
|
-
attributes.
|
|
132
|
+
self._attributes_with_user_values = (
|
|
133
|
+
set(attributes.keys()) if attributes is not None else set()
|
|
134
134
|
)
|
|
135
|
+
|
|
135
136
|
super().__init__(attributes, statically_defined)
|
|
136
137
|
|
|
137
138
|
def flow_init(
|
|
@@ -140,6 +141,7 @@ class PyPIFlowDecorator(FlowDecorator):
|
|
|
140
141
|
from metaflow import decorators
|
|
141
142
|
|
|
142
143
|
decorators._attach_decorators(flow, ["pypi"])
|
|
144
|
+
decorators._init(flow)
|
|
143
145
|
|
|
144
146
|
# @pypi uses a conda environment to create a virtual environment.
|
|
145
147
|
# The conda environment can be created through micromamba.
|
|
@@ -37,8 +37,8 @@ class TimeoutDecorator(StepDecorator):
|
|
|
37
37
|
name = "timeout"
|
|
38
38
|
defaults = {"seconds": 0, "minutes": 0, "hours": 0}
|
|
39
39
|
|
|
40
|
-
def
|
|
41
|
-
super(
|
|
40
|
+
def init(self):
|
|
41
|
+
super().init()
|
|
42
42
|
# Initialize secs in __init__ so other decorators could safely use this
|
|
43
43
|
# value without worrying about decorator order.
|
|
44
44
|
# Convert values in attributes to type:int since they can be type:str
|